1
|
Abramov DS, Fedorova AS, Tuzova EA, Myakova NV, Konovalov DM. [ALK-positive anaplastic large cell lymphoma of paranasal sinuses: two cases report and literature review]. Arkh Patol 2024; 86:42-47. [PMID: 39073541 DOI: 10.17116/patol20248604142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
ALK-positive anaplastic large cell lymphoma is a rare T-cell lymphoma with ALK gene rearrangement that develops in children and young adults. The disease almost always affects the lymph nodes, and extranodal areas are also frequently involved. This article describes two cases of atypical localization of ALK-positive anaplastic large cell lymphoma with involvement of the paranasal sinuses.
Collapse
Affiliation(s)
- D S Abramov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A S Fedorova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - E A Tuzova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - N V Myakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D M Konovalov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
2
|
Diao L, Li W, Jiang Q, Huang H, Zhou E, Peng B, Chen X, Zeng Z, He C. Inflammatory myofibroblastic tumor of the submandibular gland Harboring MSN-ALK gene fusion: A case report and literature review. Heliyon 2023; 9:e22928. [PMID: 38144359 PMCID: PMC10746421 DOI: 10.1016/j.heliyon.2023.e22928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory myofibroblastic tumors (IMTs) are rare lesions with distinct clinical, pathological, and molecular characteristics. IMTs typically arise in the abdominal soft tissues, including the mesentery, omentum, and retroperitoneum, followed by the lungs and mediastinum, and usually affect both children and young adults. Herein, we present a rare case of an IMT in the submandibular gland of a 47-year-old male patient. Microscopically, the tumor displayed an infiltrative growth pattern with diffuse glandular tissue destruction. Their backgrounds revealed characteristic spindles and inflammatory cells. Immunohistochemistry revealed positivity for anaplastic lymphoma kinase (ALK), smooth muscle actin, and calponin in neoplastic cells. The inflammatory cells and some neoplastic cells were positive for CD68. In contrast, negative staining for cytokeratin, desmin, and CD30 was observed. Furthermore, fluorescence in situ hybridization revealed ALK gene rearrangements, and next-generation sequencing detected a moesin (MSN)-ALK gene fusion. This case highlights a rare and unique occurrence of IMT originating from the submandibular gland, which exhibited an MSN-ALK gene fusion.
Collapse
Affiliation(s)
- Limei Diao
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wen Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qingming Jiang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Haiping Huang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Enle Zhou
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Bingjie Peng
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaoling Chen
- Department of pharmacy, Chongqing University Jiangjin Hospital, Chongqing, 402260, China
| | - Zhen Zeng
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Changqing He
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| |
Collapse
|
3
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
4
|
Qiu YF, Song LH, Jiang GL, Zhang Z, Liu XY, Wang G. Hallmarks of Anaplastic Lymphoma Kinase Inhibitors with Its Quick Emergence of Drug Resistance. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is one of the most popular targets for anticancer therapies. In the past decade, the use of anaplastic lymphoma tyrosine kinase inhibitors (ALK-TKIs), including crizotinib and ceritinib, has been a reliable and standard options for patients with lung cancer, particularly for patients with nonsmall cell lung carcinoma. ALK-targeted therapies initially benefit the patients, yet, resistance eventually occurs. Therefore, resistance mechanisms of ALK-TKIs and the solutions have become a formidable challenge in the development of ALK inhibitors. In this review, based on the knowledge of reported ALK inhibitors, we illustrated the crystal structures of ALK, summarized the resistance mechanisms of ALK-targeted drugs, and proposed potential therapeutic strategies to prevent or overcome the resistance.
Collapse
Affiliation(s)
- Yong-Fu Qiu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lian-Hua Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Gang-Long Jiang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Zhen Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
| | - Xu-Yan Liu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Guan Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
6
|
Anaplastic Large Cell Lymphoma: Molecular Pathogenesis and Treatment. Cancers (Basel) 2022; 14:cancers14071650. [PMID: 35406421 PMCID: PMC8997054 DOI: 10.3390/cancers14071650] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma is a rare type of disease that occurs throughout the world and has four subtypes. A summary and comparison of these subtypes can assist with advancing our knowledge of the mechanism and treatment of ALCL, which is helpful in making progress in this field. Abstract Anaplastic large cell lymphoma (ALCL) is an uncommon type of non-Hodgkin’s lymphoma (NHL), as well as one of the subtypes of T cell lymphoma, accounting for 1 to 3% of non-Hodgkin’s lymphomas and around 15% of T cell lymphomas. In 2016, the World Health Organization (WHO) classified anaplastic large cell lymphoma into four categories: ALK-positive ALCL (ALK+ALCL), ALK-negative ALCL (ALK−ALCL), primary cutaneous ALCL (pcALCL), and breast-implant-associated ALCL (BIA-ALCL), respectively. Clinical symptoms, gene changes, prognoses, and therapy differ among the four types. Large lymphoid cells with copious cytoplasm and pleomorphic characteristics with horseshoe-shaped or reniform nuclei, for example, are found in both ALK+ and ALK−ALCL. However, their epidemiology and pathogenetic origins are distinct. BIA-ALCL is currently recognized as a new provisional entity, which is a noninvasive disease with favorable results. In this review, we focus on molecular pathogenesis and management of anaplastic large cell lymphoma.
Collapse
|
7
|
Bahrani E, Kunder CA, Teng JM, Brown RA, Rieger KE, Novoa RA, Cloutier JM. Spitz nevus with EHBP1-ALK fusion and distinctive membranous localization of ALK. J Cutan Pathol 2022; 49:584-588. [PMID: 35113459 DOI: 10.1111/cup.14209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
ALK rearrangements define a histopathologically distinctive but diverse subset of Spitz tumors characterized by fusiform to epithelioid melanocytes with frequent fascicular growth and ALK overexpression. Molecularly, these tumors are characterized by fusions between ALK and a variety of other genes, most commonly TPM3 and DCTN1. We describe an unusual case of a Spitz nevus occurring in a 13-year-old female that manifested ALK immunopositivity with cell membrane localization. The proliferation was polypoid and composed of elongated nests of epithelioid melanocytes with enlarged nuclei, prominent nucleoli, and abundant cytoplasm without significant atypia and lacking mitotic figures. The nevus exhibited strong and diffuse expression of p16. Targeted next-generation RNA sequencing revealed an in-frame EHBP1-ALK fusion, which has been reported only once in the literature. EHBP1 encodes an adaptor protein with plasma membrane targeting potential. Together, these findings suggest that the 5' ALK fusion partner in Spitz tumors may dictate the subcellular localization of the ALK chimeric oncoprotein. In summary, this case highlights a rare ALK fusion associated with a distinct immunohistochemical staining pattern and further expands the spectrum of ALK-rearranged melanocytic tumors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eman Bahrani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joyce M Teng
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryanne A Brown
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Kerri E Rieger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberto A Novoa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey M Cloutier
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Drieux F, Ruminy P, Sater V, Marchand V, Fataccioli V, Lanic MD, Viennot M, Viailly PJ, Sako N, Robe C, Dupuy A, Vallois D, Veresezan L, Poullot E, Picquenot JM, Bossard C, Parrens M, Lemonnier F, Jardin F, de Leval L, Gaulard P. Detection of Gene Fusion Transcripts in Peripheral T-Cell Lymphoma Using a Multiplexed Targeted Sequencing Assay. J Mol Diagn 2021; 23:929-940. [PMID: 34147695 DOI: 10.1016/j.jmoldx.2021.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022] Open
Abstract
The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.
