1
|
Cirstea D, Shome R, Samur M, Talluri S, Connolly JJ, Wright AJ, Duvallet E, Joyce ANR, Lively K, Basinsky G, Yee AJ, Chase CC, Malek E, Niesvizky R, Richardson PG, Raje NS. Immune profiling of smoldering multiple myeloma patients treated in a phase lb study of PVX-410 vaccine targeting XBP1/CD138/CS1 antigens, and citarinostat, a histone deacetylase inhibitor (HDACi) with and without lenalidomide. Blood Cancer J 2025; 15:77. [PMID: 40274800 DOI: 10.1038/s41408-025-01272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Affiliation(s)
- Diana Cirstea
- Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajib Shome
- Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehmet Samur
- Department of Data Science, Dana Farber Cancer Institute, Harvard TH Chan School of Public Health, Boston, USA
| | - Srikanth Talluri
- Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Joseph J Connolly
- Program for the Coordination and Oversight of Research Protocols, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Alexandra Jean Wright
- Program for the Coordination and Oversight of Research Protocols, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | - Kathleen Lively
- Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gina Basinsky
- Program for the Coordination and Oversight of Research Protocols, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ehsan Malek
- Case Western Reserve University, Cleveland, OH, USA
| | - Ruben Niesvizky
- Division of Hematology & Medical Oncology, Weill Cornell Medicine/New York Presbyterian Hospital, Forest Hills, NY, USA
| | - Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
3
|
Strum S, Andersen MH, Svane IM, Siu LL, Weber JS. State-Of-The-Art Advancements on Cancer Vaccines and Biomarkers. Am Soc Clin Oncol Educ Book 2024; 44:e438592. [PMID: 38669611 DOI: 10.1200/edbk_438592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The origins of cancer vaccines date back to the 1800s. Since then, there have been significant efforts to generate vaccines against solid and hematologic malignancies using a variety of platforms. To date, these efforts have generally been met with minimal success. However, in the era of improved methods and technological advancements, supported by compelling preclinical and clinical data, a wave of renewed interest in the field offers the promise of discovering field-changing paradigms in the management of established and resected disease using cancer vaccines. These include novel approaches to personalized neoantigen vaccine development, as well as innovative immune-modulatory vaccines (IMVs) that facilitate activation of antiregulatory T cells to limit immunosuppression caused by regulatory immune cells. This article will introduce some of the limitations that have affected cancer vaccine development over the past several decades, followed by an introduction to the latest advancements in neoantigen vaccine and IMV therapy, and then conclude with a discussion of some of the newest technologies and progress that are occurring across the cancer vaccine space. Cancer vaccines are among the most promising frontiers for breakthrough innovations and strategies poised to make a measurable impact in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Scott Strum
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
4
|
Riccardi F, Tangredi C, Dal Bo M, Toffoli G. Targeted therapy for multiple myeloma: an overview on CD138-based strategies. Front Oncol 2024; 14:1370854. [PMID: 38655136 PMCID: PMC11035824 DOI: 10.3389/fonc.2024.1370854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological disease characterized by the uncontrolled growth of plasma cells primarily in the bone marrow. Although its treatment consists of the administration of combined therapy regimens mainly based on immunomodulators and proteosome inhibitors, MM remains incurable, and most patients suffer from relapsed/refractory disease with poor prognosis and survival. The robust results achieved by immunotherapy targeting MM-associated antigens CD38 and CD319 (also known as SLAMF7) have drawn attention to the development of new immune-based strategies and different innovative compounds in the treatment of MM, including new monoclonal antibodies, antibody-drug conjugates, recombinant proteins, synthetic peptides, and adaptive cellular therapies. In this context, Syndecan1 (CD138 or SDC1), a transmembrane heparan sulfate proteoglycan that is upregulated in malignant plasma cells, has gained increasing attention in the panorama of MM target antigens, since its key role in MM tumorigenesis, progression and aggressiveness has been largely reported. Here, our aim is to provide an overview of the most important aspects of MM disease and to investigate the molecular functions of CD138 in physiologic and malignant cell states. In addition, we will shed light on the CD138-based therapeutic approaches currently being tested in preclinical and/or clinical phases in MM and discuss their properties, mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Carmela Tangredi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
