1
|
Le Hir-Reynaud E, Soubise B, Mendoza AM, Konan C, Commet S, Gueganic N, Tous C, Corcos L, Douet-Guilbert N, Troadec MB. RBM22-depletion delays progression through all steps of cell cycle and increases ploidy in myeloid cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119965. [PMID: 40268057 DOI: 10.1016/j.bbamcr.2025.119965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
RNA-Binding Motif 22 (RBM22) is a splicing factor and a transcription regulator that plays important roles in cancer. Our goal was to document further the implication of RBM22 in cell cycle progression. Using normal human haematopoietic stem and progenitor cells and myeloid cell lines (MDS-L, HL-60), we demonstrated that RBM22 depletion reduces proliferation by delaying the progression of the G1-phase, S-phase and G2/M phase. RBM22 depletion alters mitosis, generating endomitosis and alters megakaryocyte differentiation. Altogether, we propose, for the first time, RBM22 as an essential actor of the cell cycle regulation in human haematopoietic stem and progenitor cells and myeloid cells. We demonstrated that RBM22 alteration is partially responsible for the phenotype of cytopenia of myeloid cell lineages observed in myelodysplastic syndromes (MDS) with a partial deletion of chromosome 5 (MDS with del(5q)) where one allele of RBM22 is lost. We hypothesise that the impact of RBM22 on cell cycle progression could explain some phenotypic features of other cancers.
Collapse
Affiliation(s)
| | - Benoît Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | | | - Cassandra Konan
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Séverine Commet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, service de génétique, laboratoire de génétique chromosomique, Brest, France
| | - Nadia Gueganic
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, service de génétique, laboratoire de génétique chromosomique, Brest, France
| | - Corinne Tous
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, service de génétique, laboratoire de génétique chromosomique, Brest, France
| | - Laurent Corcos
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, service de génétique, laboratoire de génétique chromosomique, Brest, France
| | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, service de génétique, laboratoire de génétique chromosomique, Brest, France.
| |
Collapse
|
2
|
Auger N, Douet-Guilbert N, Quessada J, Theisen O, Lafage-Pochitaloff M, Troadec MB. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr Res Transl Med 2023; 71:103409. [PMID: 38091642 DOI: 10.1016/j.retram.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/26/2023]
Abstract
Myelodysplastic neoplasms (MDS) are clonal hematopoietic neoplasms. Chromosomal abnormalities (CAs) are detected in 40-45% of de novo MDS and up to 80% of post-cytotoxic therapy MDS (MDS-pCT). Lately, several changes appeared in World Health Organization (WHO) classification and International Consensus Classification (ICC). The novel 'biallelic TP53 inactivation' (also called 'multi-hit TP53') MDS entity requires systematic investigation of TP53 locus (17p13.1). The ICC maintains CA allowing the diagnosis of MDS without dysplasia (del(5q), del(7q), -7 and complex karyotype). Deletion 5q is the only CA, still representing a low blast class of its own, if isolated or associated with one additional CA other than -7 or del(7q) and without multi-hit TP53. It represents one of the most frequent aberrations in adults' MDS, with chromosome 7 aberrations, and trisomy 8. Conversely, translocations are rarer in MDS. In children, del(5q) is very rare while -7 and del(7q) are predominant. Identification of a germline predisposition is key in childhood MDS. Aberrations of chromosomes 5, 7 and 17 are the most frequent in MDS-pCT, grouped in complex karyotypes. Despite the ever-increasing importance of molecular features, cytogenetics remains a major part of diagnosis and prognosis. In 2022, a molecular international prognostic score (IPSS-M) was proposed, combining the prognostic value of mutated genes to the previous scoring parameters (IPSS-R) including cytogenetics, still essential. A karyotype on bone marrow remains mandatory at diagnosis of MDS with complementary molecular analyses now required. Analyses with FISH or other technologies providing similar information can be necessary to complete and help in case of karyotype failure, for doubtful CA, for clonality assessment, and for detection of TP53 deletion to assess TP53 biallelic alterations.