Collapse
Affiliation(s)
- Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, Rouen, France; Pathology Department, Centre Henri Becquerel, Rouen, France; INSERM U955, Université Paris-Est, Créteil, France
| | | | | | | | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | | | - Nouhoum Sako
- INSERM U955, Université Paris-Est, Créteil, France
| | | | | | - David Vallois
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Elsa Poullot
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | - Marie Parrens
- Pathology Department, Hôpital Haut-Lévêque, Bordeaux, France
| | - François Lemonnier
- INSERM U955, Université Paris-Est, Créteil, France; Hematology Department, Lymphoma Unit, Henri Mondor Hospital, Public Assistance Hospital of Paris, Créteil, France
| | | | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
9
|
Palsgrove D, Allahabadi S, Khan SA. Genomic Analysis of Salivary Gland Cancer and Treatment of Salivary Gland Cancers. Surg Pathol Clin 2021; 14:151-163. [PMID: 33526219 DOI: 10.1016/j.path.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salivary gland cancer is a heterogenous group of tumors that presents challenges with both diagnosis and therapy. Recent advances in the classification of salivary gland cancers have led to distinct histologic and genomic criteria that successfully differentiate between cancers with similar clinical behavior and appearance. Genomic abnormalities have led to the emergence of targeted therapies being used in their therapy with drastic improvements in outcomes as well as reductions in treatment-related toxicity. Dramatic results seen with molecular targets, such as HER2, TRK, and others, indicate that this approach has the potential to yield even better treatments for the future.
Collapse
Affiliation(s)
- Doreen Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sameer Allahabadi
- Texas Christian University, University of North Texas Health Science Center School of Medicine, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Saad A Khan
- Stanford Cancer Institute and Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Irshaid L, Xu ML. ALCL by any other name: the many facets of anaplastic large cell lymphoma. Pathology 2019; 52:100-110. [PMID: 31706671 DOI: 10.1016/j.pathol.2019.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) encompass a group of CD30(+) non-Hodgkin T-cell lymphomas. While the different subtypes of ALCLs may share overlapping clinical patient demographics as well as histological and immunohistochemical phenotypes, these tumours can drastically differ in clinical behaviour and genetic profiles. Currently, four distinct ALCL entities are recognised in the 2016 WHO classification: anaplastic lymphoma kinase (ALK)(+), ALK(-), primary cutaneous and breast implant-associated. ALK(+) ALCL demonstrates a spectrum of cell cytology ranging from small to large lymphoma cells and characteristic 'hallmark' cells. ALK(+) ALCL consistently demonstrates ALK gene rearrangements and carries a favourable prognosis. ALK(-) ALCL morphologically and immunohistochemically mimics ALK(+) ALCL but lacks the ALK gene rearrangement. ALK(-) ALCLs are associated with variable prognoses depending on specific gene rearrangements; while DUSP22-rearranged cases have favourable outcomes similar to ALK(+) ALCLs, cases with p63 rearrangements carry a dismal prognosis and 'triple-negative' cases (those lacking ALK, DUSP22 and TP63 rearrangements) have an intermediate prognosis. Primary cutaneous ALCL presents as a skin lesion, lacks the ALK gene translocation and carries a favourable prognosis, similar or superior to ALK(+) ALCL. Breast implant-associated ALCL presents as a seroma with a median of 8-10 years after implant placement, lacks the ALK gene translocation and has an overall favourable but variable prognosis, depending on extent of disease at diagnosis and treatment. In this review, we present the clinical, pathological and genetic features of the ALCLs with emphasis on practical points and differential diagnoses for practising pathologists.
Collapse
Affiliation(s)
- Lina Irshaid
- Department of Pathology, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, United States
| | - Mina L Xu
- Department of Pathology, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
11
|
Lim MS, Bailey NG, King RL, Piris M. Molecular Genetics in the Diagnosis and Biology of Lymphoid Neoplasms. Am J Clin Pathol 2019; 152:277-301. [PMID: 31278738 DOI: 10.1093/ajcp/aqz078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The 2017 Workshop of the Society for Hematopathology/European Association for Haematopathology reviewed the role of molecular genetics in the diagnosis and biology of lymphoid neoplasms. METHODS The Workshop Panel reviewed 82 cases. RESULTS Molecular genetic testing reveals alterations that expand the spectrum of diseases such as DUSP22 rearrangement in ALK-negative anaplastic large cell lymphoma, large B-cell lymphoma with IRF4 rearrangement, MYD88 mutations in B-cell lymphomas, Burkitt-like lymphoma with 11q aberrations, and diagnostic criteria for high-grade B-cell lymphomas. Therapeutic agents and natural tumor progression may be associated with transcriptional reprogramming that lead to transdifferentiation and lineage switch. CONCLUSIONS Application of emerging technical advances has revealed the complexity of genetic events in lymphomagenesis, progression, and acquired resistance to therapies. They also contribute to enhanced understanding of the biology of indolent vs aggressive behavior, clonal evolution, tumor progression, and transcriptional reprogramming associated with transdifferentiation events that may occur subsequent to therapy.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | - Miguel Piris
- Department of Pathology, Centro de Investigación Biomédica en Red de Oncología, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain
| |
Collapse
|
12
|
Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS 2019; 127:288-302. [PMID: 30803032 PMCID: PMC6850425 DOI: 10.1111/apm.12940] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer types. In tumors where the full‐length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises from the neural crest derived peripheral nervous system. Although high‐risk neuroblastoma is rare, it often relapses and becomes refractory to treatment. Thus, neuroblastoma accounts for 10–15% of all childhood cancer deaths. Since most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest development is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibitors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK‐driven cancers. ALK TKIs bind differently within the ATP‐binding pocket of the ALK kinase domain and have been associated with different resistance mutations within ALK itself that arise in response to therapeutic use, particularly in ALK‐fusion positive non‐small cell lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as precision medicine options in the clinic.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Takeuchi K. Discovery Stories of RET Fusions in Lung Cancer: A Mini-Review. Front Physiol 2019; 10:216. [PMID: 30941048 PMCID: PMC6433883 DOI: 10.3389/fphys.2019.00216] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
In 2004, a chemical inhibitor of the kinase activity of EGFR was reported to be effective in a subset of lung cancer patients with activating somatic mutations of EGFR. It remained unclear, however, whether kinase fusion genes also play a major role in the pathogenesis of lung cancers. The discovery of the EML4-ALK fusion kinase in 2007 was a breakthrough for this situation, and kinase fusion genes now form a group of relevant targetable oncogenes in lung cancer. In this mini-review article, the discovery of REarrangement during Transfection fusions, the third kinase fusion gene in lung cancer, is briefly described.