5
|
Al-Hawary SIS, Jasim SA, Hjazi A, Oghenemaro EF, Kaur I, Kumar A, Al-Ani AM, Alwaily ER, Redhee AH, Mustafa YF. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct 2024; 42:e3978. [PMID: 38515237 DOI: 10.1002/cbf.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia
| | | | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Goyal F, Chattopadhyay A, Navik U, Jain A, Reddy PH, Bhatti GK, Bhatti JS. Advancing Cancer Immunotherapy: The Potential of mRNA Vaccines As a Promising Therapeutic Approach. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/11/2025]
Abstract
AbstractmRNA vaccines have long been recognized for their ability to induce robust immune responses. The discovery that mRNA vaccines may also contribute to antitumor immunity has made them a promising therapeutic approach against cancer. Recent advances in understanding of immune system are precious in developing therapeutic strategies that target pathways involved in tumor survival and progression, leading to the most reliable therapeutic strategies in cancer treatment history. Among all traditional cancer treatments, cancer immunotherapies are less toxic and more effective, even in advanced or recurrent stages of cancer. Recent advancements in genomics and machine learning algorithms give new insight into vaccine development. mRNA vaccines are designed to interfere with stimulator of interferon genes (STING) and tumor‐infiltrating lymphocytes pathways, activating more CD8+ T‐cells involved in destroying tumor cells and inhibiting tumor growth. A stronger immune response can be achieved by incorporating immunological adjuvants alongside mRNA. Nonformulated or vehicle‐based mRNA vaccines, when combined with adjuvants, efficiently express tumor antigens through antigen‐presenting cells and stimulate both innate and adaptive immune responses. Codelivery with additional immunotherapeutic agents, such as checkpoint inhibitors, further enhances the efficacy of mRNA vaccines. This article focuses on the current clinical approaches and challenges to consider when developing mRNA‐based vaccine technology for cancer treatment.
Collapse
Affiliation(s)
- Falak Goyal
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Anandini Chattopadhyay
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Umashanker Navik
- Department of Pharmacology School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Aklank Jain
- Department of Zoology Central University of Punjab Bathinda Punjab 151401 India
| | - P. Hemachandra Reddy
- Department of Internal Medicine Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Public Health Graduate School of Biomedical Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Neurology Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Speech Language, and Hearing Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology University Institute of Applied Health Sciences Chandigarh University Mohali 140413 India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| |
Collapse
|
7
|
Russell BM, Avigan DE. Immune dysregulation in multiple myeloma: the current and future role of cell-based immunotherapy. Int J Hematol 2023; 117:652-659. [PMID: 36964840 PMCID: PMC10039687 DOI: 10.1007/s12185-023-03579-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
Immune dysregulation is a hallmark of clinically active multiple myeloma (MM). Interactions between malignant clonal cells and immune cells within the bone marrow microenvironment are associated with the formation of a milieu favorable to tumor progression. IL-10, TGF-β and other immunoregulatory pathways are upregulated, promoting angiogenesis, tumor cell survival and inhibition of the native immune response. Transcriptomic evaluation of the bone marrow microenvironment reveals polarization of the T cell repertoire towards exhaustion and predominance of accessory cells with immunosuppressive qualities. These changes facilitate the immune escape of tumor cells and functional deficiencies that manifest as an increased risk of infection and a reduction in response to vaccinations. Immunotherapy with Chimeric Antigen Receptor (CAR) T cells and other cellular-based approaches have transformed outcomes for patients with advanced MM. Characterization of the immune milieu and identification of biomarkers predictive of treatment response are essential to increasing durability and allowing for the incorporation of novel strategies such as cancer vaccines. This paper will review the current use of cancer vaccines and CAR T cell therapy in MM as well as potential opportunities to expand and improve the application of these platforms.
