1
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
2
|
Kappen J, Abdel-Rahman O. Advances in pharmacotherapy for the treatment of peritoneal metastases from colorectal cancer. Expert Opin Pharmacother 2025; 26:17-30. [PMID: 39604139 DOI: 10.1080/14656566.2024.2435946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Patients with peritoneal metastasis (PM) from colorectal cancer (CRC) typically have a poor prognosis with historically few treatment options. Cytoreductive surgery (CRS) is the mainstay of treatment to remove macrometastases into the peritoneum, but residual micrometastases are often left behind. Systemic chemotherapy remains a cornerstone of treatment for micrometastases, but intraperitoneal therapy offers advantages including higher local dose concentration with fewer systemic side effects from treatment. AREAS COVERED This review covers advancements in the routes and types of pharmacotherapies for PM in CRC. EXPERT OPINION More evidence is needed to justify HIPEC with CRS as the standard of care treatment modality for patients with resectable PM in CRC. New therapies such as oncolytic viruses, biologics, and small-molecule inhibitors may become additional treatment modalities for PM.
Collapse
Affiliation(s)
- Janson Kappen
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
5
|
Fujita T, Fujii H. iChIP-SILAC analysis identifies epigenetic regulators of CpG methylation of the p16 INK4A gene. FEBS Lett 2024; 598:1094-1109. [PMID: 38627195 DOI: 10.1002/1873-3468.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
Allele-specific epigenetic events regulate the expression of specific genes such as tumor suppressor genes. Methods to biochemically identify epigenetic regulators remain limited. Here, we used insertional chromatin immunoprecipitation (iChIP) to address this issue. iChIP combined with quantitative mass spectrometry identified DNA methyltransferase 1 (DNMT1) and epigenetic regulators as proteins that potentially interact with a region of the p16INK4A gene that is CpG-methylated in one allele in HCT116 cells. Some of the identified proteins are involved in the CpG methylation of this region, and of these, DEAD-box helicase 24 (DDX24) contributes to CpG methylation by regulating the protein levels of DNMT1. Thus, iChIP is a useful method to identify proteins which bind to a target locus of interest.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Sikora A, Sullivan KM, Dineen S, Raoof M, Karolak A. Emerging therapeutic approaches for peritoneal metastases from gastrointestinal cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200767. [PMID: 38596287 PMCID: PMC10873742 DOI: 10.1016/j.omton.2024.200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Peritoneal metastases from gastrointestinal malignancies present difficult management decisions, with options consisting primarily of systemic chemotherapy or major surgery with or without hyperthermic intraperitoneal chemotherapy. Current research is investigating expanding therapeutic modalities, and the aim of this review is to provide an overview of the existing and emerging therapies for the peritoneal metastases from gastrointestinal cancers, primarily through the recent literature (2015 and newer). These include the current data with systemic therapy and cytoreduction with hyperthermic intraperitoneal or pressurized intraperitoneal aerosol chemotherapy, as well as novel promising modalities under investigation, including dominating oncolytic viral therapy and adoptive cellular, biologic, and bacteria therapy, or nanotechnology. The novel diverse strategies, although preliminary and preclinical in murine models, individually and collectively contribute to the treatment of peritoneal metastases, offering hope for improved outcomes and quality of life. We foresee that these evolving treatment approaches will facilitate the transfer of knowledge and data among studies and advance discovery of new drugs and optimized treatments for patients with peritoneal metastases.
Collapse
Affiliation(s)
- Aleksandra Sikora
- Department of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kevin M. Sullivan
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sean Dineen
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mustafa Raoof
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Aleksandra Karolak
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Garbarino O, Lambroia L, Basso G, Marrella V, Franceschini B, Soldani C, Pasqualini F, Giuliano D, Costa G, Peano C, Barbarossa D, Annarita D, Salvati A, Terracciano L, Torzilli G, Donadon M, Faggioli F. Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis. Aging Cell 2023:e13853. [PMID: 37157887 PMCID: PMC10352575 DOI: 10.1111/acel.13853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatic metastasis is a clinical challenge for colorectal cancer (CRC). Senescent cancer cells accumulate in CRC favoring tumor dissemination. Whether this mechanism progresses also in metastasis is unexplored. Here, we integrated spatial transcriptomics, 3D-microscopy, and multicellular transcriptomics to study the role of cellular senescence in human colorectal liver metastasis (CRLM). We discovered two distinct senescent metastatic cancer cell (SMCC) subtypes, transcriptionally located at the opposite pole of epithelial (e) to mesenchymal (m) transition. SMCCs differ in chemotherapy susceptibility, biological program, and prognostic roles. Mechanistically, epithelial (e)SMCC initiation relies on nucleolar stress, whereby c-myc dependent oncogene hyperactivation induces ribosomal RPL11 accumulation and DNA damage response. In a 2D pre-clinical model, we demonstrated that RPL11 co-localized with HDM2, a p53-specific ubiquitin ligase, leading to senescence activation in (e)SMCCs. On the contrary, mesenchymal (m)SMCCs undergo TGFβ paracrine activation of NOX4-p15 effectors. SMCCs display opposing effects also in the immune regulation of neighboring cells, establishing an immunosuppressive environment or leading to an active immune workflow. Both SMCC signatures are predictive biomarkers whose unbalanced ratio determined the clinical outcome in CRLM and CRC patients. Altogether, we provide a comprehensive new understanding of the role of SMCCs in CRLM and highlight their potential as new therapeutic targets to limit CRLM progression.
Collapse
Affiliation(s)
| | - Luca Lambroia
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gianluca Basso
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Veronica Marrella
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | | | - Guido Costa
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
- Fondazione Human Technopole, Milan, Italy
| | | | - Destro Annarita
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andreina Salvati
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luigi Terracciano
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | - Francesca Faggioli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| |
Collapse
|
8
|
Discovery of novel non-nucleoside inhibitors with high potency and selectivity for DNA methyltransferase 3A. Eur J Med Chem 2022; 242:114646. [PMID: 36029561 DOI: 10.1016/j.ejmech.2022.114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
DNA methyltransferases (DNMTs) are important epigenetic regulatory enzymes involved in gene expression corresponding to many diseases including cancer. As one of the major enzymatically active mammalian DNMTs, DNMT3A has been regarded as an attractive target for the treatment of cancer particularly in hematological malignancy. Discovery of promising inhibitors toward this target with low toxicity, adequate activity and target selectivity is therefore pivotal in the development of novel cancer therapy and the inhibitory mechanism investigation. In this study, a multistep structure-based virtual screening and in vitro bioassays were conducted to search for potent novel DNMT3A inhibitors. Compound DY-46 was then identified as a promising new scaffold candidate (IC50 = 1.3 ± 0.22 μM) that can occupy both the SAM-cofactor pocket and the cytosine pocket of DNMT3A. Further similarity searching led to the discovery of compound DY-46-2 with IC50 of 0.39 ± 0.23 μM, which showed excellent selectivity against DNMT1 (33.3-fold), DNMT3B (269-fold) and G9a (over 1000-fold). These potent compounds significantly inhibited cancer cell proliferation and showed low cytotoxicity in peripheral blood mononuclear cells. This study provides a promising scaffold for the further development of DNMT3A inhibitors, and the possibility to design proper analogs with broad or specific selectivity.
Collapse
|
9
|
Methylation Status of Gene Bodies of Selected microRNA Genes Associated with Neoplastic Transformation in Equine Sarcoids. Cells 2022; 11:cells11121917. [PMID: 35741046 PMCID: PMC9221590 DOI: 10.3390/cells11121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Horses are of great importance in recreation, livestock production, as working animals in poorly developed countries, and for equine-assisted therapy. Equine sarcoids belong to the most commonly diagnosed tumors in this species. They may cause discomfort, pain, and can lead to the permanent impairment of motor function. The molecular bases of their formation are still under investigation. Our previous studies revealed altered microRNA (miRNA) expression and DNA methylation levels in sarcoid tumors. Abnormal patterns of methylation may be responsible for changes in gene expression levels, including microRNAs. Recently, the DNA methylation of gene bodies has also been shown to have an impact on gene expression. Thus, the aim of the study was to investigate the methylation pattern of gene bodies of chosen miRNAs identified in sarcoid tissue (miR-101, miR-10b, miR-200a, and miR-338-3p), which have also been established to play roles in neoplastic transformation. To this end, we applied qRT-PCR, Bisulfite Sequencing PCR (BSP), and Mquant methods. As a result, we identified the statistically significant downregulation of pri-mir-101-1, pri-mir-10b, and pri-mir-200a in the sarcoid samples in comparison to the control. The DNA methylation analysis revealed their hypermethylation. This suggests that DNA methylation may be one mechanism responsible for the downregulation of theses miRNAs. However, the identified differences in the methylation levels are not very high, which implies that other mechanisms may also underlie the downregulation of the expression of these miRNAs in equine sarcoids. For the first time, the results obtained shed light on microRNA expression regulation by gene body methylation in equine sarcoids and provide bases for further deeper studies on other mechanisms influencing the miRNA repertoire.