Collapse
Affiliation(s)
- Kengo Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
14
|
Cao Z, Gao Q, Fu M, Ni N, Pei Y, Ou WB. Anaplastic lymphoma kinase fusions: Roles in cancer and therapeutic perspectives. Oncol Lett 2019; 17:2020-2030. [PMID: 30675269 PMCID: PMC6341817 DOI: 10.3892/ol.2018.9856] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) serves a crucial role in brain development. ALK is located on the short arm of chromosome 2 (2p23) and exchange of chromosomal segments with other genes, including nucleophosmin (NPM), echinoderm microtubule-associated protein-like 4 (EML4) and Trk-fused gene (TFG), readily occurs. Such chromosomal translocation results in the formation of chimeric X-ALK fusion oncoproteins, which possess potential oncogenic functions due to constitutive activation of ALK kinase. These proteins contribute to the pathogenesis of various hematological malignancies and solid tumors, including lymphoma, lung cancer, inflammatory myofibroblastic tumors (IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive tract cancer, breast cancer, leukemia and ovarian carcinoma. Targeting of ALK fusion oncoproteins exclusively, or in combination with ALK kinase inhibitors including crizotinib, is the most common therapeutic strategy. As is often the case for small-molecule tyrosine kinase inhibitors (TKIs), drug resistance eventually develops via an adaptive secondary mutation in the ALK fusion oncogene, or through engagement of alternative signaling mechanisms. The updated mechanisms of a variety of ALK fusions in tumorigenesis, proliferation and metastasis, in addition to targeted therapies are discussed below.
Collapse
Affiliation(s)
- Zhifa Cao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Qian Gao
- Emergency Department, Tianjin Fourth Central Hospital, Fourth Central Hospital Affiliated with Nankai University, Tianjin 300140, P.R. China
| | - Meixian Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuting Pei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, P.R. China
| |
Collapse
|
15
|
Montes-Mojarro IA, Steinhilber J, Bonzheim I, Quintanilla-Martinez L, Fend F. The Pathological Spectrum of Systemic Anaplastic Large Cell Lymphoma (ALCL). Cancers (Basel) 2018; 10:cancers10040107. [PMID: 29617304 PMCID: PMC5923362 DOI: 10.3390/cancers10040107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) represents a group of malignant T-cell lymphoproliferations that share morphological and immunophenotypical features, namely strong CD30 expression and variable loss of T-cell markers, but differ in clinical presentation and prognosis. The recognition of anaplastic lymphoma kinase (ALK) fusion proteins as a result of chromosomal translocations or inversions was the starting point for the distinction of different subgroups of ALCL. According to their distinct clinical settings and molecular findings, the 2016 revised World Health Organization (WHO) classification recognizes four different entities: systemic ALK-positive ALCL (ALK+ ALCL), systemic ALK-negative ALCL (ALK− ALCL), primary cutaneous ALCL (pC-ALCL), and breast implant-associated ALCL (BI-ALCL), the latter included as a provisional entity. ALK is rearranged in approximately 80% of systemic ALCL cases with one of its partner genes, most commonly NPM1, and is associated with favorable prognosis, whereas systemic ALK− ALCL shows heterogeneous clinical, phenotypical, and genetic features, underlining the different oncogenesis between these two entities. Recognition of the pathological spectrum of ALCL is crucial to understand its pathogenesis and its boundaries with other entities. In this review, we will focus on the morphological, immunophenotypical, and molecular features of systemic ALK+ and ALK− ALCL. In addition, BI-ALCL will be discussed.
Collapse
Affiliation(s)
- Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076 Tübingen, Germany.
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076 Tübingen, Germany.
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076 Tübingen, Germany.
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076 Tübingen, Germany.
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Liebermeisterstraße 8, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel) 2018; 10:cancers10040093. [PMID: 29597249 PMCID: PMC5923348 DOI: 10.3390/cancers10040093] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.
Collapse
|
17
|
Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes. Cancers (Basel) 2018; 10:E62. [PMID: 29495603 PMCID: PMC5876637 DOI: 10.3390/cancers10030062] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance.
Collapse
Affiliation(s)
- Geeta Geeta Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Ines Mota
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza 20900, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Li DD, Wu FL, Wang ZH, Huang LL, Yin Y, Wu FH. Identification of 2,4-diarylaminopyrimidine analogues as ALK inhibitors by using 3D-QSAR, molecular docking, and molecular dynamics simulations. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Lin JJ, Riely GJ, Shaw AT. Targeting ALK: Precision Medicine Takes on Drug Resistance. Cancer Discov 2017; 7:137-155. [PMID: 28122866 PMCID: PMC5296241 DOI: 10.1158/2159-8290.cd-16-1123] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, including non-small cell lung cancer. However, the clinical benefit of targeting ALK using tyrosine kinase inhibitors (TKI) is almost universally limited by the emergence of drug resistance. Diverse mechanisms of resistance to ALK TKIs have now been discovered, and these basic mechanisms are informing the development of novel therapeutic strategies to overcome resistance in the clinic. In this review, we summarize the current successes and challenges of targeting ALK. SIGNIFICANCE Effective long-term treatment of ALK-rearranged cancers requires a mechanistic understanding of resistance to ALK TKIs so that rational therapies can be selected to combat resistance. This review underscores the importance of serial biopsies in capturing the dynamic therapeutic vulnerabilities within a patient's tumor and offers a perspective into the complexity of on-target and off-target ALK TKI resistance mechanisms. Therapeutic strategies that can successfully overcome, and potentially prevent, these resistance mechanisms will have the greatest impact on patient outcome. Cancer Discov; 7(2); 137-55. ©2017 AACR.
Collapse
Affiliation(s)
- Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Gregory J Riely
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| |
Collapse
|
20
|
Tsuyama N, Sakamoto K, Sakata S, Dobashi A, Takeuchi K. Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J Clin Exp Hematop 2017; 57:120-142. [PMID: 29279550 PMCID: PMC6144189 DOI: 10.3960/jslrt.17023] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) was first described in 1985 as a large-cell neoplasm with anaplastic morphology immunostained by the Ki-1 antibody, which recognizes CD30. In 1994, the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) fusion receptor tyrosine kinase was identified in a subset of patients, leading to subdivision of this disease into ALK-positive and -negative ALCL in the present World Health Organization classification. Due to variations in morphology and immunophenotype, which may sometimes be atypical for lymphoma, many differential diagnoses should be considered, including solid cancers, lymphomas, and reactive processes. CD30 and ALK are key molecules involved in the pathogenesis, diagnosis, and treatment of ALCL. In addition, signal transducer and activator of transcription 3 (STAT3)-mediated mechanisms are relevant in both types of ALCL, and fusion/mutated receptor tyrosine kinases other than ALK have been reported in ALK-negative ALCL. ALK-positive ALCL has a better prognosis than ALK-negative ALCL or other peripheral T-cell lymphomas. Patients with ALK-positive ALCL are usually treated with anthracycline-based regimens, such as combination cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) or CHOEP (CHOP plus etoposide), which provide a favorable prognosis, except in patients with multiple International Prognostic Index factors. For targeted therapies, an anti-CD30 monoclonal antibody linked to a synthetic antimitotic agent (brentuximab vedotin) and ALK inhibitors (crizotinib, alectinib, and ceritinib) are being used in clinical settings.