Collapse
Affiliation(s)
- Brian M Russell
- Department of Medicine, Divisions of Hematology & Hematologic Malignancies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA
| | - David E Avigan
- Department of Medicine, Divisions of Hematology & Hematologic Malignancies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Lagreca I, Nasillo V, Barozzi P, Castelli I, Basso S, Castellano S, Paolini A, Maccaferri M, Colaci E, Vallerini D, Natali P, Debbia D, Pirotti T, Ottomano AM, Maffei R, Bettelli F, Giusti D, Messerotti A, Gilioli A, Pioli V, Leonardi G, Forghieri F, Bresciani P, Cuoghi A, Morselli M, Manfredini R, Longo G, Candoni A, Marasca R, Potenza L, Tagliafico E, Trenti T, Comoli P, Luppi M, Riva G. Prognostic Relevance of Multi-Antigenic Myeloma-Specific T-Cell Assay in Patients with Monoclonal Gammopathies. Cancers (Basel) 2023; 15:cancers15030972. [PMID: 36765928 PMCID: PMC9913154 DOI: 10.3390/cancers15030972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple Myeloma (MM) typically originates from underlying precursor conditions, known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Validated risk factors, related to the main features of the clonal plasma cells, are employed in the current prognostic models to assess long-term probabilities of progression to MM. In addition, new prognostic immunologic parameters, measuring protective MM-specific T-cell responses, could help to identify patients with shorter time-to-progression. In this report, we described a novel Multi-antigenic Myeloma-specific (MaMs) T-cell assay, based on ELISpot technology, providing simultaneous evaluation of T-cell responses towards ten different MM-associated antigens. When performed during long-term follow-up (mean 28 months) of 33 patients with either MGUS or SMM, such deca-antigenic myeloma-specific immunoassay allowed to significantly distinguish between stable vs. progressive disease (p < 0.001), independently from the Mayo Clinic risk category. Here, we report the first clinical experience showing that a wide (multi-antigen), standardized (irrespective to patients' HLA), MM-specific T-cell assay may routinely be applied, as a promising prognostic tool, during the follow-up of MGUS/SMM patients. Larger studies are needed to improve the antigenic panel and further explore the prognostic value of MaMs test in the risk assessment of patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Vincenzo Nasillo
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Ilaria Castelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Castellano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Ambra Paolini
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Elisabetta Colaci
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Daniela Vallerini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Daria Debbia
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Pirotti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Anna Maria Ottomano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Rossana Maffei
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Giovanna Leonardi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Paola Bresciani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Angela Cuoghi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Monica Morselli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Longo
- Department of Oncology and Hematology, AOU Modena, 41124 Modena, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Enrico Tagliafico
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Trenti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| | - Giovanni Riva
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| |
Collapse
|
9
|
Boussi LS, Avigan ZM, Rosenblatt J. Immunotherapy for the treatment of multiple myeloma. Front Immunol 2022; 13:1027385. [PMID: 36389674 PMCID: PMC9649817 DOI: 10.3389/fimmu.2022.1027385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Despite advances in treatment for multiple myeloma, the majority of patients ultimately develop relapsed disease marked by immune evasion and resistance to standard therapy. Immunotherapy has emerged as a powerful tool for tumor-directed cytotoxicity with the unique potential to induce immune memory to reduce the risk of relapse. Understanding the specific mechanisms of immune dysregulation and dysfunction in advanced myeloma is critical to the development of further therapies that produce a durable response. Adoptive cellular therapy, most strikingly CAR T cell therapy, has demonstrated dramatic responses in the setting of refractory disease. Understanding the factors that contribute to immune evasion and the mechanisms of response and resistance to therapy will be critical to developing the next generation of adoptive cellular therapies, informing novel combination therapy, and determining the optimal time to incorporate immune therapy in the treatment of myeloma.
Collapse
Affiliation(s)
- Leora S. Boussi
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Zachary M. Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jacalyn Rosenblatt
- Division of Hematology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
10
|
Dima D, Jiang D, Singh DJ, Hasipek M, Shah HS, Ullah F, Khouri J, Maciejewski JP, Jha BK. Multiple Myeloma Therapy: Emerging Trends and Challenges. Cancers (Basel) 2022; 14:cancers14174082. [PMID: 36077618 PMCID: PMC9454959 DOI: 10.3390/cancers14174082] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a complex hematologic malignancy characterized by the uncontrolled proliferation of clonal plasma cells in the bone marrow that secrete large amounts of immunoglobulins and other non-functional proteins. Despite decades of progress and several landmark therapeutic advancements, MM remains incurable in most cases. Standard of care frontline therapies have limited durable efficacy, with the majority of patients eventually relapsing, either early or later. Induced drug resistance via up-modulations of signaling cascades that circumvent the effect of drugs and the emergence of genetically heterogeneous sub-clones are the major causes of the relapsed-refractory state of MM. Cytopenias from cumulative treatment toxicity and disease refractoriness limit therapeutic options, hence creating an urgent need for innovative approaches effective against highly heterogeneous myeloma cell populations. Here, we present a comprehensive overview of the current and future treatment paradigm of MM, and highlight the gaps in therapeutic translations of recent advances in targeted therapy and immunotherapy. We also discuss the therapeutic potential of emerging preclinical research in multiple myeloma.
Collapse
Affiliation(s)
- Danai Dima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongxu Jiang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Divya Jyoti Singh
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Haikoo S. Shah
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jack Khouri
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Babal K. Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
11
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
13
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
14
|
The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23095242. [PMID: 35563634 PMCID: PMC9104275 DOI: 10.3390/ijms23095242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.