Collapse
|
10
|
Guru SA, Sumi MP, Mir R, Beg MMA, Koner BC, Saxena A. Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival. BMC Cancer 2022; 22:405. [PMID: 35421941 PMCID: PMC9008925 DOI: 10.1186/s12885-022-09481-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is strong evidence that disease progression, drug response and overall clinical outcomes of CML disease are not only decided by BCR/ABL1 oncoprotein but depend on accumulation of additional genetic and epigenetic aberrations. DNA hydroxymethylation is implicated in the development of variety of diseases. DNA hydroxymethylation in gene promoters plays important roles in disease progression, drug response and clinical outcome of various diseases. Therefore in this study, we aimed to explore the role of aberrant hydroxymethylation in promoter regions of different tumor suppressor genes in relation to CML disease progression, response to imatinib therapy and clinical outcome. METHODS We recruited 150 CML patients at different clinical stages of the disease. Patients were followed up for 48 months and haematological/molecular responses were analysed. Haematological response was analysed by peripheral blood smear. BCR/ABL1 specific TaqMan probe based qRT-PCR was used for assessing the molecular response of CML patients on imatinib therapy. Promoter hydroxymethylation of the genes was characterized using MS-PCR. RESULTS We observed that promoter hydroxymethylation of DAPK1, RIZ1, P16INK4A, RASSF1A and p14ARFARF genes characterize advanced CML disease and poor imatinib respondents. Although, cytokine signalling (SOCS1) gene was hypermethylated in advanced stages of CML and accumulated in patients with poor imatinib response, but the differences were not statistically significant. Moreover, we found hypermethylation of p14ARF, RASSF1 and p16INK4A genes and cytokine signalling gene (SOCS1) significantly associated with poor overall survival of CML patients on imatinib therapy. The results of this study are in agreement of the role of aberrant DNA methylation of different tumor suppressor genes as potential biomarkers of CML disease progression, poor imatinib response and overall clinical outcome. CONCLUSION In this study, we report that promoter hydroxymethylation of DAPK1, RIZ1, P16INK4A, RASSF1A and p14ARFARF genes is a characteristic feature of CML disease progressions, defines poor imatinib respondents and poor overall survival of CML patients to imatinib therapy.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Cycle
- Chronic Disease
- Cytokines
- DNA/therapeutic use
- Disease Progression
- Drug Resistance, Neoplasm/genetics
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid
- Surveys and Questionnaires
- Tumor Suppressor Protein p14ARF/therapeutic use
Collapse
Affiliation(s)
- Sameer Ahmad Guru
- Lurie Children's Hospital and Stanley Manne Children's Research Institute, Northwestern University, Chicago, IL, USA
- Department of Biochemistry, Multidisciplinary Research Unit (MRU), Maulana Azad Medical College, New Delhi, India
| | - Mamta Pervin Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleve Land Clinic, OH, Cleveland, USA
| | - Rashid Mir
- Kingdom of Saudi Arabia, University of Tabuk, Tabuk, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine and Center for Promotion of Medical Research, Faculty of Medical Sciences, Ala-Too International University, Bishek, Kyrgyzstan
| | - Bidhan Chandra Koner
- Department of Biochemistry, Hamdard Institute of Medical Science and Research (HIMSR), New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Multidisciplinary Research Unit (MRU), Maulana Azad Medical College, New Delhi, India.
- Department of Biochemistry, Hamdard Institute of Medical Science and Research (HIMSR), New Delhi, India.
| |
Collapse
|
11
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
12
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
13
|
Effect of 5'-fluoro-2'-deoxycytidine, 5-azacytidine, and 5-aza-2'–deoxycytidine on DNA Methyltransferase 1, CIP/KIP Family, and INK4a/ARF in Colon Cancer HCT-116 Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Cyclin-dependent kinase inhibitors (CKIs) are the negative regulator of cell cycle progression, which inhibits cyclin-cdk complexes, resulting in cell cycle arrest. Recently, we evaluated the effect of 5-Aza-CdR on DNMT1 gene expression in the WCH-17 hepatocellular carcinoma (HCC) cell line. Objectives: The current study was designed to analyze the effects of 5-aza-2'–deoxycytidine (5-Aza-CdR, decitabine), 5-azacytidine (5-AzaC, vidaza), and 5'-fluoro-2'-deoxycytidine (FdCyd) on INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 gene expression, apoptosis induction, and cell growth inhibition in colon cancer HCT-116 cell line. Methods: The colon cancer HCT-116 cell line was treated with 5-azaC, 5-Aza-CdR, and FdCyd at 24 and 48h. To determine colon cancer HCT-116 cell viability, cell apoptosis, and the relative expression level of the INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 genes, MTT assay, flow cytometry, and qRT-PCR were done, respectively. Results: 5-azaC, 5-Aza-CdR, and FdCyd significantly inhibited colon cancer HCT-116 cell growth and induced apoptosis. Besides, they significantly increased CIP/KIP (p21CIP1, p27KIP1, and p57KIP2) and INK4 (p14ARF, p15INK4b, and p16INK4a) and decreased DNMT1 gene expression. Besides, minimal and maximal apoptosis were seen in the groups treated with FdCyd and 5-Aza-CdR, respectively. The IC50 for CAF for FdCyd was 1.72 ± 0.23 and 1.63 ± 0.21μM at 24 and 48h, respectively. The IC50 for CAF for 5-AzaC was 2.18 ± 0.33 and 1.98 ± 0.29 μM at 24 and 48h, respectively. The IC50 for CAF for 5-Aza-CdR was 4.08 ± 0.61 and 3.18 ± 0.50 μM at 24 and 48h, respectively. Conclusions: The 5-azac, 5-Aza-CdR, and FdCyd can reactivate the INK4a/ARF and CIP/KIP families through inhibition of DNMT1 activity.
Collapse
|
14
|
Combined analysis of KARS mutation and p16INK4a and p14ARF methylation status in locally advanced rectal carcinoma treated with preoperative chemoradiotherapy. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220222011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Current management of locally advanced rectal carcinoma (LARC) involves
preoperative chemoradiotherapy (preCRT) before surgery. Despite improved
local control rate, the response to preCRT of individual patients is
variable and may reflect heterogeneous biological properties among tumors of
the same clinical stage. Identifying novel molecular parameters with
predictive and/or prognostic value is of great clinical importance for a
personalized therapeutic approach. In this study, KRAS mutation status was
analyzed by direct sequencing, while methylation-specific polymerase chain
reaction (MSP) was used to examine p16INK4a and p14ARF gene methylation
status in pretreatment tumor biopsies of 60 patients with LARC. The examined
molecular changes of KRAS, p16INK4a and p14ARF genes were mutually
independent (p16INK4a/KRAS, P=0.272; p14ARF/KRAS, P=0.923; p16INK4a/p14ARF,
P=0.715). However, the simultaneous presence of p14ARF methylation and KRAS
mutation was associated with a more frequent appearance of local recurrences
and distant metastasis (P=0.027). Moreover, patients with the simultaneous
presence of p16INK4a and p14ARF methylation and KRAS mutation had
significantly shorter overall survival (P=0.011). The obtained results
strongly suggest that combined analyses of examined genetic and epigenetic
molecular alterations could contribute to the identification of LARC patient
subgroups with more aggressive tumor behavior and worse disease outcome.
Collapse
|
15
|
Inhibition of the DSB repair protein RAD51 potentiates the cytotoxic efficacy of doxorubicin via promoting apoptosis-related death pathways. Cancer Lett 2021; 520:361-373. [PMID: 34389435 DOI: 10.1016/j.canlet.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
The anthracycline derivative doxorubicin (Doxo) induces DNA double-strand breaks (DSBs) by inhibition of DNA topoisomerase type II. Defective mismatch repair (MMR) contributes to Doxo resistance and has been reported for colon and mammary carcinomas. Here, we investigated the outcome of pharmacological inhibition of various DNA repair-related mechanisms on Doxo-induced cytotoxicity employing MMR-deficient HCT-116 colon carcinoma cells. Out of different inhibitors tested (i.e. HDACi, PARPi, MRE11i, RAD52i, RAD51i), we identified the RAD51-inhibitor B02 as the most powerful compound to synergistically increase Doxo-induced cytotoxicity. B02-mediated synergism rests on pleiotropic mechanisms, including pronounced G2/M arrest, damage to mitochondria and caspase-driven apoptosis. Of note, B02 also promotes the cytotoxicity of oxaliplatin and 5-fluoruracil (5-FU) in HCT-116 cells and, furthermore, also increases Doxo-induced cytotoxicity in MMR-proficient colon and mammary carcinoma cells. Summarizing, pharmacological inhibition of RAD51 is suggested to synergistically increase the cytotoxic efficacy of various types of conventional anticancer drugs in different tumor entities. Hence, pre-clinical in vivo studies are preferable to determine the therapeutic window of B02 in a clinically oriented therapeutic regimen.