Collapse
Affiliation(s)
- Nathalie Auger
- Gustave Roussy, Génétique des tumeurs, 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, CHU Timone Aix Marseille University, Marseille, France
| | - Olivier Theisen
- Hematology Biology, Nantes University Hospital, Nantes, France
| | | | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France.
| |
Collapse
|
3
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
4
|
Papuc SM, Erbescu A, Cisleanu D, Ozunu D, Enache C, Dumitru I, Lupoaia Andrus E, Gaman M, Popov VM, Dobre M, Stanca O, Angelescu S, Berbec N, Colita A, Vladareanu AM, Bumbea H, Arghir A. Delineation of Molecular Lesions in Acute Myeloid Leukemia Patients at Diagnosis: Integrated Next Generation Sequencing and Cytogenomic Studies. Genes (Basel) 2021; 12:genes12060846. [PMID: 34070898 PMCID: PMC8229708 DOI: 10.3390/genes12060846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by a wide range of genetic defects. Cytogenetics, molecular and genomic technologies have proved to be helpful for deciphering the mutational landscape of AML and impacted clinical practice. Forty-eight new AML patients were investigated with an integrated approach, including classical and molecular cytogenetics, array-based comparative genomic hybridization and targeted next generation sequencing (NGS). Various genetic defects were identified in all the patients using our strategy. Targeted NGS revealed known pathogenic mutations as well as rare or unreported variants with deleterious predictions. The mutational screening of the normal karyotype (NK) group identified clinically relevant variants in 86.2% of the patients; in the abnormal cytogenetics group, the mutation detection rate was 87.5%. Overall, the highest mutation prevalence was observed for the NPM1 gene, followed by DNMT3A, FLT3 and NRAS. An unexpected co-occurrence of KMT2A translocation and DNMT3A-R882 was identified; alterations of these genes, which are involved in epigenetic regulation, are considered to be mutually exclusive. A microarray analysis detected CNVs in 25% of the NK AML patients. In patients with complex karyotypes, the microarray analysis made a significant contribution toward the accurate characterization of chromosomal defects. In summary, our results show that the integration of multiple investigative strategies increases the detection yield of genetic defects with potential clinical relevance.
Collapse
Affiliation(s)
- Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Diana Cisleanu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Diana Ozunu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Cristina Enache
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Ion Dumitru
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Elena Lupoaia Andrus
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Mihaela Gaman
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | | | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Oana Stanca
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Silvana Angelescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Nicoleta Berbec
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Andrei Colita
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana-Maria Vladareanu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Horia Bumbea
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
- Correspondence: ; Tel.: +40-2-1319-2732-207; Fax: +40-2-1319-4528
| |
Collapse
|
5
|
Ladikou EE, Chevassut T, Pepper CJ, Pepper AG. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia. Br J Haematol 2020; 189:815-825. [PMID: 32135579 DOI: 10.1111/bjh.16456] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukaemia (AML) is the most common adult acute leukaemia with the lowest survival rate. It is characterised by a build-up of immature myeloid cells anchored in the protective niche of the bone marrow (BM) microenvironment. The CXCL12/CXCR4 axis is central to the pathogenesis of AML as it has fundamental control over AML cell adhesion into the protective BM niche, adaptation to the hypoxic environment, cellular migration and survival. High levels of CXCR4 expression are associated with poor relapse-free and overall survival. The CXCR4 ligand, CXCL12 (SDF-1), is expressed by multiple cells types in the BM, facilitating the adhesion and survival of the malignant clone. Blocking the CXCL12/CXCR4 axis is an attractive therapeutic strategy providing a 'multi-hit' therapy that both prevents essential survival signals and releases the AML cells from the BM into the circulation. Once out of the protective niche of the BM they would be more susceptible to destruction by conventional chemotherapeutic drugs. In this review, we disentangle the diverse roles of the CXCL12/CXCR4 axis in AML. We then describe multiple CXCR4 inhibitors, including small molecules, peptides, or monoclonal antibodies, which have been developed to date and their progress in pre-clinical and clinical trials. Finally, the review leads us to the conclusion that there is a need for further investigation into the development of a 'multi-hit' therapy that targets several signalling pathways related to AML cell adhesion and maintenance in the BM.