Collapse
|
15
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 356] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Sepehrirad S, Amanlou A, Bagherzadeh K, Azizian H, Amanlou M. Library-based lead compound discovery for CS-1 protein in multiple myeloma: homology modelling, molecular dynamic simulations, virtual screening and molecular docking. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1971225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shahrzad Sepehrirad
- Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
| | - Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, Motavalli Khiavi F. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther 2021; 12:217. [PMID: 33781320 PMCID: PMC8008571 DOI: 10.1186/s13287-021-02283-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Denis Kaigorodov
- Director of Research Institute "MitoKey", Moscow State Medical University, Moscow, Russian Federation
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, Russian Federation, 119991
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
18
|
Keshavarz-Fathi M, Rezaei N. Cancer Immunoprevention: Current Status and Future Directions. Arch Immunol Ther Exp (Warsz) 2021; 69:3. [PMID: 33638703 DOI: 10.1007/s00005-021-00604-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most serious diseases affecting health and the second leading cause of death worldwide. Despite the development of various therapeutic modalities to deal with cancer, limited improvement in overall survival of patients has been yielded. Since there is no certain cure for cancer, detection of premalignant lesions, and prevention of their progression are vital to the decline of high morbidity and mortality of cancer. Among approaches to cancer prevention, immunoprevention has gained further attention in recent years. Deep understanding of the tumor/immune system interplay and successful prevention of virally-induced malignancies by vaccines have paved the way toward broadening cancer immunoprevention application. The identification of tumor antigens in premalignant lesions was the turning point in cancer immunoprevention that led to designing preventive vaccines for various malignancies including multiple myeloma, colorectal, and breast cancer. In addition to vaccines, immune checkpoint inhibitors are also being tested for the prevention of oral squamous cell carcinoma (SCC), and imiquimod which is an established drug for the prevention of skin SCC, is a non-specific immunomodulator. Herein, to provide a bench-to-bedside understanding of cancer immunoprevention, we will review the role of the immune system in suppression and promotion of tumors, immunoprevention of virally-induced cancers, identification of tumor antigens in premalignant lesions, and clinical advances of cancer immunoprevention.
Collapse
Affiliation(s)
- Mahsa Keshavarz-Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
19
|
Yamamoto L, Amodio N, Gulla A, Anderson KC. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Front Oncol 2021; 10:606368. [PMID: 33585226 PMCID: PMC7873734 DOI: 10.3389/fonc.2020.606368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that grow within a permissive bone marrow microenvironment (BMM). The bone marrow milieu supports the malignant transformation both by promoting uncontrolled proliferation and resistance to cell death in MM cells, and by hampering the immune response against the tumor clone. Hence, it is expected that restoring host anti-MM immunity may provide therapeutic benefit for MM patients. Already several immunotherapeutic approaches have shown promising results in the clinical setting. In this review, we outline recent findings demonstrating the potential advantages of targeting the immunosuppressive bone marrow niche to restore effective anti-MM immunity. We discuss different approaches aiming to boost the effector function of T cells and/or exploit innate or adaptive immunity, and highlight novel therapeutic opportunities to increase the immunogenicity of the MM clone. We also discuss the main challenges that hamper the efficacy of immune-based approaches, including intrinsic resistance of MM cells to activated immune-effectors, as well as the protective role of the immune-suppressive and inflammatory bone marrow milieu. Targeting mechanisms to convert the immunologically “cold” to “hot” MM BMM may induce durable immune responses, which in turn may result in long-lasting clinical benefit, even in patient subgroups with high-risk features and poor survival.
Collapse
Affiliation(s)
- Leona Yamamoto
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Gulla
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth Carl Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Gulla' A, Anderson KC. Multiple myeloma: the (r)evolution of current therapy and a glance into future. Haematologica 2020; 105:2358-2367. [PMID: 33054076 PMCID: PMC7556665 DOI: 10.3324/haematol.2020.247015] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past 20 years, the regulatory approval of several novel agents to treat multiple myeloma (MM) has prolonged median patient survival from 3 to 8-10 years. Increased understanding of MM biology has translated to advances in diagnosis, prognosis, and response assessment, as well as informed the development of targeted and immune agents. Here we provide an overview of the recent progress in MM, and highlight research areas of greatest promise to further improve patient outcome in the future.
Collapse
Affiliation(s)
| | - Kenneth C. Anderson
- Division of Hematologic Neoplasia, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Abstract
Cellular immunotherapy for myeloma has the unique potential both to potently kill the malignant clone and to evoke a memory response to protect from relapse. Understanding the complex interactions between the malignant clone and the microenvironment that promote immune escape is critical to evoke effective antimyeloma immunity. Tremendous progress has been made in the area of cancer vaccines and adoptive T-cell therapy in recent years. Careful study of the mechanisms of response and of immune escape will be critical to developing novel combination therapies and ultimately to improve outcomes for patients with myeloma.