Collapse
|
21
|
Abstract
The ROS1 gene belongs to the sevenless subfamily of tyrosine kinase insulin receptor genes. A literature review identified a ROS1 fusion in 2.54% of the patients with lung adenocarcinoma and even higher frequencies in spitzoid neoplasms and inflammatory myofibroblastic tumors. At present, 26 genes were found to fuse with ROS1, some of them already known to fuse with RET and ALK. All the fusion proteins retain the ROS1 kinase domain, but rarely its transmembrane domain. Most of the partners have dimerization domains that are retained in the fusion, presumably leading to constitutive ROS1 tyrosine kinase activation. Some partners have transmembrane domains that are retained or not in the chimeric proteins. Therefore, different ROS1 fusions have distinct subcellular localization, suggesting that they may activate different substrates in vivo.
Collapse
Affiliation(s)
- Arnaud Uguen
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Service d'Anatomie et Cytologie Pathologiques, Hôpital Morvan, CHRU Brest, Brest, France
| | - Marc De Braekeleer
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| |
Collapse
|
22
|
Miles RR, Shah RK, Frazer JK. Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2016; 173:582-96. [PMID: 26969846 DOI: 10.1111/bjh.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future.
Collapse
Affiliation(s)
- Rodney R Miles
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Rikin K Shah
- Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- E.L. and Thelma Gaylord Chair in Pediatric Oncology, Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
23
|
Turner SD, Lamant L, Kenner L, Brugières L. Anaplastic large cell lymphoma in paediatric and young adult patients. Br J Haematol 2016; 173:560-72. [PMID: 26913827 DOI: 10.1111/bjh.13958] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a heterogeneous disease of debateable origin that, in children, is largely anaplastic lymphoma kinase (ALK) positive with aberrant ALK activity induced following the formation of chromosomal translocations. Whilst the survival rates for this disease are relatively high, a significant proportion (20-40%) of patients suffer disease relapse, in some cases on multiple occasions and therefore suffer the toxic side-effects of combination chemotherapy. Traditionally, patients are treated with a combination of agents although recent data from relapse patients have suggested that low risk patients might benefit from single agent vinblastine and, going forward, the addition of ALK inhibitors to the therapeutic regimen may have beneficial consequences. There are also a plethora of other drugs that might be advantageous to patients with ALCL and many of these have been identified through laboratory research although the decision as to which drugs to implement in trials will not be trivial.
Collapse
Affiliation(s)
- Suzanne D Turner
- Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Cambridge, UK.,European Research Initiative for ALK related Malignancies, Toulouse, France
| | - Laurence Lamant
- European Research Initiative for ALK related Malignancies, Toulouse, France.,Institut Universitaire de Cancérologie Oncopole, Toulouse, France
| | - Lukas Kenner
- European Research Initiative for ALK related Malignancies, Toulouse, France.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.,Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Laurence Brugières
- European Research Initiative for ALK related Malignancies, Toulouse, France.,Département de Cancérologie de l'Enfant et l'Adolescent, Gustave Roussy, Villejuif, France
| |
Collapse
|
24
|
Bennani-Baiti N, Ansell S, Feldman AL. Adult systemic anaplastic large-cell lymphoma: recommendations for diagnosis and management. Expert Rev Hematol 2015; 9:137-50. [PMID: 26581318 DOI: 10.1586/17474086.2016.1122514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic anaplastic large-cell lymphomas (sALCLs) comprise a heterogeneous group of relatively rare T-cell non-Hodgkin lymphomas (NHLs) characterized by CD30 expression and other unifying pathologic features. Anaplastic lymphoma kinase (ALK) fusions are present in about 50% of cases. Pathological diagnosis can be challenging, particularly in ALK-negative cases. Though ALK-positive and ALK-negative sALCLs are similar morphologically and immunophenotypically, they are separate entities with different genetics, clinical behavior, and outcomes. Evidence-based data evaluating treatment regimens are limited as randomized controlled trials are lacking and most prospective studies are too small to draw definitive conclusions. However, recent advances in molecular biology are bringing forth much-needed knowledge in this field, and are likely to guide further targeted therapeutic development.
Collapse
Affiliation(s)
| | - Stephen Ansell
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Andrew L Feldman
- b Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
25
|
Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol Cell 2015; 107:111-29. [PMID: 25631473 DOI: 10.1111/boc.201400096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The advent of widespread cancer genome sequencing has accelerated our understanding of the molecular aberrations underlying malignant disease at an unprecedented rate. Coupling the large number of bioinformatic methods developed to locate genomic breakpoints with increased sequence read length and a deeper understanding of coding region function has enabled rapid identification of novel actionable oncogenic fusion genes. Using examples of kinase fusions found in liquid and solid tumours, this review highlights major concepts that have arisen in our understanding of cancer pathogenesis through the study of fusion proteins. We provide an overview of recently developed methods to identify potential fusion proteins from next-generation sequencing data, describe the validation of their oncogenic potential and discuss the role of targetted therapies in treating cancers driven by fusion oncoproteins.
Collapse
Affiliation(s)
- Monika A Davare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, U.S.A; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, U.S.A
| | | |
Collapse
|
26
|
Novel ALK inhibitors in clinical use and development. J Hematol Oncol 2015; 8:17. [PMID: 25888090 PMCID: PMC4349797 DOI: 10.1186/s13045-015-0122-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Anaplastic lymphoma kinase 1 (ALK-1) is a member of the insulin receptor tyrosine kinase family. ALK-1 was initially found in anaplastic large cell lymphoma (ALCL). ALK mutations have also been implicated in the pathogenesis of non-small cell lung cancer (NSCLC) and other solid tumors. Multiple small molecule inhibitors with activity against ALK and related oncoproteins are under clinical development. Two of them, crizotinib and ceritinib, have been approved by FDA for treatment of locally advanced and metastatic NSCLC. More agents (alectinib, ASP3026, X396) with improved safety, selectivity, and potency are in the pipeline. Dual inhibitors targeting ALK and EGFRm (AP26113), TRK (TSR011), FAK (CEP-37440), or ROS1 (RXDX-101, PF-06463922) are under active clinical development.
