1
|
Tremblay CS, Saw J, Yan F, Boyle JA, Amarasinghe O, Abdollahi S, Vo ANQ, Shields BJ, Mayoh C, McCalmont H, Evans K, Steiner A, Parsons K, McCormack MP, Powell DR, Wong NC, Jane SM, Lock RB, Curtis DJ. Targeting LMO2-induced autocrine FLT3 signaling to overcome chemoresistance in early T-cell precursor acute lymphoblastic leukemia. Leukemia 2025; 39:577-589. [PMID: 39849166 PMCID: PMC11879882 DOI: 10.1038/s41375-024-02491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025]
Abstract
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3. Despite a highly proliferative state, these FLT3-overexpressing cells had long-term self-renewal capacity and almost complete resistance to chemotherapy. Chromatin immunoprecipitation and assay for transposase-accessible chromatin sequencing demonstrated FLT3 and its ligand may be direct targets of the LMO2 stem-cell complex. Media conditioned by Lmo2 transgenic thymocytes revealed an autocrine FLT3-dependent signaling loop that could be targeted by the FLT3 inhibitor gilteritinib. Consequently, gilteritinib impaired in vivo growth of ETP-ALL and improved the sensitivity to chemotherapy. Furthermore, gilteritinib enhanced response to the BCL2 inhibitor venetoclax, which may enable "chemo-free" treatment of ETP-ALL. Together, these data provide a cellular and molecular explanation for enhanced cytokine signaling in LMO2-driven ETP-ALL beyond activating mutations and a rationale for clinical trials of FLT3 inhibitors in ETP-ALL.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Jesslyn Saw
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute (WEHI) of Medical Research, Parkville, VIC, Australia
| | - Jacqueline A Boyle
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Ovini Amarasinghe
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shokoufeh Abdollahi
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Anh N Q Vo
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Benjamin J Shields
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Anna Steiner
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Women in Lymphoma, Lymphoma Australia, Brisbane, QLD, Australia
| | - Kevin Parsons
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew P McCormack
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Nicholas C Wong
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Stephen M Jane
- Department of Medicine, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Hospital, Prahran, VIC, Australia
| |
Collapse
|
2
|
Wang H, Ni R, Wang A, Liu B. CD117 expression predicted FLT3 mutation in T-cell acute lymphoblastic leukemia. EJHAEM 2024; 5:294-295. [PMID: 38406539 PMCID: PMC10887319 DOI: 10.1002/jha2.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Haijin Wang
- Department of Traditional Chinese MedicineTianjin Medical University General HospitalTianjinChina
| | - Runfeng Ni
- Department of Traditional Chinese MedicineTianjin Medical University General HospitalTianjinChina
- Shanghai Municipal Hospital of Traditional Chinese MedicineShanghaiChina
| | - Aidi Wang
- Department of Traditional Chinese MedicineTianjin Medical University General HospitalTianjinChina
| | - Baoshan Liu
- Department of Traditional Chinese MedicineTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
3
|
FLT3-ITD in Children with Early T-cell Precursor (ETP) Acute Lymphoblastic Leukemia: Incidence and Potential Target for Monitoring Minimal Residual Disease (MRD). Cancers (Basel) 2022; 14:cancers14102475. [PMID: 35626079 PMCID: PMC9139937 DOI: 10.3390/cancers14102475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary The prevalence of FLT3-ITD among children with ETP-ALL must be determined. MRD monitoring in ETPs is hampered by the lack of Immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements. We determined the incidence of FLT3-ITD among children with ETP and performed MRD monitoring using FLT3-ITD sequences, successfully testing a new method of MRD detection. Moreover, we highlighted that the FLT3 pathway could represent a therapeutic target for precision therapy in patients with ETP. Abstract Early T-cell precursor (ETP) is an aggressive form of acute lymphoblastic leukemia (ALL), associated with high risk of relapse. This leukemia subtype shows a higher prevalence of mutations, typically associated with acute myeloid leukemia (AML), including RAS and FLT3 mutations. FLT3-ITD was identified in 35% cases of adult ETP-ALL, but data in the pediatric counterpart are lacking. ETPs frequently lack immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements, used for minimal residual disease (MRD) monitoring. Among 718 T-ALL enrolled in Italy into AIEOP-BFM-ALL2000, AIEOP-ALLR2006, and AIEOP-BFM-ALL2009 consecutive protocols, 86 patients (12%) were identified as ETP and 77 out of 86 children were studied for the presence of FLT3-ITD. A total of 10 out of 77 (13%) ETP cases were FLT3-ITD positive. IG/TR MRD monitoring was feasible only in four cases. FLT3-ITD MRD monitoring was performed using real-time PCR in all FLT3-ITD positive ETP cases. A comparison between IG/TR and FLT3-ITD resulted in comparable findings. Our study demonstrated that the FLT3-ITD prevalence in children was lower (13%) than that reported in adult ETP-ALL. FLT3-ITD can be used as a marker for sensitive molecular MRD monitoring in ETP-ALL when IG/TR markers are not available, potentially selecting those patients who should spare allogeneic hematopoietic stem cell transplantation (HSCT). Finally, the FLT3 pathway is a robust druggable target in this aggressive form of leukemia.