Collapse
|
22
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
23
|
Ghobrial I, Cruz CH, Garfall A, Shah N, Munshi N, Kaufman J, Boise LH, Morgan G, Adalsteinsson VA, Manier S, Pillai R, Malavasi F, Lonial S. Immunotherapy in Multiple Myeloma: Accelerating on the Path to the Patient. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:332-344. [DOI: 10.1016/j.clml.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
|
24
|
Shi W, Chen Z, Li L, Liu H, Zhang R, Cheng Q, Xu D, Wu L. Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. J Cancer 2019; 10:2035-2046. [PMID: 31205564 PMCID: PMC6548171 DOI: 10.7150/jca.29421] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are usually exposed to stressful environments, such as hypoxia, nutrient deprivation, and other metabolic dysfunctional regulation, leading to continuous endoplasmic reticulum (ER) stress. As the most conserved branch among the three un-folded protein response (UPR) pathways, Inositol-requiring enzyme 1α (IRE1α)-X-box-binding protein 1 (XBP1) signaling has been implicated in cancer development and progression. Active XBP1 with transactivation domain functions as a transcription factor to regulate the expression of downstream target genes, including many oncogenic factors. The regulatory activity of XBP1 in cell proliferation, apoptosis, metastasis, and drug resistance promotes cell survival, leading to tumorigenesis and tumor progression. In addition, the XBP1 peptides-based vaccination and/or combination with immune-modulatory drug administration have been developed for effective management for several cancers. Potentially, XBP1 is the biomarker of cancer development and progression and the strategy for clinical cancer management.
Collapse
Affiliation(s)
- Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Rui Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Daohua Xu
- Department of Pharmacology, Guangdong Medical University, Dongguan China, 523808
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| |
Collapse
|
25
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|
26
|
Bae J, Samur M, Richardson P, Munshi NC, Anderson KC. Selective targeting of multiple myeloma by B cell maturation antigen (BCMA)-specific central memory CD8 + cytotoxic T lymphocytes: immunotherapeutic application in vaccination and adoptive immunotherapy. Leukemia 2019; 33:2208-2226. [PMID: 30872779 DOI: 10.1038/s41375-019-0414-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
To expand the breadth and extent of current multiple myeloma (MM)-specific immunotherapy, we have identified various antigens on CD138+ tumor cells from newly diagnosed MM patients (n = 616) and confirmed B-cell maturation antigen (BCMA) as a key myeloma-associated antigen. The aim of this study is to target the BCMA, which promotes MM cell growth and survival, by generating BCMA-specific memory CD8+ CTL that mediate effective and long-lasting immunity against MM. Here we report the identification of novel engineered peptides specific to BCMA, BCMA72-80 (YLMFLLRKI), and BCMA54-62 (YILWTCLGL), which display improved affinity/stability to HLA-A2 compared to their native peptides and induce highly functional BCMA-specific CTL with increased activation (CD38, CD69) and co-stimulatory (CD40L, OX40, GITR) molecule expression. Importantly, the heteroclitic BCMA72-80 specific CTL demonstrated poly-functional Th1-specific immune activities [IFN-γ/IL-2/TNF-α production, proliferation, cytotoxicity] against MM, which were correlated with expansion of Tetramer+ and memory CD8+ CTL. Additionally, heteroclitic BCMA72-80 specific CTL treated with anti-OX40 (immune agonist) or anti-LAG-3 (checkpoint inhibitor) display increased immune function, mainly by central memory CTL. These results provide the framework for clinical application of heteroclitic BCMA72-80 peptide, alone and in combination with anti-LAG3 and/or anti-OX40 therapy, in vaccination and/or adoptive immunotherapeutic strategies to generate long-lasting anti-tumor immunity in patients with MM or other BCMA expressing tumors.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Mehmet Samur
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Nooka AK, Wang ML, Yee AJ, Kaufman JL, Bae J, Peterkin D, Richardson PG, Raje NS. Assessment of Safety and Immunogenicity of PVX-410 Vaccine With or Without Lenalidomide in Patients With Smoldering Multiple Myeloma: A Nonrandomized Clinical Trial. JAMA Oncol 2018; 4:e183267. [PMID: 30128502 DOI: 10.1001/jamaoncol.2018.3267] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Increasing evidence suggests the significance of the role of the immune system in the progression of smoldering multiple myeloma (SMM) to symptomatic multiple myeloma (MM). Boosting the immune system via vaccination in the earlier, asymptomatic SMM stage may provide a novel strategy to prevent or slow progression to active MM. Objective To determine the safety, tolerability, immunogenicity, and anti-MM activity of the PVX-410 multipeptide vaccine with or without lenalidomide. Design, Setting, and Participants This 3-cohort phase 1/2a multicenter dose-escalation study accrued 22 adults (≥18 years) with SMM with normal organ/marrow function who were human leukocyte antigen A2-positive and at moderate or high risk of progression to MM. Interventions Patients received 6 doses of PVX-410 emulsified in Montanide ISA 720 VG, 0.4 mg total (0.1 mg/peptide) (n = 3) or 0.8 mg total (0.2 mg/peptide) (n = 9), biweekly via subcutaneous injection. In the combination cohort (n = 10), patients also received three 21-day cycles of lenalidomide, 25 mg, orally daily every 28 days. All patients received 0.5 mL (1 mg) poly-ICLC (2 mg/mL) via intramuscular injection with each PVX-410 dose. Main Outcomes and Measures Adverse events (AEs) were evaluated using the Common Terminology Criteria for Adverse Events, version 4.03. PVX-410-specific T lymphocytes