Collapse
|
27
|
Boi M, Zucca E, Inghirami G, Bertoni F. Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas. Br J Haematol 2015; 168:771-83. [PMID: 25559471 DOI: 10.1111/bjh.13265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The currently used 2008 World Health Organization classification recognizes two types of systemic anaplastic large T cell lymphoma according to ALK protein expression in tumour cells. First, the 'anaplastic large cell lymphoma, ALK positive' (ALK(+) ALCL) that is characterized by the presence of ALK gene rearrangements and consequent ALK protein expression, and, second, the 'anaplastic large cell lymphoma, ALK negative' (ALK(-) ALCL) that is a provisional entity lacking ALK protein expression but cannot be distinguished morphologically from ALK(+) ALCL. In this review we summarize the current knowledge on the genetic lesions and biological features that underlie the pathogenesis of ALK(+) and the ALK(-) ALCL and that can lead to the use of targeted anti-cancer agents.
Collapse
Affiliation(s)
- Michela Boi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Pathology, NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
28
|
Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol 2015; 22:29-49. [PMID: 25461779 DOI: 10.1097/pap.0000000000000047] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) comprise a group of CD30-positive non-Hodgkin lymphomas that generally are of T-cell origin and share common morphologic and phenotypic characteristics. The World Health Organization recognizes 3 entities: primary cutaneous ALCL (pcALCL), anaplastic lymphoma kinase (ALK)-positive ALCL, and, provisionally, ALK-negative ALCL. Despite overlapping pathologic features, these tumors differ in clinical behavior and genetics. pcALCL presents in the skin and, while it may involve locoregional lymph nodes, rarely disseminates. Outcomes typically are excellent. ALK-positive ALCL and ALK-negative ALCL are systemic diseases. ALK-positive ALCLs consistently have chromosomal rearrangements involving the ALK gene with varied gene partners, and generally have a favorable prognosis. ALK-negative ALCLs lack ALK rearrangements and their genetic and clinical features are more variable. A subset of ALK-negative ALCLs has rearrangements in or near the DUSP22 gene and has a favorable prognosis similar to that of ALK-positive ALCL. DUSP22 rearrangements also are seen in a subset of pcALCLs. In this review, we discuss the clinical, morphologic, phenotypic, genetic, and biological features of ALCLs.
Collapse
|
29
|
Chia PL, Mitchell P, Dobrovic A, John T. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors. Clin Epidemiol 2014; 6:423-32. [PMID: 25429239 PMCID: PMC4242069 DOI: 10.2147/clep.s69718] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Improved understanding of molecular drivers of carcinogenesis has led to significant progress in the management of lung cancer. Patients with non-small-cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) gene rearrangements constitute about 4%-5% of all NSCLC patients. ALK+ NSCLC cells respond well to small molecule ALK inhibitors such as crizotinib; however, resistance invariably develops after several months of treatment. There are now several newer ALK inhibitors, with the next generation of agents targeting resistance mutations. In this review, we will discuss the prevalence and clinical characteristics of ALK+ lung cancer, current treatment options, and future directions in the management of this subset of NSCLC patients.
Collapse
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Olivia-Newton John Cancer and Wellness Centre, Victoria, Australia
| | - Paul Mitchell
- Department of Medical Oncology, Olivia-Newton John Cancer and Wellness Centre, Victoria, Australia
| | - Alexander Dobrovic
- Ludwig Institute for Cancer Research, Austin Health, Victoria, Australia
- Department of Pathology, University of Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Thomas John
- Department of Medical Oncology, Olivia-Newton John Cancer and Wellness Centre, Victoria, Australia
- Ludwig Institute for Cancer Research, Austin Health, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Victoria, Australia
| |
Collapse
|
30
|
Gorczyński A, Prełowska M, Adam P, Czapiewski P, Biernat W. ALK-positive cancer: still a growing entity. Future Oncol 2014; 10:305-21. [PMID: 24490615 DOI: 10.2217/fon.13.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of ALK-positive anaplastic large-cell lymphoma in 1994 many other types of tumors showing ALK expression were disclosed. They form a heterogeneous group, including lung, renal and soft tissue tumors. The biological function of ALK, its role in carcinogenesis and impact exerted on the clinical outcome have been studied by many research groups. New drugs specifically dedicated for ALK inhibition, for example, crizotinib, have been synthesized and have become a viable treatment option for ALK-positive lung adenocarcinoma, and potentially for other ALK-positive cancers. This review summarizes the current state of knowledge concerning ALK-positive neoplasms, focusing on the clinical aspects of the subject.
Collapse
Affiliation(s)
- Adam Gorczyński
- Department of Pathomorphology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
31
|
Tennstedt P, Strobel G, Bölch C, Grob T, Minner S, Masser S, Simon R. Patterns of ALK expression in different human cancer types. J Clin Pathol 2014; 67:477-81. [DOI: 10.1136/jclinpath-2013-201991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Abstract
T-cell neoplasms include both mature T-cell leukemias and lymphomas and immature proliferations of precursor T cells. Molecular laboratories routinely assay suspected T-cell proliferations for evidence of clonality. In addition, some T-cell neoplasms are characterized by recurrent structural abnormalities that can be readily identified by such techniques as fluorescence in situ hybridization. New massively parallel sequencing technologies have led to the identification of numerous recurrent gene mutations in T-cell neoplasms. These findings are reviewed. As new technologies become implemented in molecular diagnostic laboratories and as targeted therapies are developed, it is anticipated that more extensive genomic characterization of T-cell neoplasms will be routinely performed in the future.
Collapse
|
33
|
Wang WC, Shiao HY, Lee CC, Fung KS, Hsieh HP. Anaplastic lymphoma kinase (ALK) inhibitors: a review of design and discovery. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00048j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review elucidates the hit-to-drug evolution design of three ALK inhibitors.
Collapse
Affiliation(s)
- Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research
- National Health Research Institutes
- Miaoli County 35053, Republic of China
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research
- National Health Research Institutes
- Miaoli County 35053, Republic of China
| | - Chieh-Chien Lee
- Institute of Biotechnology and Pharmaceutical Research
- National Health Research Institutes
- Miaoli County 35053, Republic of China
| | - Ka-Shu Fung
- Institute of Biotechnology and Pharmaceutical Research
- National Health Research Institutes
- Miaoli County 35053, Republic of China
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research
- National Health Research Institutes
- Miaoli County 35053, Republic of China
| |
Collapse
|
34
|
ALK: Anaplastic lymphoma kinase. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
ALK as a paradigm of oncogenic promiscuity: different mechanisms of activation and different fusion partners drive tumors of different lineages. Cancer Genet 2013; 206:357-73. [PMID: 24091028 DOI: 10.1016/j.cancergen.2013.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 12/23/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase protein implicated in a variety of hematological malignancies and solid tumors. Since the identification of the ALK gene in 1994 as the target of the t(2;5) chromosomal translocation in anaplastic large cell lymphoma, ALK has been proven a remarkably promiscuous oncogene. ALK contributes to the development of a notable assortment of tumor types from different lineages, including hematolymphoid, mesenchymal, epithelial and neural tumors, through a variety of genetic mechanisms: gene fusions, activating point mutations, and gene amplification. Recent developments led to significant diagnostic and therapeutic advances, including efficient diagnostic tests and ALK-targeting agents readily available in the clinical setting. This review addresses some therapeutic considerations of ALK-targeted agents and the biologic implications of ALK oncogenic promiscuity, but the main points discussed are: 1) the variety of mechanisms that result in activation of the ALK oncogene, with emphasis on the promiscuous partnerships demonstrated in chromosomal rearrangements; 2) the diversity of tumor types of different lineages in which ALK has been implicated as a pathogenic driver; and 3) the different diagnostic tests available to identify ALK-driven tumors, and their respective indications.