Collapse
Affiliation(s)
- Eleni E Ladikou
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Royal Sussex County Hospital, Brighton, UK
| | - Timothy Chevassut
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Royal Sussex County Hospital, Brighton, UK
| | - Chris J Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Andrea Gs Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
6
|
Jann JC, Nowak D, Nolte F, Fey S, Nowak V, Obländer J, Pressler J, Palme I, Xanthopoulos C, Fabarius A, Platzbecker U, Giagounidis A, Götze K, Letsch A, Haase D, Schlenk R, Bug G, Lübbert M, Ganser A, Germing U, Haferlach C, Hofmann WK, Mossner M. Accurate quantification of chromosomal lesions via short tandem repeat analysis using minimal amounts of DNA. J Med Genet 2017; 54:640-650. [PMID: 28600436 PMCID: PMC5574397 DOI: 10.1136/jmedgenet-2017-104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 11/04/2022]
Abstract
Background Cytogenetic aberrations such as deletion of chromosome 5q (del(5q)) represent key elements in routine clinical diagnostics of haematological malignancies. Currently established methods such as metaphase cytogenetics, FISH or array-based approaches have limitations due to their dependency on viable cells, high costs or semi-quantitative nature. Importantly, they cannot be used on low abundance DNA. We therefore aimed to establish a robust and quantitative technique that overcomes these shortcomings. Methods For precise determination of del(5q) cell fractions, we developed an inexpensive multiplex-PCR assay requiring only nanograms of DNA that simultaneously measures allelic imbalances of 12 independent short tandem repeat markers. Results Application of this method to n=1142 samples from n=260 individuals revealed strong intermarker concordance (R²=0.77–0.97) and reproducibility (mean SD: 1.7%). Notably, the assay showed accurate quantification via standard curve assessment (R²>0.99) and high concordance with paired FISH measurements (R²=0.92) even with subnanogram amounts of DNA. Moreover, cytogenetic response was reliably confirmed in del(5q) patients with myelodysplastic syndromes treated with lenalidomide. While the assay demonstrated good diagnostic accuracy in receiver operating characteristic analysis (area under the curve: 0.97), we further observed robust correlation between bone marrow and peripheral blood samples (R²=0.79), suggesting its potential suitability for less-invasive clonal monitoring. Conclusions In conclusion, we present an adaptable tool for quantification of chromosomal aberrations, particularly in problematic samples, which should be easily applicable to further tumour entities.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Daniel Nowak
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Florian Nolte
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Stephanie Fey
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Verena Nowak
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Julia Obländer
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Jovita Pressler
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Iris Palme
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Christina Xanthopoulos
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Alice Fabarius
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Uwe Platzbecker
- Medizinische Klinik und Poliklinik I, Universitatsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Katharina Götze
- III. Medizinischen Klinik des Klinikums rechts der Isar, Technische Universitat Munchen, Munchen, Germany
| | - Anne Letsch
- Medizinische Klinik für Hämatologie, Onkologie, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Detlef Haase
- Klinik für Hämatologie und Medizinische Onkologie, Georg-August-Universitat Gottingen Universitatsmedizin, Gottingen, Germany
| | - Richard Schlenk
- NCT Trial Center, Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Gemany
| | - Gesine Bug
- Medizinische Klinik II, Abteilung für Hämatologie/Onkologie, Klinikum der Johann Wolfgang Goethe-Universitat Frankfurt, Frankfurt am Main, Germany
| | - Michael Lübbert
- Abteilung für Innere Medizin I, Hämatologie und Onkologie, Universitatsklinikum Freiburg, Freiburg, Germany
| | - Arnold Ganser
- Abteilung für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ulrich Germing
- Abteilung für Hämatologie, Onkologie und klinische Immunologie, Heinrich-Heine-Universitat Dusseldorf Medizinische Fakultat, Dusseldorf, Germany
| | | | - Wolf-Karsten Hofmann
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Maximilian Mossner