by flow cytometry to assess tetramer and interferon (IFN)-γ response. Disease response was assessed by investigators using the International Myeloma Working Group (IMWG) and modified European Group for Bone Marrow Transplantation (EBMT) criteria. Results Overall, 14 (64%) patients were men and the median age at enrollment was 56 years in the monotherapy and 57 years in the combination cohorts (overall range, 39-82 years). Six of 12 patients in the monotherapy and 9 of 10 in the combination cohorts were at moderate risk. The PVX-410 vaccine was well tolerated. The most common AEs were mild-to-moderate injection site reactions and constitutional symptoms. Of note, PVX-410 was immunogenic as monotherapy (10 of 11 patients) and in combination with lenalidomide (9 of 9 patients), as demonstrated by an increase in percentage of tetramer-positive cells and IFN-γ cells in the CD3+CD8+ cell population. The combination resulted in greater mean fold increases in proportions of CD3+CD8+ T cells that were tetramer-positive and IFN-γ-positive, statistically significant for IFN-γ-positive cells after 2 and 4 vaccinations. An increase and persistence of vaccine-specific effector memory cells was noted. In total, 7 of 12 patients in the PVX-410-alone cohort had stable disease with 2 of 3 (low-dose cohort) and 1 of 9 of the target-dose cohort progressing (median TTP, 36 weeks), whereas 5 of 12 patients in the combination cohort showed, clinical response, with 1 patient progressing (median TTP not reached). Conclusions and Relevance Overall, these results suggest that the vaccine is safe and immunogenic in this patient population and support continued study of PVX-410 in SMM. Trial Registration ClinicalTrials.gov identifier: NCT01718899.
Collapse
Affiliation(s)
- Ajay K Nooka
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | | | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jonathan L Kaufman
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Jooeun Bae
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
28
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
29
|
Bae J, Hideshima T, Tai YT, Song Y, Richardson P, Raje N, Munshi NC, Anderson KC. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia 2018; 32:1932-1947. [PMID: 29487385 PMCID: PMC6537609 DOI: 10.1038/s41375-018-0062-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Histone deacetylases (HDAC) are therapeutic targets in multiple cancers. ACY241, an HDAC6 selective inhibitor, has shown anti-multiple myeloma (MM) activity in combination with immunomodulatory drugs and proteasome inhibitors. Here we show ACY241 significantly reduces the frequency of CD138+ MM cells, CD4+CD25+FoxP3+ regulatory T cells, and HLA-DRLow/-CD11b+CD33+ myeloid-derived suppressor cells; and decreases expression of PD1/PD-L1 on CD8+ T cells and of immune checkpoints in bone marrow cells from myeloma patients. ACY241 increased B7 (CD80, CD86) and MHC (Class I, Class II) expression on tumor and dendritic cells. We further evaluated the effect of ACY241 on antigen-specific cytotoxic T lymphocytes (CTL) generated with heteroclitic XBP1unspliced184-192 (YISPWILAV) and XBP1spliced367-375 (YLFPQLISV) peptides. ACY241 induces co-stimulatory (CD28, 41BB, CD40L, OX40) and activation (CD38) molecule expression in a dose- and time-dependent manner, and anti-tumor activities, evidenced by increased perforin/CD107a expression, IFN-γ/IL-2/TNF-α production, and antigen-specific central memory CTL. These effects of ACY241 on antigen-specific memory T cells were associated with activation of downstream AKT/mTOR/p65 pathways and upregulation of transcription regulators including Bcl-6, Eomes, HIF-1 and T-bet. These studies therefore demonstrate mechanisms whereby ACY241 augments immune response, providing the rationale for its use, alone and in combination, to restore host anti-tumor immunity and improve patient outcome.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/metabolism
- Humans
- Immunologic Memory
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Peptides/immunology
- Signal Transduction/drug effects
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- X-Box Binding Protein 1/chemistry
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/immunology
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Song
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Noopur Raje
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Vaccine therapy in hematologic malignancies. Blood 2018; 131:2640-2650. [DOI: 10.1182/blood-2017-11-785873] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Abstract
Immune-based therapy has emerged as a paradigm shift in cancer therapy with dramatic responses observed in previously incurable disease. Cancer vaccines are being developed to disrupt tumor-associated tolerance and activate and selectively expand tumor-specific lymphocytes within the native effector cell repertoire while maintaining immune-regulatory protection against autoimmunity. Although individual antigen approaches result in immune response with a suggestion of clinical effect in some settings, broader efficacy may be dependent on presentation of multiple antigens that capture clonal diversity presented in the context of functionally potent antigen-presenting cells. The use of whole cell–based strategies such as dendritic cell/tumor fusions have yielded provocative results in single-arm studies and are currently being explored in multicenter randomized trials. The posttransplant setting is a potentially promising platform for vaccination due to cytoreduction and relative depletion of inhibitory accessory cells fostering greater immune responsiveness. Integration of these efforts with other immunotherapeutic strategies and agents that target the tumor microenvironment is being studied in an effort to generate durable immunologic responses with clinically meaningful impact on disease.