Collapse
|
16
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
17
|
Tomicic MT, Krämer F, Nguyen A, Schwarzenbach C, Christmann M. Oxaliplatin-Induced Senescence in Colorectal Cancer Cells Depends on p14 ARF-Mediated Sustained p53 Activation. Cancers (Basel) 2021; 13:cancers13092019. [PMID: 33922007 PMCID: PMC8122251 DOI: 10.3390/cancers13092019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Senescence is an important consequence of cytostatic drug-based tumor therapy. Here we analyzed to which degree the anticancer drug oxaliplatin induces cell death, cell cycle arrest, and senescence in colorectal cancer (CRC) cells and elucidated the role of p53. Oxaliplatin treatment resulted in the G2-phase arrest in all CRC lines tested (HCT116p53+/+, HCT116p53-/-, LoVo, SW48 and SW480). Immunoblot analysis showed that within the p53-competent lines p53 and p21CIP1 are activated at early times upon oxaliplatin treatment. However, at later times, only LoVo cells showed sustained activation of the p53/p21CIP1 pathway, accompanied by a strong induction of senescence as measured by senescence-associated β-Gal staining and induction of senescence-associated secretory phenotype (SASP) factors. Opposite to LoVo, the p53/p21CIP1 response and senescence induction was much weaker in the p53-proficient SW48 and SW480 cells, which was due to deficiency for p14ARF. Thus, among lines studied only LoVo express p14ARF protein and siRNA-mediated knockdown of p14ARF significantly reduced sustained p53/p21CIP1 activation and senescence. Vice versa, ectopic p14ARF expression enhanced oxaliplatin-induced senescence in SW48 and SW480 cells. Our data show that oxaliplatin-induced senescence in CRC cells is dependent on p53 proficiency; however, a significant induction can only be observed upon p14ARF-mediated p53 stabilization.
Collapse
|
18
|
Feng YC, Liu XY, Teng L, Ji Q, Wu Y, Li JM, Gao W, Zhang YY, La T, Tabatabaee H, Yan XG, Jamaluddin MFB, Zhang D, Guo ST, Scott RJ, Liu T, Thorne RF, Zhang XD, Jin L. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat Commun 2020; 11:4980. [PMID: 33020477 PMCID: PMC7536215 DOI: 10.1038/s41467-020-18735-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The functions of the proto-oncoprotein c-Myc and the tumor suppressor p53 in controlling cell survival and proliferation are inextricably linked as “Yin and Yang” partners in normal cells to maintain tissue homeostasis: c-Myc induces the expression of ARF tumor suppressor (p14ARF in human and p19ARF in mouse) that binds to and inhibits mouse double minute 2 homolog (MDM2) leading to p53 activation, whereas p53 suppresses c-Myc through a combination of mechanisms involving transcriptional inactivation and microRNA-mediated repression. Nonetheless, the regulatory interactions between c-Myc and p53 are not retained by cancer cells as is evident from the often-imbalanced expression of c-Myc over wildtype p53. Although p53 repression in cancer cells is frequently associated with the loss of ARF, we disclose here an alternate mechanism whereby c-Myc inactivates p53 through the actions of the c-Myc-Inducible Long noncoding RNA Inactivating P53 (MILIP). MILIP functions to promote p53 polyubiquitination and turnover by reducing p53 SUMOylation through suppressing tripartite-motif family-like 2 (TRIML2). MILIP upregulation is observed amongst diverse cancer types and is shown to support cell survival, division and tumourigenicity. Thus our results uncover an inhibitory axis targeting p53 through a pan-cancer expressed RNA accomplice that links c-Myc to suppression of p53. c-Myc and p53 operate in a negative feedback manner to maintain cellular homeostasis. Here, the authors report a long noncoding RNA, MILIP as a downstream target of c-Myc and that MILIP represses p53 to support tumorigenicity.
Collapse
Affiliation(s)
- Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Xiao Ying Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Qiang Ji
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Yongyan Wu
- Department of Otolaryngology, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, the first affiliated hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin Ming Li
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Wei Gao
- Department of Otolaryngology, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, the first affiliated hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Didi Zhang
- Department of Orthopaedics, John Hunter Hospital, Hunter New England Health, Newcastle, 2305, NSW, Australia
| | - Su Tang Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, 030013, Shanxi, China
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, 2750, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia.,Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia. .,Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China. .,School of Medicine and Public Health, The University of Newcastle, Newcastle, 2308, NSW, Australia.
| |
Collapse
|
19
|
Cilluffo D, Barra V, Di Leonardo A. P14 ARF: The Absence that Makes the Difference. Genes (Basel) 2020; 11:genes11070824. [PMID: 32698529 PMCID: PMC7397060 DOI: 10.3390/genes11070824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/23/2023] Open
Abstract
P14ARF is a tumor suppressor encoded by the CDKN2a locus that is frequently inactivated in human tumors. P14ARF protein quenches oncogene stimuli by inhibiting cell cycle progression and inducing apoptosis. P14ARF functions can be played through interactions with several proteins. However, the majority of its activities are notoriously mediated by the p53 protein. Interestingly, recent studies suggest a new role of p14ARF in the maintenance of chromosome stability. Here, we deepened this new facet of p14ARF which we believe is relevant to its tumor suppressive role in the cell. To this aim, we generated a monoclonal HCT116 cell line expressing the p14ARF cDNA cloned in the piggyback vector and then induced aneuploidy by treating HCT116 cells with the CENP-E inhibitor GSK923295. P14ARF ectopic re-expression restored the near-diploid phenotype of HCT116 cells, confirming that p14ARF counteracts aneuploid cell generation/proliferation.
Collapse
Affiliation(s)
- Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (V.B.)
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (V.B.)
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (V.B.)
- Centro di Oncobiologia Sperimentale (C.O.B.S.) via San Lorenzo, 90146 Palermo, Italy
- Correspondence: ; Tel.: +39-09123897340
| |
Collapse
|
20
|
Loss of p53 function at late stages of tumorigenesis confers ARF-dependent vulnerability to p53 reactivation therapy. Proc Natl Acad Sci U S A 2019; 116:22288-22293. [PMID: 31611375 PMCID: PMC6825290 DOI: 10.1073/pnas.1910255116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse studies demonstrating regression of p53-null tumors following reinstatement of functional p53 have fueled the development of p53 reactivating drugs. However, successful p53 reactivation responses have only been formally demonstrated in tumor models where p53 inactivation served as the initiating event. Our study provides the first proof-of-principle evidence that p53 inactivation at late stages of tumorigenesis can also generate a vulnerability to p53 reactivation. However, this is dependent on intact ARF function highlighting ARF as a potential biomarker for p53 reactivation responses in tumors with late-stage p53 inactivation. It furthermore suggests the use of Mdm2 inhibitors as ARF mimetics for sensitizing ARF-deficient tumors to p53-reactivating drugs. Cancer development is driven by activated oncogenes and loss of tumor suppressors. While oncogene inhibitors have entered routine clinical practice, tumor suppressor reactivation therapy remains to be established. For the most frequently inactivated tumor suppressor p53, genetic mouse models have demonstrated regression of p53-null tumors upon p53 reactivation. While this was shown in tumor models driven by p53 loss as the initiating lesion, many human tumors initially develop in the presence of wild-type p53, acquire aberrations in the p53 pathway to bypass p53-mediated tumor suppression, and inactivate p53 itself only at later stages during metastatic progression or therapy. To explore the efficacy of p53 reactivation in this scenario, we used a reversibly switchable p53 (p53ERTAM) mouse allele to generate Eµ-Myc–driven lymphomas in the presence of active p53 and, after full lymphoma establishment, switched off p53 to model late-stage p53 inactivation. Although these lymphomas had evolved in the presence of active p53, later loss and subsequent p53 reactivation surprisingly activated p53 target genes triggering massive apoptosis, tumor regression, and long-term cure of the majority of animals. Mechanistically, the reactivation response was dependent on Cdkn2a/p19Arf, which is commonly silenced in p53 wild-type lymphomas, but became reexpressed upon late-stage p53 inactivation. Likewise, human p53 wild-type tumor cells with CRISPR-engineered switchable p53ERTAM alleles responded to p53 reactivation when CDKN2A/p14ARF function was restored or mimicked with Mdm2 inhibitors. Together, these experiments provide genetic proof of concept that tumors can respond, in an ARF-dependent manner, to p53 reactivation even if p53 inactivation has occurred late during tumor evolution.