Collapse
|
4
|
Early T-Cell Precursor ALL and Beyond: Immature and Ambiguous Lineage T-ALL Subsets. Cancers (Basel) 2022; 14:cancers14081873. [PMID: 35454781 PMCID: PMC9030030 DOI: 10.3390/cancers14081873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immature T-cell acute lymphoblastic leukemias englobes a wide range of low prevalence subtypes, not well identified, that in some cases overlap with myeloid lineage subtypes. Globally, this “grey zone” of immature leukemias, are difficult to precisely diagnose using a classical immunophenotypic approach. Interesting, genomic data collected during last years has shown that these subtypes share several genomic alterations, raising the question of how their phenotypes reflect distinct AL entities. Here we provide a systematic overview of the genetic events associated with immature T-ALL and outline their relationship with treatment choices and outcomes. Our goal is to offer a basis for using the genetic information for new diagnostic algorithms. An immunogenetic classification of these immature subtypes will better stratify patients and improve their management with more efficient and personalized therapeutic options. Abstract A wide range of immature acute leukemias (AL), ranging from acute myeloid leukemias with minimal differentiation to acute leukemias with an ambiguous lineage, i.e., acute undifferentiated leukemias and mixed phenotype acute leukemia with T- or B-plus myeloid markers, cannot be definitely assigned to a single cell lineage. This somewhat “grey zone” of AL expresses partly overlapping features with the most immature forms of T-cell acute lymphoblastic leukemia (T-ALL), i.e., early T-cell precursor ALL (ETP-ALL), near-ETP-ALL, and pro-T ALL. These are troublesome cases in terms of precise diagnosis because of their similarities and overlapping phenotypic features. Moreover, it has become evident that they share several genomic alterations, raising the question of how their phenotypes reflect distinct AL entities. The aim of this review was to provide a systematic overview of the genetic events associated with immature T-ALL and outline their relationship with treatment choices and outcomes, especially looking at the most recent preclinical and clinical studies. We wish to offer a basis for using the genetic information for new diagnostic algorithms, in order to better stratify patients and improve their management with more efficient and personalized therapeutic options. Understanding the genetic profile of this high-risk T-ALL subset is a prerequisite for changing the current clinical scenario.
Collapse
|
5
|
Adenylate kinase 2 expression and addiction in T-ALL. Blood Adv 2021; 5:700-710. [PMID: 33560378 DOI: 10.1182/bloodadvances.2020002700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) represents the malignant expansion of immature T cells blocked in their differentiation. T-ALL is still associated with a poor prognosis, mainly related to occurrence of relapse or refractory disease. A critical medical need therefore exists for new therapies to improve the disease prognosis. Adenylate kinase 2 (AK2) is a mitochondrial kinase involved in adenine nucleotide homeostasis recently reported as essential in normal T-cell development, as defective AK2 signaling pathway results in a severe combined immunodeficiency with a complete absence of T-cell differentiation. In this study, we show that AK2 is constitutively expressed in T-ALL to varying levels, irrespective of the stage of maturation arrest or the underlying oncogenetic features. T-ALL cell lines and patient T-ALL-derived xenografts present addiction to AK2, whereas B-cell precursor ALL cells do not. Indeed, AK2 knockdown leads to early and massive apoptosis of T-ALL cells that could not be rescued by the cytosolic isoform AK1. Mechanistically, AK2 depletion results in mitochondrial dysfunction marked by early mitochondrial depolarization and reactive oxygen species production, together with the depletion of antiapoptotic molecules (BCL-2 and BCL-XL). Finally, T-ALL exposure to a BCL-2 inhibitor (ABT-199 [venetoclax]) significantly enhances the cytotoxic effects of AK2 depletion. We also show that AK2 depletion disrupts the oxidative phosphorylation pathway. Combined with pharmaceutical inhibition of glycolysis, AK2 silencing prevents T-ALL metabolic adaptation, resulting in dramatic apoptosis. Altogether, we pinpoint AK2 as a genuine and promising therapeutic target in T-ALL.