Collapse
|
31
|
A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis 2018. [PMID: 29515106 PMCID: PMC5841361 DOI: 10.1038/s41419-018-0420-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification and characterization of tumor-associated antigens (TAAs) that generate specific cytotoxic T lymphocytes (CTLs) are vital to the development of cancer immunotherapy. The epidermal growth factor receptor (EGFR) pathway substrate 8 gene (Eps8) is involved in regulating cancer progression and might be an ideal antigen. In this study, we searched for novel human leukocyte antigen (HLA)-A*2402-restricted epitopes derived from the Eps8 protein via the HLA-binding prediction algorithm. Among four candidates, peptides 327 (EFLDCFQKF), 534 (KYAKSKYDF) and 755 (LFSLNKDEL) induced peptide-specific CTLs to secrete higher levels of interferon-gamma (IFN-γ) and showed enhanced cytotoxic activity against malignant cancer cells. Our results demonstrated that peptide-specific CTLs showed effective antitumor responses, including upregulation of interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), granzyme B and perforin. Treatment with peptide-sensitized peripheral blood mononuclear cells (PBMCs) significantly reduced the tumor growth in vivo compared with the non-peptide-sensitized PBMC treatment. Importantly, our results indicated that peptide 327 may interfere with EGFR signaling by mechanistically disrupting Eps8/EGFR complex formation. We extended this observation that peptide 327 also suppressed the viability of cancer cells, blocked EGFR signal pathway and reduced the expression of downstream targets. Notably, conjugation of peptide 327 to the TAT sequence (TAT-327) resulted in potent antitumor activity and selective insertion into cancer cell membranes, where it adopted a punctate distribution. Furthermore, peptide 327 and TAT-327 displayed anticancer properties in xenograft models. Our results indicated that 327, 534 and 755 were novel HLA-A*2402-restricted epitopes from Eps8. By inhibiting the Eps8/EGFR interaction, peptide 327 and TAT-327 may serve as novel peptide inhibitors, which could provide an innovative approach for treating various cancers.
Collapse
|
32
|
Guang MHZ, McCann A, Bianchi G, Zhang L, Dowling P, Bazou D, O’Gorman P, Anderson KC. Overcoming multiple myeloma drug resistance in the era of cancer 'omics'. Leuk Lymphoma 2018; 59:542-561. [PMID: 28610537 PMCID: PMC6152877 DOI: 10.1080/10428194.2017.1337115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is among the most compelling examples of cancer in which research has markedly improved the length and quality of lives of those afflicted. Research efforts have led to 18 newly approved treatments over the last 12 years, including seven in 2015. However, despite significant improvement in overall survival, MM remains incurable as most patients inevitably, yet unpredictably, develop refractory disease. Recent advances in high-throughput 'omics' techniques afford us an unprecedented opportunity to (1) understand drug resistance at the genomic, transcriptomic, and proteomic level; (2) discover novel diagnostic, prognostic, and therapeutic biomarkers; (3) develop novel therapeutic targets and rational drug combinations; and (4) optimize risk-adapted strategies to circumvent drug resistance, thus bringing us closer to a cure for MM. In this review, we provide an overview of 'omics' technologies in MM biomarker and drug discovery, highlighting recent insights into MM drug resistance gleaned from the use of 'omics' techniques. Moving from the bench to bedside, we also highlight future trends in MM, with a focus on the potential use of 'omics' technologies as diagnostic, prognostic, or response/relapse monitoring tools to guide therapeutic decisions anchored upon highly individualized, targeted, durable, and rationally informed combination therapies with curative potential.