- III Medizinische Klinik, Hämatologie und Onkologie, Universitätsmedizin Mannheim, Mannheim, Germany
| |
Collapse
|
7
|
Stengel A, Kern W, Haferlach T, Meggendorfer M, Haferlach C. The 5q deletion size in myeloid malignancies is correlated to additional chromosomal aberrations and to TP53 mutations. Genes Chromosomes Cancer 2016; 55:777-85. [PMID: 27218649 DOI: 10.1002/gcc.22377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Deletions in the long arm of chromosome 5 (del(5q)) are recurrent abnormalities in myeloid malignancies. We analyzed del(5q) and accompanying molecular mutations in MDS, MPN and MDS/MPN cases. A high del(5q) frequency was revealed in MDS (1869/11398 cases; 16%), followed by MDS/MPN (37/1107; 3%) and MPN (97/6373; 2%). To investigate potential associations of the del(5q) size with the respective phenotypes, we applied array CGH analyses in selected cohorts of 61 MDS, 22 MDS/MPN and 23 MPN cases. The size varied between 16 and 119 Mb with no differences between the entities. However, MPN and MDS/MPN cases with del(5q) sole showed a significantly smaller del(5q) than cases with additional aberrations. Sequence analysis of 27 genes revealed ≥1 mutation in 91% of patients. The highest mutation frequencies in the total cohort were observed for TP53 (31%), JAK2 (23%) and DNMT3A (18%). The molecular mutation patterns in the del(5q) cohorts were different between the entities but resembled known patterns of cohorts not selected for del(5q). Further, TP53 mutations were significantly more frequent in cases with a larger deletion size (P = 0.003). The results suggest a correlation of large del(5q) with TP53 mutations and with additional chromosomal aberrations possibly contributing to more severe courses of these cases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Stengel
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| |
Collapse
|
8
|
Abstract
Decreased autophagy contributes to malignancies, however it is unclear how autophagy impacts on tumour growth. Acute myeloid leukemia (AML) is an ideal model to address this as (i) patient samples are easily accessible, (ii) the hematopoietic stem and progenitor population (HSPC) where transformation occurs is well characterized, and (iii) loss of the key autophagy gene Atg7 in hematopoietic stem and progenitor cells (HSPCs) leads to a lethal pre-leukemic phenotype in mice. Here we demonstrate that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared to more committed/mature hematopoietic cells, healthy human and mouse HSCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Taken together, with our previous findings these data are compatible with autophagy limiting leukemic transformation. In line with this, autophagy gene losses are found within chromosomal regions that are commonly deleted in human AML. Moreover, human AML blasts showed reduced expression of autophagy genes, and displayed decreased autophagic flux with accumulation of unhealthy mitochondria indicating that deficient autophagy may be beneficial to human AML. Crucially, heterozygous loss of autophagy in an MLL-ENL model of AML led to increased proliferation in vitro, a glycolytic shift, and more aggressive leukemias in vivo. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy providing a general advantage for tumour growth.
Collapse
|
9
|
Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis. Nat Genet 2015; 47:539-43. [PMID: 25822087 PMCID: PMC4414804 DOI: 10.1038/ng.3251] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/24/2015] [Indexed: 01/15/2023]
Abstract
RAS network activation is common in human cancers and, in acute myeloid leukemia (AML), achieved mainly through gain-of-function mutations in KRAS, NRAS, or the FLT3 receptor tyrosine kinase1. In mice, we show that premalignant myeloid cells harboring a KrasG12D allele retain low Ras signaling owing to a negative feedback involving Spry4 that prevents transformation. In humans, SPRY4 is located on chromosome 5q, a region affected by large heterozygous deletion that are associated with an aggressive disease in which gain-of-function RAS pathway mutations are rare. These 5q deletions often co-occur with chromosome 17 alterations involving deletion of NF1 - another RAS negative regulator - and TP53. Accordingly, combined suppression of Spry4, Nf1 and Trp53 produces high Ras signaling and drives AML in mice. Therefore, SPRY4 is a 5q tumor suppressor whose disruption contributes to a lethal AML subtype that appears to acquire RAS pathway activation through loss of negative regulators.