Collapse
|
6
|
FLT3 pathway is a potential therapeutic target for PRC2-mutated T-cell acute lymphoblastic leukemia. Blood 2018; 132:2520-2524. [PMID: 30282797 DOI: 10.1182/blood-2018-04-845628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
|
7
|
Perez DR, Nickl CK, Waller A, Delgado-Martin C, Woods T, Sharma ND, Hermiston ML, Loh ML, Hunger SP, Winter SS, Chigaev A, Edwards B, Sklar LA, Matlawska-Wasowska K. High-Throughput Flow Cytometry Identifies Small-Molecule Inhibitors for Drug Repurposing in T-ALL. SLAS DISCOVERY 2018; 23:732-741. [PMID: 29746793 DOI: 10.1177/2472555218774248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kinase inhibitors have dramatically increased patient survival in a multitude of cancers, including hematological malignancies. However, kinase inhibitors have not yet been integrated into current clinical trials for patients with T-cell-lineage acute lymphoblastic leukemia (T-ALL). In this study, we used a high-throughput flow cytometry (HTFC) approach to test a collection of small-molecule inhibitors, including 26 FDA-approved tyrosine kinase inhibitors in a panel of T-ALL cell lines and patient-derived xenografts. Because hypoxia is known to cause resistance to chemotherapy, we developed a synthetic niche that mimics the low oxygen levels found in leukemic bone marrow to evaluate the effects of hypoxia on the tested inhibitors. Drug sensitivity screening was performed using the Agilent BioCel automated liquid handling system integrated with the HyperCyt HT flow cytometry platform, and the uptake of propidium iodide was used as an indication of cell viability. The HTFC dose-response testing identified several compounds that were efficacious in both normal and hypoxic conditions. This study shows that some clinically approved kinase inhibitors target T-ALL in the hypoxic niche of the bone marrow.
Collapse
Affiliation(s)
- Dominique R Perez
- 1 Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,2 Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Christian K Nickl
- 3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,4 Department of Pediatrics, Division of Pediatric Research, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Anna Waller
- 1 Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,2 Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Cristina Delgado-Martin
- 5 Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Travis Woods
- 1 Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,2 Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Nitesh D Sharma
- 3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,4 Department of Pediatrics, Division of Pediatric Research, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Michelle L Hermiston
- 5 Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Mignon L Loh
- 5 Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Stephen P Hunger
- 6 Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart S Winter
- 7 Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN, USA
| | - Alexandre Chigaev
- 1 Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,2 Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Bruce Edwards
- 1 Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,2 Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Larry A Sklar
- 1 Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,2 Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Ksenia Matlawska-Wasowska
- 3 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,4 Department of Pediatrics, Division of Pediatric Research, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
8
|
Dussiau C, Trinquand A, Lhermitte L, Latiri M, Simonin M, Cieslak A, Bedjaoui N, Villarèse P, Verhoeyen E, Dombret H, Ifrah N, Macintyre E, Asnafi V. Targeting IRAK1 in T-cell acute lymphoblastic leukemia. Oncotarget 2016; 6:18956-65. [PMID: 26068967 PMCID: PMC4662467 DOI: 10.18632/oncotarget.4150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors.
Collapse
Affiliation(s)
- Charles Dussiau
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Amélie Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Mehdi Latiri
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Mathieu Simonin
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Agata Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Nawel Bedjaoui
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Patrick Villarèse
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Els Verhoeyen
- CIRI, EVIR Team, INSERM, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France.,INSERM, U1065, C3M, Equipe "Contrôle Métabolique des Morts Cellulaires", Nice, France
| | - Hervé Dombret
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, EA, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service des Maladies du Sang et INSERM U892, Angers, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
9
|
Immunophenotyping with CD135 and CD117 predicts the FLT3, IL-7R and TLX3 gene mutations in childhood T-cell acute leukemia. Blood Cells Mol Dis 2016; 57:74-80. [DOI: 10.1016/j.bcmd.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
10
|
Abstract
In the current issue of Blood, Degryse and coauthors report the transforming potential of a series of JAK3 mutations identified in primary T-cell acute lymphoblastic leukemia (T-ALL) samples and pave the way toward multitargeted JAK1 and JAK3 therapy in T-ALL.