Collapse
|
21
|
Salama RH, Sayed ZEAA, Ashmawy AM, Elsewify WA, Ezzat GM, Mahmoud MA, Alsanory AA, Alsanory TA. Interrelations of Apoptotic and Cellular Senescence Genes Methylation in Inflammatory Bowel Disease Subtypes and Colorectal Carcinoma in Egyptians Patients. Appl Biochem Biotechnol 2019; 189:330-343. [PMID: 30989570 DOI: 10.1007/s12010-019-03017-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
Ras-related domain family member 1 transcript variant A (RASSF1A) controls apoptosis and cell proliferation while p14/ARF gene has a regulatory role in cellular senescence. Failure of apoptosis and cellular senescence occurs during inflammatory bowel disease (IBD) and colorectal cancer (CRC). To reveal the role of peripheral leukocyte promoter methylation of RASSF1A and p14/ARF in the pathogenesis of IBD subtypes and CRC we investigated the methylation state of the two genes by methylation-specific polymerase chain reaction (MSP-PCR) in 60 CRC patients, 60 patients with IBD; 27 with ulcerative colitis and 33 had Crohn's disease and also in 30 healthy subjects. Methylated RASSF1A and p14/ARF genes were detected in 55% and 60% of CRC, while the frequency of the methylated RASSF1A and p14/ARF genes was 23.3% and 43.3% in IBD patients and 3.3% and 13.3% in the control group (P = 0.000 each). Also, the frequency of methylated RASSF1A gene was significantly higher in ulcerative colitis than in Crohn's disease, while a non-significant frequency of methylated p14/ARF was detected between ulcerative colitis and Crohn's disease. Furthermore, methylated RASSF1A and p14/ARF were associated with the grade of CRC but not associated with the age of patients, family history, or tumor location. Results suggest that methylated RASSF1A and p14/ARF are related to CRC and IBD pathogenesis and may be used as molecular biomarkers for early detection of CRC and IBD.
Collapse
Affiliation(s)
- Ragaa H Salama
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ahmed M Ashmawy
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wael A Elsewify
- Department of Internal Medicine, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Mahmoud A Mahmoud
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Aya A Alsanory
- Students at Faculty of Medicine, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Tasneem A Alsanory
- Students at Faculty of Medicine, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Wang QM, Lian GY, Song Y, Peng ZD, Xu SH, Gong Y. Downregulation of miR-152 contributes to DNMT1-mediated silencing of SOCS3/SHP-1 in non-Hodgkin lymphoma. Cancer Gene Ther 2018; 26:195-207. [PMID: 30470842 DOI: 10.1038/s41417-018-0057-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Understanding the molecular mechanisms for the development of non-Hodgkin lymphoma (NHL) will improve our ability to cure the patients. qRT-PCR was applied for the examination of the efficiency of shRNA for DNMT1, the expression of suppressor genes, miRNA-152. The MTT analysis, cell cycle analysis, clonal formation, and apoptotic analysis were used to examine the functions of DNMT1 and miR-152 in lymphoma cells. Methylation-specific polymerase chain reaction (MSP) was used to examine the methylation of tumor suppressor genes. The dual luciferase assay and western blot were used to validate if DNMT1 is the target of miR-152. For the in vivo experiments, the lymphoma cells were injected into the nude mice for quantification of the tumor growth after transfection of miR-152 mimics. Knockdown of DNMT1 by shRNA (sh-DNMT1) in OCI-Ly10 and Granta-159 cells significantly upregulated the expression of tumor suppressor genes (SOCS3, BCL2L10, p16, p14, and SHP-1) via decreasing their methylation level. At the cellular level, we found sh-DNMT1 inhibited the proliferation, clonal formation and cell cycle progression and induced the cell apoptosis of lymphoma cells. Furthermore, we found miR-152 can downregulates the expression of DNMT1 via directly targeting the gene. Overexpression of miR-152 also increased the expression of tumor suppressor genes SOCS3 and SHP-1. And miR-152 also can inhibit the cell proliferation and induce the cell apoptosis. Moreover, we found overexpression of miR-152 significantly repressed the tumor growth with decreased DNMT1 expression and increased expression of tumor suppressor genes in vivo. Our study demonstrates that miR-152 can inhibit lymphoma growth via suppressing DNMT1-mediated silencing of SOCS3 and SHP-1. These data demonstrate a new mechanism for the development of NHL and this may provide a new therapeutic target for NHL.
Collapse
Affiliation(s)
- Qing-Ming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Guang-Yu Lian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi-Da Peng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Sheng-Hua Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yi Gong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
23
|
Veneziano L, Barra V, Cilluffo D, Di Leonardo A. Proliferation of aneuploid cells induced by CENP-E depletion is counteracted by the p14 ARF tumor suppressor. Mol Genet Genomics 2018; 294:149-158. [PMID: 30264192 DOI: 10.1007/s00438-018-1495-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures the fidelity of chromosomes segregation. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, which are both well-known hallmarks of cancer cells. Centromere protein-E (CENP-E) is a crucial component of the SAC and its function is to facilitate kinetochore microtubule attachment required to achieve and maintain chromosome alignment. The present study investigates the possible role of p14ARF as a controller of aneuploid cells proliferation. We used RNA interference to induce aneuploidy by partial depletion of CENP-E in human primary fibroblasts (IMR90) and in near diploid tumor cells (HCT116). In contrast to IMR90 aneuploid cell number, which was drastically reduced and leaned towards the WT condition, HCT116 aneuploid cell numbers were slightly decreased at later time points. This euploidy restoration was accompanied by increased p14ARF expression in IMR90 cells and followed ectopic p14ARF re-expression in p14ARF-null HCT116 cells. Collectively, our results suggest that hampering proliferation of aneuploid cells could be an additional role of the p14ARF tumor suppressor.
Collapse
Affiliation(s)
- Lorena Veneziano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.,Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805, Villejuif, France
| | - Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy. .,Centro di OncoBiologia Sperimentale (COBS), Palermo, Italy.
| |
Collapse
|
24
|
Moulder DE, Hatoum D, Tay E, Lin Y, McGowan EM. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers (Basel) 2018; 10:cancers10060189. [PMID: 29890631 PMCID: PMC6024909 DOI: 10.3390/cancers10060189] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.
Collapse
Affiliation(s)
- David E Moulder
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Enoch Tay
- Viral Hepatitis Pathogenesis Group, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| |
Collapse
|
25
|
Strzelczyk JK, Krakowczyk Ł, Owczarek AJ. Aberrant DNA methylation of the p16, APC, MGMT, TIMP3 and CDH1 gene promoters in tumours and the surgical margins of patients with oral cavity cancer. J Cancer 2018; 9:1896-1904. [PMID: 29896273 PMCID: PMC5995944 DOI: 10.7150/jca.24477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022] Open
Abstract
Oral cavity cancer is a type of head and neck squamous cell carcinoma (HNSCC) and contributes to significant morbidity and mortality each year. An epigenetic pathway of transcriptional inactivation for many genes has been described in various cancers, including HNSCC. For our study, we selected genes for which silencing caused by hypermethylation can promote cancer development. In 75 primary HNSCC tumours and paired surgical margins, we investigated the methylation status of the p16, APC, MGMT, TIMP3 and CDH1 gene promoters by methylation-specific PCR after bisulphite treatment. The promoter methylation rates of p16, APC, MGMT, TIMP3 and CDH1 in tumours were 58.67%, 49.33%, 58.67%, 50.67%, and 57.33% and 50.67%, 41.33%, 37.33%, 42.67%, and 25.33% in the surgical margin, respectively. Our observations confirm the presence of epigenetic changes not only in the cancer cells, but also in the surrounding mucosa and represent a basis for further analysis to unravel these complicated issues. Appropriate cancer risk assessment based on epigenetic alterations in surgical margins may influence a patient's diagnosis and cure.