Collapse
|
10
|
Kjeldsen E. A novel insertion ins(18;5)(q21.1;q31.2q35.1) in acute myeloid leukemia associated with microdeletions at 5q31.2, 5q35.1q35.2 and 18q12.3q21.1 detected by oligobased array comparative genomic hybridization. Mol Cytogenet 2014; 7:63. [PMID: 25279000 PMCID: PMC4180307 DOI: 10.1186/s13039-014-0063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/28/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Nonrandom clonal chromosomal aberrations can be detected in approximately 55% of adult patients with acute myeloid leukemia (AML). Recurrent cytogenetic abnormalities play an important role in diagnosis, classification and prognosis of AML. However, several chromosomal abnormalities have not been completely determined or characterized, primarily because of their low incidence and limited amount of data. RESULTS We characterized an AML patient with a novel apparently balanced insertion ins(18;5)(q21;q31.2q35.1) that was cryptic by G-banding. The rearrangement was further examined by molecular cytogenetic methods and oligobased high-resolution array CGH (oaCGH) analysis. We show that an approximately 31.8 Mb large segment from chromosome 5 bands q31.2 to q35.1 has been inserted, by a direct mechanism, into chromosome 18 between bands q12.3 and q21.1. The insertion was unbalanced with concurrent submicroscopic deletions at 5q31.2 (approximately 0.37 Mb in size), 5q35.1q35.2 (approximately 1.98 Mb in size), and 18q12.3q21.1 (approximately 2.07 Mb in size). The microdeletions affect genes on 5q and 18q that have been associated with hematological malignancy and other cancers. A novel juxtaposition of the genes NPM1 and HAUS1 at 5q35.1 and 18q21.1, respectively, was detected by FISH analysis. Searching the literature and the Mitelman database revealed no previously reported ins(18;5) cases. Interestingly, however, two AML patients with translocation t(5;18)(q35;q21) encompassing the 5q35 and 18q21 breakpoint regions as detected in our present ins(18;5) patient have been reported. CONCLUSIONS It is well-known that cytogenetic abnormalities on the long arm of chromosome 5 affect hematopoiesis. However, the precise mechanism of their involvement in myeloid transformation is elusive. Our present data shed new light onto the frequent abnormalities on 5q as well as to the less frequent abnormalities observed on 18q in myeloid malignancies. In addition, we show that oaCGH analysis is a useful adjunct to revealing submicroscopic aberrations in regions of clinical importance. Reporting rare and nonrandom chromosomal abnormalities contribute to the identification of the whole spectrum of cytogenetic abnormalities in AML and their prognostic significance.
Collapse
Affiliation(s)
- Eigil Kjeldsen
- Department of Hematology, HemoDiagnostic Laboratory, Cancer Cytogenetics Section, Aarhus University Hospital, Tage-Hansens Gade 2, Ent. 4A, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
MLL partner genes in secondary acute lymphoblastic leukemia: report of a new partner PRRC1 and review of the literature. Leuk Res 2014; 38:1316-9. [PMID: 25205603 DOI: 10.1016/j.leukres.2014.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022]
Abstract
Secondary acute lymphoblastic leukemia (sALL) following chemotherapy and/or radiotherapy of previous malignancies represents 2-10% of all cases of ALL. A 72-year-old female patient was diagnosed with acute lymphoblastic leukemia following chemotherapy for a diffuse large B cell lymphoma. Banding cytogenetics showed a t(t(5;11)(q23-31;q23) in 20 of the 21 metaphases examined and fluorescent in situ hybridization confirmed rearrangement of MLL. Long distance inverse-polymerase chain reaction revealed an in-frame fusion between 5'MLL and 3'PRRC1. Sixty-five cases of sALL associated with 11q23/MLL rearrangement, including 47 with a t(4;11)(q21;q23), were retrieved from the literature. Drug regimen used to treat the primary neoplasm was available for 54 patients; 52 had received a topoisomerase II inhibitor, known to induce MLL rearrangement.
Collapse
|
12
|
Volkert S, Kohlmann A, Schnittger S, Kern W, Haferlach T, Haferlach C. Association of the type of 5q loss with complex karyotype, clonal evolution,TP53mutation status, and prognosis in acute myeloid leukemia and myelodysplastic syndrome. Genes Chromosomes Cancer 2014; 53:402-10. [DOI: 10.1002/gcc.22151] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/13/2014] [Indexed: 01/06/2023] Open
|
13
|
Komrokji RS, Padron E, Ebert BL, List AF. Deletion 5q MDS: molecular and therapeutic implications. Best Pract Res Clin Haematol 2013; 26:365-75. [PMID: 24507813 DOI: 10.1016/j.beha.2013.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heterozygous, interstitial deletions of chromosome 5q are the most common cytogenetic abnormality in myelodysplastic syndromes (MDS). This chromosomal abnormality is associated with a consistent clinical phenotype, the 5q- syndrome, in a subset of patients, and therapeutic sensitivity to the drug lenalidomide. No genes on chromosome 5q undergo recurrent homozygous inactivation in MDS patients. Instead, haploinsufficiency for key genes powerfully alters hematopoiesis, leading to the MDS phenotype in patients with del(5q). Haploinsufficiency for the RPS14 gene leads to activation of the p53 pathway and the macrocytic anemia characteristic of this disorder, and loss of p53 rescues erythropoiesis and facilitates clonal progression. Other genes, as well as miR-145 and miR-146a, contribute to aberrant megakaryopoiesis and a selective advantage for the del(5q) clone. The integrated effects of haploinsufficiency for these key genes, in aggregate, lead to the full phenotype of the disorder.