Collapse
|
11
|
Hhex regulates Kit to promote radioresistance of self-renewing thymocytes in Lmo2-transgenic mice. Leukemia 2014; 29:927-38. [PMID: 25283843 DOI: 10.1038/leu.2014.292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 01/02/2023]
Abstract
Lmo2 is an oncogenic transcription factor that is frequently overexpressed in T-cell acute leukemias, in particular poor prognosis early T-cell precursor-like (ETP-) acute lymphoblastic leukemia (ALL). The primary effect of Lmo2 is to cause self-renewal of developing CD4(-)CD8(-) (double negative, DN) T cells in the thymus, leading to serially transplantable thymocytes that eventually give rise to leukemia. These self-renewing thymocytes are intrinsically radioresistant implying that they may be a source of leukemia relapse after therapy. The homeobox transcription factor, Hhex, is highly upregulated in Lmo2-transgenic thymocytes and can phenocopy Lmo2 in inducing thymocyte self-renewal, implying that Hhex may be a key component of the Lmo2-induced self-renewal program. To test this, we conditionally deleted Hhex in the thymi of Lmo2-transgenic mice. Surprisingly, this did not prevent accumulation of DN thymocytes, nor alter the rate of overt leukemia development. However, deletion of Hhex abolished the transplantation capacity of Lmo2-transgenic thymocytes and overcame their radioresistance. We found that Hhex regulates Kit expression in Lmo2-transgenic thymocytes and that abrogation of Kit signaling phenocopied loss of Hhex in abolishing the transplantation capacity and radioresistance of these cells. Thus, targeting the Kit signaling pathway may facilitate the eradication of leukemia-initiating cells in immature T-cell leukemias in which it is expressed.
Collapse
|
12
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
[Acute lymphoblastic leukemia of T progenitors: from biology to clinics]. Med Clin (Barc) 2014; 144:223-9. [PMID: 24667111 DOI: 10.1016/j.medcli.2014.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/22/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the main cause of morbidity among childhood blood disorders. There are 2 subtypes according to the affected lymphoid progenitor: B-ALL and T-ALL. The T-ALL is the less common and, although historically was associated with poor prognosis in both adults and children, at present, treatment outcomes do not differ significantly between the 2 types of ALL. The T-ALL subtype is the most complex and heterogeneous at the genetic level and currently the one with less new therapeutic alternatives available. This trend is changing thanks to the remarkable progress upon understanding its biology. This review summarizes the most recent and important biological findings in T-ALL and their possible therapeutic implications.
Collapse
|
14
|
Buontempo F, Orsini E, Martins LR, Antunes I, Lonetti A, Chiarini F, Tabellini G, Evangelisti C, Evangelisti C, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Cappellini A, Barata JT, Martelli AM. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia 2013; 28:543-53. [PMID: 24253024 DOI: 10.1038/leu.2013.349] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945-a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- F Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - E Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - L R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - I Antunes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - A Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - F Chiarini
- 1] Institute of Molecular Genetics, National Research Council, Pavia, Italy [2] Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| | - G Tabellini
- Division of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - C Evangelisti
- 1] Institute of Molecular Genetics, National Research Council, Pavia, Italy [2] Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| | - C Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - F Melchionda
- Pediatric Oncology and Hematology Unit 'Lalla Seràgnoli', S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - A Pession
- Pediatric Oncology and Hematology Unit 'Lalla Seràgnoli', S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - A Bertaina
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - F Locatelli
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - A Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - A M Martelli
- 1] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy [2] Institute of Molecular Genetics, National Research Council, Pavia, Italy [3] Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| |
Collapse
|
15
|
Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia. Leukemia 2013; 28:1196-206. [PMID: 24310736 DOI: 10.1038/leu.2013.369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022]
Abstract
Constitutively active phosphoinositide 3-kinase (PI3K) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival and drug resistance. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120 (BKM120), an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in G2/M phase cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T lymphoblasts, and promoting a dose- and time-dependent dephosphorylation of Akt and S6RP. BKM120 maintained its pro-apoptotic activity against Jurkat cells even when cocultured with MS-5 stromal cells, which mimic the bone marrow microenvironment. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. Moreover, in vivo administration of BKM120 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth, thus prolonging survival time. Taken together, our findings indicate that BKM120, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment for T-ALLs that have aberrant upregulation of the PI3K signaling pathway.
Collapse
|