Collapse
Affiliation(s)
- Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Jordana 19 Str., 41-808 Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Łukasz Krakowczyk
- Clinic of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-101 Gliwice, Poland
| | - Aleksander Jerzy Owczarek
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Ostrogórska 30 Str., 41-200 Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
26
|
Bahrami A, Hassanian SM, Khazaei M, Gharib M, Rahmani M, Fiuji H, Jazayeri MH, Moetamani-Ahmadi M, Ferns GA, Avan A. The 9p21 locus as a potential therapeutic target and prognostic marker in colorectal cancer. Pharmacogenomics 2018; 19:463-474. [DOI: 10.2217/pgs-2017-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related-death worldwide. Despite extensive efforts to identify valid biomarkers for the risk stratification of CRC patients, there are few of proven clinical utility. It is recognized that genetic factors play a major role in determining susceptibility to CRC. Recent genome-wide association studies have demonstrated common genetic variants in a region on chromosome 9p21 associated with an increased risk of CRC. Several genetic polymorphisms have been identified in this region that are associated with CRC. Three genes are located at this locus; CDKN2B(encoding-p15ink4b), CDKN2A (encoding-p16ink4a/p14ARF) and 3′ end of CDKN2BAS (termed-antisense-noncoding-RNA in the INK4-locus [ANRIL]). ANRIL has a post-transcriptional modulatory activity, which has been shown to perturb the expression of nearby genes. It also plays an important role in coordinating tissue remodeling through regulation of cell proliferation, apoptosis, aging, extra-cellular matrix remodeling and inflammatory response. However, the role of ANRIL is not well understood in CRC. Hypermethylation of the p14ARF and p16INK4a genes is often found in some tumors, including CRC. However, further studies are necessary to explore the clinical utility of these putative markers in risk stratification, and in the assessment of prognosis. In this review, we have summarized the prognostic and therapeutic potential of the p14ARF and p16INK4a genes in patients with colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
- Department of Modern Sciences & Technologies; School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Rahmani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center, and Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex B. 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Bao Y, Wang Q, Guo Y, Chen Z, Li K, Yang Y, Zhang H, Dong H, Shen K, Yang W. PRSS8 methylation and its significance in esophageal squamous cell carcinoma. Oncotarget 2017; 7:28540-55. [PMID: 27081034 PMCID: PMC5053744 DOI: 10.18632/oncotarget.8677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer is one of the most common cancers worldwide, and the incidence and mortality is increasing rapidly in recent years in China, but the underlying mechanisms are largely unclear. Herein we found that the expression of PRSS8, a serine protease prostasin, is significantly decreased in esophageal squamous cell carcinomas (ESCC) at mRNA and protein levels. The reduction of PRSS8 was well correlated with poor differentiation and shorter survival time. Interestingly, ESCC stromal expression of PRSS8 was significantly correlated with stromal lymphocyte infiltration and cancer progression. Methylation specific PCR showed that PRSS8 was hypermethylated in ESCC tissues and ESCC cell lines, which was linked to the downregulation of PRSS8 expression and decreased activities of PRSS8 promoter. De-methylation agent decitabine was able to restore PRSS8 expression, leading to the inhibition of cancer cell proliferation, motility, migration and cell cycle arrest. However, the restored PRSS8 and its tumor inhibition could be reversed by small interfering RNA targeting PRSS8. Mechanistic study showed that tumor inhibition of PRSS8 may be associated with proliferation- and epithelial mesenchymal transition - related proteins in ESCC cells. In conclusion, our finding showed that PRSS8 methylation and its stromal expression had important clinical significance in ESCC.
Collapse
Affiliation(s)
- Yonghua Bao
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Qian Wang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongchen Guo
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Zhiguo Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Kai Li
- Department of Pathology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Yiqiong Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Huijuan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Huali Dong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kui Shen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Giono LE, Resnick-Silverman L, Carvajal LA, St Clair S, Manfredi JJ. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene 2017; 36:6762-6773. [PMID: 28806397 PMCID: PMC6002854 DOI: 10.1038/onc.2017.254] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022]
Abstract
Upon different types of stress, the gene encoding the mitosis-promoting phosphatase Cdc25C is transcriptionally repressed by p53, contributing to p53's enforcement of a G2 cell cycle arrest. In addition, Cdc25C protein stability is also decreased following DNA damage. Mdm2, another p53 target gene, encodes a ubiquitin ligase that negatively regulates p53 levels by ubiquitination. Ablation of Mdm2 by siRNA led to an increase in p53 protein and repression of Cdc25C gene expression. However, Cdc25C protein levels were actually increased following Mdm2 depletion. Mdm2 is shown to negatively regulate Cdc25C protein levels by reducing its half-life independently of the presence of p53. Further, Mdm2 physically interacts with Cdc25C and promotes its degradation through the proteasome in a ubiquitin-independent manner. Either Mdm2 overexpression or Cdc25C downregulation delays cell cycle progression through the G2/M phase. Thus, the repression of the Cdc25C promoter by p53, together with p53-dependent induction of Mdm2 and subsequent degradation of Cdc25C, could provide a dual mechanism by which p53 can enforce and maintain a G2/M cell cycle arrest.
Collapse
Affiliation(s)
- L E Giono
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Resnick-Silverman
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L A Carvajal
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S St Clair
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J J Manfredi
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Wang H, Ke H, Zheng Y, Lai J, Luo Q, Chen Q. A modified bisulfite conversion method for the detection of DNA methylation. Epigenomics 2017; 9:955-969. [PMID: 28548583 DOI: 10.2217/epi-2016-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM Our purpose is to improve the conventional procedures for bisulfite conversion used to detect 5-methylcytosine in DNA. METHODS Impacts of different bisulfite salts, bisulfite conversion temperature, antioxidants and denaturants on DNA conversion and degradation were assessed by methylation-sensitive melt curve analysis. The modified method was tested on different genes and the conversion efficiency was analyzed by bisulfite sequencing. RESULTS We developed a modified bisulfite conversion method that completes this process within 2 h. We demonstrate that high temperature denaturation is the major cause for DNA degradation, and the addition of ethylene glycol dimethyl ether is an effective way to accelerate the bisulfite conversion. The conversion efficiency is comparable to many other commercial kits. CONCLUSION Our modified bisulfite conversion method is simple, cost efficient and less time consuming and is compatible with different genes and samples, thus has a great potential for the future research and clinical applications.
Collapse
Affiliation(s)
- Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Huican Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Yansong Zheng
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| |
Collapse
|
30
|
Halby L, Menon Y, Rilova E, Pechalrieu D, Masson V, Faux C, Bouhlel MA, David-Cordonnier MH, Novosad N, Aussagues Y, Samson A, Lacroix L, Ausseil F, Fleury L, Guianvarc'h D, Ferroud C, Arimondo PB. Rational Design of Bisubstrate-Type Analogues as Inhibitors of DNA Methyltransferases in Cancer Cells. J Med Chem 2017; 60:4665-4679. [PMID: 28463515 DOI: 10.1021/acs.jmedchem.7b00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant DNA hypermethylation of promoter of tumor suppressor genes is commonly observed in cancer, and its inhibition by small molecules is promising for their reactivation. Here we designed bisubstrate analogues-based inhibitors, by mimicking each substrate, the S-adenosyl-l-methionine and the deoxycytidine, and linking them together. This approach resulted in quinazoline-quinoline derivatives as potent inhibitors of DNMT3A and DNMT1, some showing certain isoform selectivity. We highlighted the importance of (i) the nature and rigidity of the linker between the two moieties for inhibition, as (ii) the presence of the nitrogen on the quinoline group, and (iii) of a hydrophobic group on the quinazoline. The most potent inhibitors induced demethylation of CDKN2A promoter in colon carcinoma HCT116 cells and its reactivation after 7 days of treatment. Furthermore, in a leukemia cell model system, we found a correlation between demethylation of the promoter induced by the treatment, chromatin opening at the promoter, and the reactivation of a reporter gene.