Collapse
|
36
|
Abstract
The burgeoning field of anaplastic lymphoma kinase (ALK) in cancer encompasses many cancer types, from very rare cancers to the more prevalent non-small-cell lung cancer (NSCLC). The common activation of ALK has led to the use of the ALK tyrosine kinase inhibitor (TKI) crizotinib in a range of patient populations and to the rapid development of second-generation drugs targeting ALK. In this Review, we discuss our current understanding of ALK function in human cancer and the implications for tumour treatment.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Antineoplastic Agents/therapeutic use
- Caenorhabditis elegans Proteins/physiology
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- Crizotinib
- Drosophila Proteins/physiology
- Drug Resistance, Neoplasm
- Enzyme Induction
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large-Cell, Anaplastic/enzymology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Mice
- Models, Biological
- Models, Molecular
- Mutation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Conformation
- Protein-Tyrosine Kinases/physiology
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction
- Translocation, Genetic
- Zebrafish Proteins/physiology
Collapse
Affiliation(s)
- Bengt Hallberg
- Department of Molecular Biology, Building 6L, Umeå University, Umeå S-90187, Sweden
| | | |
Collapse
|
37
|
Control of ALK (wild type and mutated forms) phosphorylation: specific role of the phosphatase PTP1B. Cell Signal 2013; 25:1505-13. [PMID: 23499906 DOI: 10.1016/j.cellsig.2013.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Phosphorylation of proteins on tyrosine residues is regulated by the activities of protein tyrosine kinases and protein tyrosine phosphatases. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) essentially and transiently expressed during development of the central and peripheral nervous systems. ALK has been identified as a major neuroblastoma predisposition gene and activating mutations have been identified in a subset of sporadic neuroblastoma tumors. We previously established that the mutated receptors were essentially retained in the endoplasmic reticulum/Golgi compartments due to their constitutive activity. Intriguingly we demonstrated a stronger phosphorylation for the minor pool of receptor addressed to the plasma membrane. We decided to investigate the potential involvement of tyrosine phosphatase in dephosphorylation of this intracellular pool. In this study we first showed that general inhibition of tyrosine phosphatases resulted in a dramatic increase of the tyrosine phosphorylation of the wild type but also of the mutated receptors. This increase not only required the intrinsic kinase activity of the ALK receptor but also involved the Src tyrosine kinase family. Second we provided strong evidences that the endoplasmic reticulum associated phosphatase PTP1B is key player in the control of ALK phosphorylation. Our data shed a new light on the biological significance of the basal phosphorylation levels of both wild type and mutated ALK receptors and could be essential to further understand their roles in malignancies.
Collapse
|
38
|
|
39
|
Kruczynski A, Delsol G, Laurent C, Brousset P, Lamant L. Anaplastic lymphoma kinase as a therapeutic target. Expert Opin Ther Targets 2012; 16:1127-38. [PMID: 22998583 DOI: 10.1517/14728222.2012.719498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, has been initially identified through its involvement in chromosomal translocations associated with anaplastic large cell lymphoma. However, recent evidence that aberrant ALK activity is also involved in an expanding number of tumor types, such as other lymphomas, inflammatory myofibroblastic tumor, neuroblastomas and some carcinomas, including non-small cell lung carcinomas, is boosting research progress in ALK-targeted therapies. AREAS COVERED The first aim of this review is to describe current understandings about the ALK tyrosine kinase and its implication in the oncogenesis of human cancers as a fusion protein or through mutations. The second goal is to discuss its interest as a therapeutic target and to provide a review of the literature regarding ALK inhibitors. Mechanisms of acquired resistance are also reviewed. EXPERT OPINION Several ALK inhibitors have recently been developed, offering new treatment options in tumors driven by abnormal ALK signaling. However, as observed with other tyrosine kinase inhibitors, resistance has emerged in patients treated with these agents. The complexity of mechanisms of acquired resistance recently described suggests that other therapeutic options, including combination of ALK and other kinases targeted drugs, will be required in the future.
Collapse
Affiliation(s)
- Anna Kruczynski
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, Cedex 4, France
| | | | | | | | | |
Collapse
|
40
|
NPM-ALK: The Prototypic Member of a Family of Oncogenic Fusion Tyrosine Kinases. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:123253. [PMID: 22852078 PMCID: PMC3407651 DOI: 10.1155/2012/123253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/28/2012] [Indexed: 02/07/2023]
Abstract
Anaplastic lymphoma kinase (ALK) was first identified in 1994 with the discovery that the gene encoding for this kinase was involved in the t(2;5)(p23;q35) chromosomal translocation observed in a subset of anaplastic large cell lymphoma (ALCL). The NPM-ALK fusion protein generated by this translocation is a constitutively active tyrosine kinase, and much research has focused on characterizing the signalling pathways and cellular activities this oncoprotein regulates in ALCL. We now know about the existence of nearly 20 distinct ALK translocation partners, and the fusion proteins resulting from these translocations play a critical role in the pathogenesis of a variety of cancers including subsets of large B-cell lymphomas, nonsmall cell lung carcinomas, and inflammatory myofibroblastic tumours. Moreover, the inhibition of ALK has been shown to be an effective treatment strategy in some of these malignancies. In this paper we will highlight malignancies where ALK translocations have been identified and discuss why ALK fusion proteins are constitutively active tyrosine kinases. Finally, using ALCL as an example, we will examine three key signalling pathways activated by NPM-ALK that contribute to proliferation and survival in ALCL.