Collapse
Affiliation(s)
- Rami S Komrokji
- H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Eric Padron
- H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Benjamin L Ebert
- Brigham and Women's Hospital, Karp 5.210, 1 Blackfan Circle, Boston, MA 02115, USA.
| | - Alan F List
- H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
14
|
Mallo M, del Rey M, Ibáñez M, Calasanz MJ, Arenillas L, Larráyoz MJ, Pedro C, Jerez A, Maciejewski J, Costa D, Nomdedeu M, Diez-Campelo M, Lumbreras E, González-Martínez T, Marugán I, Such E, Cervera J, Cigudosa JC, Álvarez S, Florensa L, Hernández JM, Solé F. Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations. Br J Haematol 2013; 162:74-86. [DOI: 10.1111/bjh.12354] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/12/2013] [Indexed: 12/15/2022]
Affiliation(s)
| | - Mónica del Rey
- Servicio de Hematología; Centro de Investigación del Cáncer; IBSAL (Instituto de Biomedicina de Salamanca) y IBMCC; Universidad de Salamanca; Salamanca; Spain
| | - Mariam Ibáñez
- Servicio de Hematología; Hospital Universitario La Fe; Valencia; Spain
| | - Mª José Calasanz
- Departamento de Genética; Universidad de Navarra; Pamplona; Spain
| | - Leonor Arenillas
- Laboratori de Citogenètica Molecular; Laboratori de Citologia Hematològica; Servei de Patologia; Hospital del Mar; GRETNHE; IMIM (Hospital del Mar Research Institute); Barcelona; Spain
| | - Mª José Larráyoz
- Departamento de Genética; Universidad de Navarra; Pamplona; Spain
| | - Carmen Pedro
- Servei d'Hematologia Clínica; Hospital del Mar; GRETNHE; IMIM (Hospital del Mar Research Institute); Barcelona; Spain
| | - Andrés Jerez
- Department of Translational Hematology and Oncology Research; Taussig Cancer Institute; Cleveland Clinic; Cleveland; OH; USA
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research; Taussig Cancer Institute; Cleveland Clinic; Cleveland; OH; USA
| | - Dolors Costa
- Servei d'Hematopatologia; Hospital Clínic; Barcelona; Spain
| | | | - María Diez-Campelo
- Servicio de Hematología; Centro de Investigación del Cáncer; IBSAL (Instituto de Biomedicina de Salamanca) y IBMCC; Universidad de Salamanca; Salamanca; Spain
| | - Eva Lumbreras
- Servicio de Hematología; Centro de Investigación del Cáncer; IBSAL (Instituto de Biomedicina de Salamanca) y IBMCC; Universidad de Salamanca; Salamanca; Spain
| | - Teresa González-Martínez
- Citoxenética-oncohematolóxica; Fundación Pública Galega de Medicina Xenómica Hospital Clínico Universitario; Santiago de Compostela; Spain
| | - Isabel Marugán
- Servicio de Hematología y Oncología Médica; Hospital Clínico Universitario de Valencia; Valencia; Spain
| | - Esperanza Such
- Servicio de Hematología; Hospital Universitario La Fe; Valencia; Spain
| | - José Cervera
- Servicio de Hematología; Hospital Universitario La Fe; Valencia; Spain
| | - Juan C. Cigudosa
- Grupo de Citogenética Molecular; Centro Nacional de Investigaciones Oncológicas; Madrid; Spain
| | - Sara Álvarez
- Grupo de Citogenética Molecular; Centro Nacional de Investigaciones Oncológicas; Madrid; Spain
| | - Lourdes Florensa
- Laboratori de Citogenètica Molecular; Laboratori de Citologia Hematològica; Servei de Patologia; Hospital del Mar; GRETNHE; IMIM (Hospital del Mar Research Institute); Barcelona; Spain
| | - Jesús Mª Hernández
- Servicio de Hematología; Centro de Investigación del Cáncer; IBSAL (Instituto de Biomedicina de Salamanca) y IBMCC; Universidad de Salamanca; Salamanca; Spain
| | | |
Collapse
|