Collapse
Affiliation(s)
- Ludovic Halby
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yoann Menon
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Elodie Rilova
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dany Pechalrieu
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Véronique Masson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Celine Faux
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Mohamed Amine Bouhlel
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Natacha Novosad
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yannick Aussagues
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Arnaud Samson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | | | - Fréderic Ausseil
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Laurence Fleury
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dominique Guianvarc'h
- Laboratoire des BioMolécules, UMR 7203, Université Pierre et Marie Curie-Paris 6-ENS-CNRS , 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Clotilde Ferroud
- Laboratoire de Chimie Moléculaire, CMGPCE, EA7341, Conservatoire National des Arts et Métiers , 2 rue Conté, 75003 Paris, France
| | - Paola B Arimondo
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France.,Churchill College , CB3 0DS Cambridge, U.K
| |
Collapse
|
31
|
Wamsley JJ, Gary C, Biktasova A, Hajek M, Bellinger G, Virk R, Issaeva N, Yarbrough WG. Loss of LZAP inactivates p53 and regulates sensitivity of cells to DNA damage in a p53-dependent manner. Oncogenesis 2017; 6:e314. [PMID: 28394357 PMCID: PMC5520489 DOI: 10.1038/oncsis.2017.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and radiation, the two most common cancer therapies, exert their anticancer effects by causing damage to cellular DNA. However, systemic treatment damages DNA not only in cancer, but also in healthy cells, resulting in the progression of serious side effects and limiting efficacy of the treatment. Interestingly, in response to DNA damage, p53 seems to play an opposite role in normal and in the majority of cancer cells-wild-type p53 mediates apoptosis in healthy tissues, attributing to the side effects, whereas mutant p53 often is responsible for acquired cancer resistance to the treatment. Here, we show that leucine zipper-containing ARF-binding protein (LZAP) binds and stabilizes p53. LZAP depletion eliminates p53 protein independently of its mutation status, subsequently protecting wild-type p53 cells from DNA damage-induced cell death, while rendering cells expressing mutant p53 more sensitive to the treatment. In human non-small-cell lung cancer, LZAP levels correlated with p53 levels, suggesting that loss of LZAP may represent a novel mechanism of p53 inactivation in human cancer. Our studies establish LZAP as a p53 regulator and p53-dependent determinative of cell fate in response to DNA damaging treatment.
Collapse
Affiliation(s)
- J J Wamsley
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - C Gary
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - A Biktasova
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - M Hajek
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - G Bellinger
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - R Virk
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - N Issaeva
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - W G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Semik E, Ząbek T, Gurgul A, Fornal A, Szmatoła T, Pawlina K, Wnuk M, Klukowska-Rötzler J, Koch C, Mählmann K, Bugno-Poniewierska M. Comparative analysis of DNA methylation patterns of equine sarcoid and healthy skin samples. Vet Comp Oncol 2017; 16:37-46. [DOI: 10.1111/vco.12308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Affiliation(s)
- E. Semik
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - T. Ząbek
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - A. Gurgul
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - A. Fornal
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - T. Szmatoła
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - K. Pawlina
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - M. Wnuk
- Department of Genetics, Centre of Applied Biotechnology and Basic Sciences; University of Rzeszow; Rzeszow Poland
| | - J. Klukowska-Rötzler
- Division of Pedriatric Hematology/Oncology, Department of Clinical Research; University of Bern; Bern Switzerland
- Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty; University of Bern and Agroscope; Bern Switzerland
| | - C. Koch
- Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty; University of Bern and Agroscope; Bern Switzerland
| | - K. Mählmann
- Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty; University of Bern and Agroscope; Bern Switzerland
- Equine Clinic, General Surgery and Radiology; Freie Universität Berlin; Berlin Germany
| | - M. Bugno-Poniewierska
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| |
Collapse
|
33
|
Arsenic trioxide induces cell cycle arrest and alters DNA methylation patterns of cell cycle regulatory genes in colorectal cancer cells. Life Sci 2016; 167:67-77. [PMID: 27769816 DOI: 10.1016/j.lfs.2016.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
AIMS Cell cycle dysregulation is important in tumorigenesis. Transcriptional silencing of cell cycle regulatory genes, due to DNA methylation, is a common epigenetic event in malignancies. As2O3 has been shown to induce cell cycle arrest and also to be a potential hypomethylating agent. Our study aimed to investigate DNA methylation patterns of cell cycle regulatory genes promoters, the effects of Arsenic trioxide (As2O3) on the methylated genes and cell cycle distribution in colorectal cancer (CRC) cell lines. MAIN METHODS The methylation-specific PCR (MSP) and/or restriction enzyme-based methods were used to study the promoter methylation patterns of 24 cell cycle regulatory genes in CRC cell lines. Gene expression level and cell cycle distribution were determined by Real-time PCR and flow cytometric analyses, respectively. KEY FINDINGS Our methylation analysis indicated that only promoters of RBL1 (p107), CHFR and p16 genes were aberrantly methylated in three cell lines. As2O3 significantly decreased DNA methylation in promoter regions of these genes and restored their expression. We found that As2O3 significantly reduced the expression of DNA methyltransferase 1 (DNMT1) and increased arsenic methyltransferase (AS3MT). Furthermore, As2O3 altered transcriptional activity of several unmethylated cell cycle regulatory genes including cyclin B1, E1, D1, GADD45A and p21. Cell cycle flow cytometry analysis showed As2O3 induced G2/M arrest in all three cell lines. SIGNIFICANCE These data suggest that demethylation and alteration in the expression level of the cell cycle-related genes may be possible mechanisms in As2O3-induced cell cycle arrest in colorectal cancer cells.
Collapse
|
34
|
Fujita T, Yuno M, Fujii H. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus. Sci Rep 2016; 6:30485. [PMID: 27465215 PMCID: PMC4964623 DOI: 10.1038/srep30485] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Osaka, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Osaka, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Osaka, Japan
| |
Collapse
|
35
|
Zhou Z, Zhang H, Lai J, Diao D, Li W, Dang C, Song Y. Relationships between p14ARF Gene Methylation and Clinicopathological Features of Colorectal Cancer: A Meta-Analysis. PLoS One 2016; 11:e0152050. [PMID: 26999279 PMCID: PMC4801177 DOI: 10.1371/journal.pone.0152050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
We conducted a meta-analysis to explore the relationships between p14ARF gene methylation and clinicopathological features of colorectal cancer (CRC). Databases, including Pubmed, Embase and Cochrane Library, were searched and, finally, a total of 18 eligible researches encompassing 1988 CRC patients were selected. Combined odds ratios (ORs) with 95% confidence intervals (95% CIs) were evaluated under a fixed effects model for absence of heterogeneity. Significant associations were observed between p14ARF gene methylation and tumor location (OR = 2.35, 95% CI: 1.55–3.55, P = 0.001), microsatellite instability (MSI) status (OR = 3.28, 95% CI: 2.12–5.07, P<0.0001). However, there were no significant associations between p14ARF gene methylation and tumor stage, tumor differentiation. We concluded that p14ARF gene methylation may be significantly associated with tumor location, and MSI status of CRC.
Collapse
Affiliation(s)
- Zhangjian Zhou
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Hao Zhang
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jianguo Lai
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Dongmei Diao
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wenhan Li
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Chengxue Dang
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yongchun Song
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
- * E-mail:
| |
Collapse
|
36
|
Fujimori H, Sato A, Kikuhara S, Wang J, Hirai T, Sasaki Y, Murakami Y, Okayasu R, Masutani M. A comprehensive analysis of radiosensitization targets; functional inhibition of DNA methyltransferase 3B radiosensitizes by disrupting DNA damage regulation. Sci Rep 2015; 5:18231. [PMID: 26667181 PMCID: PMC4678329 DOI: 10.1038/srep18231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
A comprehensive genome-wide screen of radiosensitization targets in HeLa cells was performed using a shRNA-library/functional cluster analysis and DNMT3B was identified as a candidate target. DNMT3B RNAi increased the sensitivity of HeLa, A549 and HCT116 cells to both γ-irradiation and carbon-ion beam irradiation. DNMT3B RNAi reduced the activation of DNA damage responses induced by γ-irradiation, including HP1β-, γH2AX- and Rad51-foci formation. DNMT3B RNAi impaired damage-dependent H2AX accumulation and showed a reduced level of γH2AX induction after γ-irradiation. DNMT3B interacted with HP1β in non-irradiated conditions, whereas irradiation abrogated the DNMT3B/HP1β complex but induced interaction between DNMT3B and H2AX. Consistent with radiosensitization, TP63, BAX, PUMA and NOXA expression was induced after γ-irradiation in DNMT3B knockdown cells. Together with the observation that H2AX overexpression canceled radiosensitization by DNMT3B RNAi, these results suggest that DNMT3B RNAi induced radiosensitization through impairment of damage-dependent HP1β foci formation and efficient γH2AX-induction mechanisms including H2AX accumulation. Enhanced radiosensitivity by DNMT3B RNAi was also observed in a tumor xenograft model. Taken together, the current study implies that comprehensive screening accompanied by a cluster analysis enabled the identification of radiosensitization targets. Downregulation of DNMT3B, one of the targets identified using this method, radiosensitizes cancer cells by disturbing multiple DNA damage responses.