Collapse
|
41
|
Medves S, Demoulin JB. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2012; 16:237-48. [PMID: 21854543 PMCID: PMC3823288 DOI: 10.1111/j.1582-4934.2011.01415.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tyrosine kinase fusion genes represent an important class of oncogenes associated with leukaemia and solid tumours. They are produced by translocations and other chromosomal rearrangements of a subset of tyrosine kinase genes, including ABL, PDGFRA, PDGFRB, FGFR1, SYK, RET, JAK2 and ALK. Based on recent findings, this review discusses the common mechanisms of activation of these fusion genes. Enforced oligomerization and inactivation of inhibitory domains are the two key processes that switch on the kinase domain. Activated tyrosine kinase fusions then signal via an array of transduction cascades, which are largely shared. In addition, the fusion partner provides a scaffold for the recruitment of proteins that contribute to signalling, protein stability, cellular localization and oligomerization. The expression level of the fusion protein is another critical parameter. Its transcription is controlled by the partner gene promoter, while translation may be regulated by miRNA. Several mechanisms also prevent the degradation of the oncoprotein by proteasomes and lysosomes, leading to its accumulation in cells. The selective inhibition of the tyrosine kinase activity by adenosine-5'-triphosphate competitors, such as imatinib, is a major therapeutic success. Imatinib induces remission in leukaemia patients that are positive for BCR-ABL or PDGFR fusions. Recently, crizotinib produced promising results in a subtype of lung cancers with ALK fusion. However, resistance was reported in both cases, partially due to mutations. To tackle this problem, additional levels of therapeutic interventions are suggested by the complex mechanisms of fusion tyrosine kinase activation. New approaches include allosteric inhibition and interfering with oligomerization or chaperones.
Collapse
Affiliation(s)
- Sandrine Medves
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
42
|
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase normally expressed in the developing nervous tissue. Genetic alterations of ALK are associated with a number of cancers, including anaplastic large cell lymphoma (ALCL) and a subset of non-small cell lung cancer (NSCLC). Standard therapies for these diseases include surgery plus unspecific cytotoxic agents, with a low therapeutic window and significant treatment-associated systemic toxicity. A few small-molecule inhibitors of ALK kinase activity have been described in the recent years, some of which are currently undergoing clinical evaluation. AREAS COVERED Literature was searched for all ALK inhibitors that have entered clinical investigation, including published research articles and meeting abstracts. Data on pharmacokinetics, safety and efficacy of crizotinib, as well as preliminary clinical data for second-generation compounds, are reviewed. The issue of drug resistance is discussed. EXPERT OPINION Understanding the specific genetic aberration that causes cancer development and progression allows major advances in cancer therapy. Along the same way shown by imatinib in chronic myeloid leukemia, compounds that selectively target ALK are bringing a revolution in the treatment of ALK-positive tumors. Crizotinib has just been approved, and new more potent ALK inhibitors will shortly follow. These molecules represent another excellent proof-of-principle for targeted therapy.
Collapse
|
43
|
Tabbó F, Barreca A, Piva R, Inghirami G, The European T-Cell Lymphoma Study Group. ALK Signaling and Target Therapy in Anaplastic Large Cell Lymphoma. Front Oncol 2012; 2:41. [PMID: 22649787 PMCID: PMC3355932 DOI: 10.3389/fonc.2012.00041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/10/2012] [Indexed: 11/13/2022] Open
Abstract
The discovery by Morris et al. (1994) of the genes contributing to the t(2;5)(p23;q35) translocation has laid the foundation for a molecular based recognition of anaplastic large cell lymphoma and highlighted the need for a further stratification of T-cell neoplasia. Likewise the detection of anaplastic lymphoma kinase (ALK) genetic lesions among many human cancers has defined unique subsets of cancer patients, providing new opportunities for innovative therapeutic interventions. The objective of this review is to appraise the molecular mechanisms driving ALK-mediated transformation, and to maintain the neoplastic phenotype. The understanding of these events will allow the design and implementation of novel tailored strategies for a well-defined subset of cancer patients.
Collapse
Affiliation(s)
- Fabrizio Tabbó
- Department of Pathology, Center for Experimental Research and Medical Studies, University of TorinoTorino, Italy
| | - Antonella Barreca
- Department of Pathology, Center for Experimental Research and Medical Studies, University of TorinoTorino, Italy
| | - Roberto Piva
- Department of Pathology, Center for Experimental Research and Medical Studies, University of TorinoTorino, Italy
- Department of Pathology, NYU Cancer Center, New York University School of MedicineNew York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology, Center for Experimental Research and Medical Studies, University of TorinoTorino, Italy
- Department of Pathology, NYU Cancer Center, New York University School of MedicineNew York, NY, USA
| | | |
Collapse
|
44
|
El-Mallawany NK, Frazer JK, Van Vlierberghe P, Ferrando AA, Perkins S, Lim M, Chu Y, Cairo MS. Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies. Blood Cancer J 2012; 2:e65. [PMID: 22829967 PMCID: PMC3346681 DOI: 10.1038/bcj.2012.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/14/2011] [Accepted: 02/06/2012] [Indexed: 02/07/2023] Open
Abstract
T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms.
Collapse
Affiliation(s)
- N K El-Mallawany
- Department of Pediatrics, New York-Presbyterian, Morgan Stanley Children's Hospital, Columbia University, New York, NY, USA
| | - J K Frazer
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - P Van Vlierberghe
- Institute of Cancer Genetics, Columbia University, New York, NY, USA
| | - A A Ferrando
- Institute of Cancer Genetics, Columbia University, New York, NY, USA
- Department of Medicine, New York-Presbyterian, Morgan Stanley Children's Hospital, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, New York-Presbyterian, Morgan Stanley Children's Hospital, Columbia University, New York, NY, USA
| | - S Perkins
- Department of Hematopathology, University of Utah, Salt Lake City, UT, USA
| | - M Lim
- Department of Hematopathology, University of Michigan, Ann Arbor, MI, USA
| | - Y Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - M S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
- Departments of Medicine, Pathology, Microbiology, Immunology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
45
|
Togashi Y, Soda M, Sakata S, Sugawara E, Hatano S, Asaka R, Nakajima T, Mano H, Takeuchi K. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012; 7:e31323. [PMID: 22347464 PMCID: PMC3275577 DOI: 10.1371/journal.pone.0031323] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022] Open
Abstract
The promising results of anaplastic lymphoma kinase (ALK) inhibitors have changed the significance of ALK fusions in several types of cancer. These fusions are no longer mere research targets or diagnostic markers, but they are now directly linked to the therapeutic benefit of patients. However, most available tumor tissues in clinical settings are formalin-fixed and paraffin-embedded (FFPE), and this significantly limits detailed genetic studies in many clinical cases. Although recent technical improvements have allowed the analysis of some known mutations in FFPE tissues, identifying unknown fusion genes by using only FFPE tissues remains difficult. We developed a 5′-rapid amplification of cDNA ends-based system optimized for FFPE tissues and evaluated this system on a lung cancer tissue with ALK rearrangement and without the 2 known ALK fusions EML4-ALK and KIF5B-ALK. With this system, we successfully identified a novel ALK fusion, KLC1-ALK. The result was confirmed by reverse transcription-polymerase chain reaction and fluorescence in situ hybridization. Then, we synthesized the putative full-length cDNA of KLC1-ALK and demonstrated the transforming potential of the fusion kinase with assays using mouse 3T3 cells. To the best of our knowledge, KLC1-ALK is the first novel oncogenic fusion identified using only FFPE tissues. This finding will broaden the potential value of archival FFPE tissues and provide further biological and clinical insights into ALK-positive lung cancer.