Collapse
Affiliation(s)
- Hiroaki Fujimori
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akira Sato
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Sota Kikuhara
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Junhui Wang
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 103-8501, Japan
| | - Takahisa Hirai
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuka Sasaki
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryuichi Okayasu
- Open Laboratory/Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
37
|
Jo MJ, Paek AR, Choi JS, Ok CY, Jeong KC, Lim JH, Kim SH, You HJ. Regulation of cancer cell death by a novel compound, C604, in a c-Myc-overexpressing cellular environment. Eur J Pharmacol 2015; 769:257-65. [PMID: 26607468 DOI: 10.1016/j.ejphar.2015.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Abstract
The proto-oncogene c-Myc has been implicated in a variety of cellular processes, such as proliferation, differentiation and apoptosis. Several c-Myc targets have been studied; however, selective regulation of c-Myc is not easy in cancer cells. Herein, we attempt to identify chemical compounds that induce cell death in c-Myc-overexpressing cells (STF-cMyc and STF-Control) by conducting MTS assays on approximately 4000 chemical compounds. One compound, C604, induced cell death in STF-cMyc cells but not STF-Control cells. Apoptotic proteins, including caspase-3 and poly(ADP-ribose) polymerase (PARP), were cleaved in C604-treated STF-cMyc cells. In addition, SW620, HCT116 and NCI-H23 cells, which exhibit higher basal levels of c-Myc, underwent apoptotic cell death in response to C604, suggesting a role for C604 as an inducer of apoptosis in cancer cells with c-Myc amplification. C604 induced cell cycle arrest at the G2/M phase in cells, which was not affected by apoptotic inhibitors. Interestingly, C604 induced accumulation of c-Myc and Cdc25A proteins. In summary, a chemical compound was identified that may induce cell death in cancer cells with c-Myc amplification specifically through an apoptotic pathway.
Collapse
Affiliation(s)
- Mun Jeong Jo
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - A Rome Paek
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Ji Seung Choi
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Chang Youp Ok
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Kyung Chae Jeong
- Biomolecular Function Research Branch, Division of Convergence Technology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Seok Hyun Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Hye Jin You
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea.
| |
Collapse
|
38
|
Veneziano L, Barra V, Lentini L, Spatafora S, Di Leonardo A. p14ARFPrevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis. J Cell Physiol 2015; 231:336-44. [DOI: 10.1002/jcp.24976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Lorena Veneziano
- Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Palermo Italy
| | - Viviana Barra
- Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Palermo Italy
| | - Laura Lentini
- Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Palermo Italy
| | - Sergio Spatafora
- Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Palermo Italy
| | - Aldo Di Leonardo
- Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Palermo Italy
- Centro di OncoBiologia Sperimentale (COBS) via San Lorenzo Colli; Palermo Italy
| |
Collapse
|
39
|
Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, Kim JH, Chun KH, Chung JY, Lee C, Cho H, Song J. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun 2015; 6:7769. [PMID: 26183061 PMCID: PMC4518267 DOI: 10.1038/ncomms8769] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
The activity of the phosphatase and tensin homologue (PTEN) is known to be suppressed via post-translational modification. However, the mechanism and physiological significance by which post-translational modifications lead to PTEN suppression remain unclear. Here we demonstrate that PTEN destabilization is induced by EGFR- or oncogenic PI3K mutation-mediated AKT activation in cervical cancer. EGFR/PI3K/AKT-mediated ubiquitination and degradation of PTEN are dependent on the MKRN1 E3 ligase. These processes require the stabilization of MKRN1 via AKT-mediated phosphorylation. In cervical cancer patients with high levels of pAKT and MKRN1 expression, PTEN protein levels are low and correlate with a low 5-year survival rate. Taken together, our results demonstrate that PI3K/AKT signals enforce positive-feedback regulation by suppressing PTEN function. Mutations and post-translational modifications of the PI3K/AKT pathway inhibitor PTEN are a feature of many cancers, but these have not been associated with cervical cancer. Here, the authors identify a PI3K/AKT-mediated ubiquitination degradation pathway of PTEN that occurs in patients with cervical cancer.
Collapse
Affiliation(s)
- Min-Sik Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Man-Hyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Woo Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH MSC 1500, Bethesda, Maryland 20892, USA
| | - Jae-Hoon Kim
- 1] Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea [2] Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH MSC 1500, Bethesda, Maryland 20892, USA
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hanbyoul Cho
- 1] Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea [2] Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
40
|
Treatment of peritoneal carcinomatosis with intraperitoneal administration of Ad-hARF. J Surg Res 2015; 197:85-90. [DOI: 10.1016/j.jss.2015.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/11/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
|
41
|
Tumor Suppressor Inactivation in the Pathogenesis of Adult T-Cell Leukemia. JOURNAL OF ONCOLOGY 2015; 2015:183590. [PMID: 26170835 PMCID: PMC4478360 DOI: 10.1155/2015/183590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.
Collapse
|
42
|
Veganzones S, Maestro ML, Rafael S, de la Orden V, Vidaurreta M, Mediero B, Espantaleón M, Cerdán J, Díaz-Rubio E. Combined methylation of p16 and hMLH1 (CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors. Tumour Biol 2015; 36:3853-61. [DOI: 10.1007/s13277-014-3027-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/26/2014] [Indexed: 12/26/2022] Open
|
43
|
Epigenetic regulation of p14ARF and p16INK4A expression in cutaneous and uveal melanoma. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:247-56. [PMID: 25497382 DOI: 10.1016/j.bbagrm.2014.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022]
Abstract
Inactivation of p14ARF and p16INK4A by epigenetic changes in cutaneous and uveal melanoma has been here investigated. Compared with melanocytes, p14ARF mRNA reduction and p16INK4A inactivation were frequently noticed. No association between p14ARF promoter methylation and mRNA levels was found, whereas aberrant p16INK4A methylation was associated with gene silencing (p<0.001). Comparative analysis within melanomas of different Breslow's thicknesses showed that drastic reductions in p14ARF and p16INK4A expression appeared at the level of thin/intermediate and intermediate/thick transitions. The effects of 5-aza-2'-deoxycytidine (5-aza-dC) and suberanilohydroxamic acid (SAHA) on in vivo binding of DNA methyltransferases (DNMTs) and acetyl histone H3/H4 to p14ARF and p16INK4A promoters were tested together with the impact of ectopic expression of p14ARF and p16INK4A on cell proliferation, migration, and invasion. SAHA treatment induced H3 and H4 hyperacetylation at the p14ARF promoter followed by increased p14ARF expression, whereas exposure to 5-aza-dC decreased the recruitment of DNMT1 and DNMT3b at the p16INK4A promoter and reactivated p16INK4A. Studies on promoter-associated di-methyl histone H3 (Lys4) levels ruled out an involvement of this epigenetic trait on p14ARF and p16INK4A expression. The enforced expression of p14ARF or p16INK4A and, even more so, their co-expression, significantly reduced cell proliferation, migration and invasion. Our data pinpoint: i) a frequent impairment of p14ARF and p16INK4A gene expression by epigenetic modifications in melanoma; ii) histone hypoacetylation as the dominant mechanism of p14ARF silencing; and iii) 5' CpG promoter methylation as the major mechanism of p16INK4A gene inactivation. Collectively, our data suggest that selected epi-drugs may be useful in melanoma treatment.
Collapse
|
44
|
Yang C, Gu L, Deng D. Distinct susceptibility of induction of methylation of p16ink4a and p19arf CpG islands by X-radiation and chemical carcinogen in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 768:42-50. [DOI: 10.1016/j.mrgentox.2014.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 11/26/2022]
|
45
|
Serra RW, Fang M, Park SM, Hutchinson L, Green MR. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. eLife 2014; 3:e02313. [PMID: 24623306 PMCID: PMC3949416 DOI: 10.7554/elife.02313] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in, and the mechanistic basis of, CIMP is not understood. Among the CIMP genes are the tumor suppressors p14ARF, p15INK4B, and p16INK4A, encoded by the INK4-ARF locus. In this study, we perform an RNA interference screen and identify ZNF304, a zinc-finger DNA-binding protein, as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors, ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1, resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304, which drives DNA binding. Finally, we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI:http://dx.doi.org/10.7554/eLife.02313.001 Colorectal cancer, which affects the large intestine, is a leading cause of cancer deaths worldwide, ranking fourth after cancers of the lung, stomach, and liver. Like these other cancers, this disease is caused by mutations to genes that allow cells to multiply in an out of control manner. Mutations that change the gene encoding a protein called KRAS are found in many different types of cancer. Moreover, about 70% of colorectal cancers with a KRAS mutation also have an excess of small chemical marks on other genes, some of which are known to suppress the growth of tumors. These marks ‘switch off’ these genes, and although the identities of the enzymes that typically leave these marks on DNA are known, the link between these enzymes and the KRAS protein is unknown. Now Serra, Fang et al. have identified a protein, called ZNF304, that is required by KRAS to switch off a large number of genes, including multiple tumor suppressors. In the absence of ZNF304, these tumor suppressor genes remained switched on in cancer cells with the KRAS mutation, so the growth of the tumor was slowed down. ZNF304 is a protein that binds to stretches of DNA, including regions of DNA at the start of several tumor suppressor genes, and it recruits the enzymes that add the chemical marks that switch off these genes. Serra, Fang et al. found that the levels of ZNF304 protein were elevated in colorectal cancer cells with the mutated KRAS, and showed that this was due to the combined activities of two other proteins that prevented ZNF304 from being broken down in the cell. Mutant KRAS caused an increase in the levels of these two proteins, which in turn caused the elevated ZNF304 levels and the excessive marking of the DNA in the tumor suppressor genes. Furthermore, some of these same tumor suppressor genes are switched off in the earliest cells in a human embryo—which have the potential to become any of 200 or so cell types in the human body. In these embryonic stem cells, Serra, Fang et al. showed that ZNF304, but not KRAS, was also involved in keeping these genes switched off until the stem cells started changing into specific types of cells. Since they are a crucial part of the pathway linking a cancer-causing mutation to increased tumor growth, the proteins identified by Serra, Fang et al. could represent promising targets for the development of new anti-cancer drugs. DOI:http://dx.doi.org/10.7554/eLife.02313.002
Collapse
Affiliation(s)
- Ryan W Serra
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | | | | | | | | |
Collapse
|
46
|
Ellis RJ, Wang Y, Stevenson HS, Boufraqech M, Patel D, Nilubol N, Davis S, Edelman DC, Merino MJ, He M, Zhang L, Meltzer PS, Kebebew E. Genome-wide methylation patterns in papillary thyroid cancer are distinct based on histological subtype and tumor genotype. J Clin Endocrinol Metab 2014; 99:E329-37. [PMID: 24423287 PMCID: PMC3913809 DOI: 10.1210/jc.2013-2749] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
CONTEXT Aberrant DNA methylation is known to be a major factor in oncogenesis and cancer progression, but effects of methylation in papillary thyroid cancer (PTC) are not well defined. OBJECTIVE The objective of the study was to identify altered methylation patterns, which may be associated with PTC disease behavior. DESIGN This study was a genome-wide methylation analysis of PTC. SETTING The study was conducted at the National Institutes of Health Clinical Center. PATIENTS PTC tissue from 51 patients were analyzed and compared with normal thyroid tissue from seven patients. INTERVENTIONS CpG methylation status was assessed using advanced genome-wide methylation bead chips. OUTCOME MEASURES Altered methylation patterns in PTC were analyzed by stage, recurrence, histological subtype of tumor, and tumor genotype. RESULTS PTC is globally hypomethylated compared with normal thyroid with 2837 differentially methylated CpG sites. The follicular variant of PTC demonstrated less differential methylation with only 569 differentially methylated CpG sites. Tumors with mutations in BRAF, RET/PTC, and RAS demonstrated a 3.6-fold increase in the number of differentially methylated sites compared with wild-type tumors. The differentially methylated genes were associated with oncological pathways including cellular movement, growth, and proliferation. CONCLUSION PTC is epigenetically distinct from the follicular variant of PTC and by gene mutation status (BRAF, RET/PTC, and RAS).
Collapse
Affiliation(s)
- Ryan J Ellis
- Endocrine Oncology Branch (R.J.E., M.B., D.P., N.N., M.H., L.Z., E.K.), Genetics Branch (Y.W., H.S.S., S.D., D.C.E., P.S.M.), and Laboratory of Pathology (M.J.M.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Perelman School of Medicine (R.J.E.), University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chaar I, Amara S, Elamine OE, Khiari M, Ounissi D, Khalfallah T, Ben Hmida A, Mzabi S, Bouraoui S. Biological significance of promoter hypermethylation of p14/ARF gene: relationships to p53 mutational status in Tunisian population with colorectal carcinoma. Tumour Biol 2013; 35:1439-49. [PMID: 24065196 PMCID: PMC3932170 DOI: 10.1007/s13277-013-1198-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022] Open
Abstract
One of the most important pathways which are frequently affected in colorectal cancer is p53/ (MDM2)/p14ARF pathway. We aim to determine the methylation pattern of p14/ARF in relation to mutation of p53. This correlation was studied to investigate whether their alterations could be considered as a predictor factor of prognosis in colorectal cancer and whether it can be useful in early-stage diagnosis. Statistical analyses show that p14/ARF hypermethylation was correlated with rectum location (p = 0.004), primary TNM stage (p = 0.016), and advanced Astler–Coller stage (p = 0.024). The RT-PCR that revel 31 % of patients did not express p14/ARF mRNA or at very low level. A high concordance between CpG hypermethylation and the low levels (p < 0.005) was shown. In addition, our analyses demonstrate that patients with mutation in the p53 gene have a lack of the protein expression (p < 0.005). This category with negative expression of p53 had a shorter survival rate (p < 0.005). On the one hand, MSP pattern of p14/ARF were correlated with a lack of p53 expression (p = 0.007). We found that p53/p14ARF pathway was frequently deregulated among our patients. In our study, we demonstrate that hypermethylation of p14/ARF occurs early during CRC tumorogenesis. However, we did not find correlation between p14/ARF and survival. These results suggest that p14/ARF methylation pattern may constitute a predictor factor of CRC in early stage but it could not be considered as a prognostic factor. On the other hand and because of the reversibility of the methylation mechanism, it may be appropriate to target the demethylation of p14/ARF to develop new drogues for CRC.
Collapse
Affiliation(s)
- Ines Chaar
- Laboratory of Colorectal Cancer Research UR03ES04, Science University Tunis, Tunis, Tunisia,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Promoter hypermethylation of tumour suppressor genes (p14/ARF and p16/INK4a): case-control study in North Indian population. Mol Biol Rep 2013; 40:4921-8. [PMID: 23712779 DOI: 10.1007/s11033-013-2592-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
Abstract
The epigenetic modifications have been reported to be key factors in breast carcinogenesis. In the current study, it has been tried to determine the methylation status of two tumour suppressor genes p14/ARF and p16/INK4a in 150 breast cancer patients as well as 150 controls by using MSP-PCR. There was, highly significant difference in methylation of p14/ARF and p16/INK4a (P=0.000) between patients and controls. Methylation of both the genes together significantly increased the risk of breast cancer by 12.31 folds. The present study concludes that hypermethylation of p14/ARF and p16/INK4a promoters demonstrate significant association with the risk of breast cancer, hence indicating these as important tumour suppressor genes involved in the pathogenesis of breast cancer in North Indian population (i.e. Punjab, Haryana, Uttar Pradesh, Himachal Pradesh as well as Union Territory of Chandigarh).
Collapse
|
49
|
Bandyopadhyay K, Li P, Gjerset RA. The p14ARF alternate reading frame protein enhances DNA binding of topoisomerase I by interacting with the serine 506-phosphorylated core domain. PLoS One 2013; 8:e58835. [PMID: 23555599 PMCID: PMC3608632 DOI: 10.1371/journal.pone.0058835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/07/2013] [Indexed: 12/27/2022] Open
Abstract
In addition to its well-characterized function as a tumor suppressor, p14ARF (ARF) is a positive regulator of topoisomerase I (topo I), a central enzyme in DNA metabolism and a target for cancer therapy. We previously showed that topo I hyperphosphorylation, a cancer-associated event mediated by elevated levels of the protein kinase CK2, increases topo I activity and the cellular sensitivity to topo I-targeted drugs. Topo I hyperphosphorylation also increases its interaction with ARF. Because the ARF−topo I interaction could be highly relevant to DNA metabolism and cancer treatment, we identified the regions of topo I involved in ARF binding and characterized the effects of ARF binding on topo I function. Using a series of topo I deletion constructs, we found that ARF interacted with the topo I core domain, which encompasses most of the catalytic and DNA-interacting residues. ARF binding increased the DNA relaxation activity of hyperphosphorylated topo I by enhancing its association with DNA, but did not affect the topo I catalytic rate. In cells, ARF promoted the chromatin association of hyperphosphorylated, but not basal phosphorylated, topo I, and increased topo I-mediated DNA nicking under conditions of oxidative stress. The aberrant nicking was found to correlate with increased formation of DNA double-strand breaks, which are precursors of many genome destabilizing events. The results suggest that the convergent actions of oxidative stress and elevated CK2 and ARF levels, which are common features of cancer cells, lead to a dysregulation of topo I that may contribute both to the cellular response to topo I-targeted drugs and to genome instability.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
| | - Pingchuan Li
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Genetically engineered mouse models of prostate cancer. Mol Oncol 2013; 7:190-205. [PMID: 23481269 DOI: 10.1016/j.molonc.2013.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Collapse
|