Collapse
Affiliation(s)
- Yuki Togashi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Soda
- Division of Functional Genomics, Jichi Medical University, Tochigi, Japan
| | - Seiji Sakata
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Emiko Sugawara
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Comprehensive Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoko Hatano
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reimi Asaka
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Nakajima
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Nagaizumi, Shizuoka, Japan
| | - Hiroyuki Mano
- Division of Functional Genomics, Jichi Medical University, Tochigi, Japan
- Department of Medical Genomics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Grande E, Bolós MV, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther 2011; 10:569-79. [PMID: 21474455 DOI: 10.1158/1535-7163.mct-10-0615] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the anaplastic lymphoma kinase (ALK) has been found to be altered in several solid and hematologic tumors. Novel drugs targeting this tyrosine kinase receptor are under development, and early clinical trials are showing promising activity in non-small cell lung cancer patients with ALK+ tumors. Here, we review the structure and function of the ALK receptor, the mechanisms associated with its deregulation in cancer, methods for ALK detection in tumor samples, its potential as a new marker for candidate patient selection for tailored therapy, and novel drugs under development that target ALK.
Collapse
Affiliation(s)
- Enrique Grande
- Gastrointestinal and Early Drug Development Unit, Servicio de Oncología Médica, Hospital Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034, Madrid, Spain.
| | | | | |
Collapse
|
47
|
Abstract
The concept of anaplastic large-cell lymphoma (ALCL) has changed over the years because of a stream of new information and novel understanding regarding the cell of origin, biology, genetics, and clinical features of these neoplasms. This new information has led to the current classification proposed by the expert reviewers of the World Health Organization. The objective of this review is to present the most updated information on the cytologic and histologic features of these entities, with a special reference to diagnostic algorithms. A detailed description of the genetic aberrations and the pathogenetic mechanisms leading to transformation is presented. The clinical features of ALCL and novel tailored strategies are briefly illustrated.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Pathology and Center for Experimental Research and Medical Studies, University of Torino, Turin, Italy.
| | | |
Collapse
|
48
|
Barreca A, Lasorsa E, Riera L, Machiorlatti R, Piva R, Ponzoni M, Kwee I, Bertoni F, Piccaluga PP, Pileri SA, Inghirami G. Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol 2011; 47:R11-R23. [PMID: 21502284 DOI: 10.1530/jme-11-0004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The receptor tyrosine kinases (RTKs) play a critical role, controlling cell proliferation, survival, and differentiation of normal cells. Their pivotal function has been firmly established in the pathogenesis of many cancers as well. The anaplastic lymphoma kinase (ALK), a transmembrane RTK, originally identified in the nucleophosmin (NPM)-ALK chimera of anaplastic large cell lymphoma, has emerged as a novel tumorigenic player in several human cancers. In this review, we describe the expression of the ALK-RTK, its related fusion proteins, and their molecular mechanisms of activation. Novel tailored strategies are briefly illustrated for the treatment of ALK-positive neoplasms.
Collapse
Affiliation(s)
- Antonella Barreca
- Department of Pathology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Via Santena 7, Torino 10126, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Takeuchi K, Soda M, Togashi Y, Sugawara E, Hatano S, Asaka R, Okumura S, Nakagawa K, Mano H, Ishikawa Y. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011; 17:3341-8. [PMID: 21430068 DOI: 10.1158/1078-0432.ccr-11-0063] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The anaplastic lymphoma kinase (ALK) inhibitor crizotinib has been used in patients with lung cancer or inflammatory myofibroblastic tumor (IMT), both types harboring ALK fusions. However, detection of some ALK fusions is problematic with conventional anti-ALK immunohistochemistry because of their low expression. By using sensitive immunohistochemistry, therefore, we reassessed "ALK-negative" IMT cases defined with conventional immunohistochemistry (approximately 50% of all examined cases). EXPERIMENTAL DESIGN Two cases of ALK-negative IMT defined with conventional anti-ALK immunohistochemistry were further analyzed with sensitive immunohistochemistry [the intercalated antibody-enhanced polymer (iAEP) method]. RESULTS The two "ALK-negative" IMTs were found positive for anti-ALK immunohistochemistry with the iAEP method. 5'-rapid amplification of cDNA ends identified a novel partner of ALK fusion, protein-tyrosine phosphatase, receptor-type, F polypeptide-interacting protein-binding protein 1 (PPFIBP1) in one case. The presence of PPFIBP1-ALK fusion was confirmed with reverse transcriptase PCR, genomic PCR, and FISH. We confirmed the transforming activities of PPFIBP1-ALK with a focus formation assay and an in vivo tumorigenicity assay by using 3T3 fibroblasts infected with a recombinant retrovirus encoding PPFIBP1-ALK. Surprisingly, the fusion was also detected by FISH in the other case. CONCLUSIONS Sensitive immunohistochemical methods such as iAEP will broaden the potential value of immunohistochemistry. The current ALK positivity rate in IMT should be reassessed with a more highly sensitive method such as iAEP to accurately identify those patients who might benefit from ALK-inhibitor therapies. Novel ALK fusions are being identified in various tumors in addition to IMT, and thus a reassessment of other "ALK-negative" cancers may be required in the forthcoming era of ALK-inhibitor therapy.
Collapse
Affiliation(s)
- Kengo Takeuchi
- Pathology Project for Molecular Targets, Division of Pathology, Thoracic Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Takeuchi K, Soda M, Togashi Y, Ota Y, Sekiguchi Y, Hatano S, Asaka R, Noguchi M, Mano H. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2010; 96:464-7. [PMID: 21134980 DOI: 10.3324/haematol.2010.033514] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
ALK-positive large B-cell lymphoma is a rare subtype of lymphoma, and most cases follow an aggressive clinical course with a poor prognosis. We examined an ALK-positive large B-cell lymphoma case showing an anti-ALK immunohistochemistry pattern distinct from those of 2 known ALK fusions, CLTC-ALK and NPM-ALK, for the presence of a novel ALK fusion; this led to the identification of SQSTM1-ALK. SQSTM1 is an ubiquitin binding protein that is associated with oxidative stress, cell signaling, and autophagy. We showed transforming activities of SQSTM1-ALK with a focus formation assay and an in vivo tumorigenicity assay using 3T3 fibroblasts infected with a recombinant retrovirus encoding SQSTM1-ALK. ALK-inhibitor therapies are promising for treating ALK-positive large B-cell lymphoma, especially for refractory cases. SQSTM1-ALK may be a rare fusion, but our data provide novel biological insights and serve as a key for the accurate diagnosis of this rare lymphoma.
Collapse
Affiliation(s)
- Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research. 3-8-31 Ariake, Koto, Tokyo 135-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|