Collapse
Affiliation(s)
- Matthew Ho Zhi Guang
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
- UCD School of Medicine, College of Health and Agricultural
Science and UCD Conway Institute of Biomolecular and Biomedical Research, University
College Dublin, UCD, Belfield, Dublin 4, Ireland
| | - Amanda McCann
- UCD School of Medicine, College of Health and Agricultural
Science and UCD Conway Institute of Biomolecular and Biomedical Research, University
College Dublin, UCD, Belfield, Dublin 4, Ireland
| | - Giada Bianchi
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
| | - Li Zhang
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
- Department of Hematology, West China Hospital, Sichuan
University, Chengdu, China
| | - Paul Dowling
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Kenneth C. Anderson
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
33
|
Bae J, Hideshima T, Zhang GL, Zhou J, Keskin DB, Munshi NC, Anderson KC. Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma. Leukemia 2018; 32:752-764. [PMID: 29089645 PMCID: PMC5953209 DOI: 10.1038/leu.2017.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022]
Abstract
X-box binding protein 1 (XBP1), CD138 (Syndecan-1) and CS1 (SLAMF7) are highly expressed antigens in cancers including multiple myeloma (MM). Here, we identify and characterize immunogenic HLA-A24 peptides derived from these antigens for potential vaccination therapy of HLA-A24+ patients with MM. The identified immunogenic HLA-A24-specific XBP1 unspliced (UN)185-193 (I S P W I L A V L), XBP1 spliced (SP)223-231 (V Y P E G P S S L), CD138265-273 (I F A V C L V G F) and CS1240-248 (L F V L G L F L W) peptides induced antigen-specific CTL with anti-MM activity in an HLA-A24 restricted manner. Furthermore, a cocktail containing the four HLA-A24 peptides evoked MM-specific CTL with distinct phenotypic profiles (CD28, CD40L, 41BB, CD38, CD69) and anti-tumor activities, evidenced by perforin upregulation, CD107a degranulation (cytotoxicity) and Th1-type cytokines (IFN-γ/IL-2/TNF-α) production in response to HLA-A24+ MM cells. The multipeptide-specific CTL included antigen-specific memory CD8+ T cells expressing both T-cell activation (CD38, CD69) and immune checkpoints antigens (CTLA, PD-1, LAG-3, TIM-3). These results provide the framework for a multipeptide vaccination therapy to induce tumor-specific CTL in HLA-A24-positive patients with myeloma and other cancers expressing these antigens.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jun Zhou
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Derin B. Keskin
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kenneth C. Anderson
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Nahas MR, Rosenblatt J, Lazarus HM, Avigan D. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era. Blood Rev 2018; 32:312-325. [PMID: 29475779 DOI: 10.1016/j.blre.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity.
Collapse
Affiliation(s)
- Myrna R Nahas
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jacalyn Rosenblatt
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
35
|
Nijhof IS, van de Donk NWCJ, Zweegman S, Lokhorst HM. Current and New Therapeutic Strategies for Relapsed and Refractory Multiple Myeloma: An Update. Drugs 2018; 78:19-37. [PMID: 29188449 PMCID: PMC5756574 DOI: 10.1007/s40265-017-0841-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although survival of multiple myeloma patients has at least doubled during recent years, most patients eventually relapse, and treatment at this stage may be particularly complex. At the time of relapse, the use of alternative drugs to those given upfront is current practice. However, many new options are currently available for the treatment of relapsed multiple myeloma, including recently approved drugs, such as the second- and third-generation proteasome inhibitors carfilzomib and ixazomib, the immunomodulatory agent pomalidomide, the monoclonal antibodies daratumumab and elotuzumab and the histone deacetylase inhibitor panobinostat, but also new targeted agents are under active investigation (e.g. signal transduction modulators, kinesin spindle protein inhibitors, and inhibitors of NF-kB, MAPK, AKT). We here describe a new paradigm for the treatment of relapsed multiple myeloma. The final goal should be finding a balance among efficacy, toxicity, and cost and, at the end of the road, achieving long-lasting control of the disease and eventually even cure in a subset of patients.
Collapse
Affiliation(s)
- Inger S Nijhof
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Niels W C J van de Donk
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Here, we explore the significant progress made in the treatment of multiple myeloma, focusing on immunotherapy and the promise it has offered to patients suffering from advanced disease. RECENT FINDINGS Multiple myeloma, a B-cell malignancy, is characterized by unregulated plasma cell growth in the bone marrow as well as strong immunosuppression in the tumor microenvironment. mAbs targeting tumor antigens overcome this, increasing T-cell activation, multiple myeloma cell death, and depth of response. Similarly, adoptive T-cell therapy aims to engineer or isolate tumor-specific T cells for a targeted approach. Finally, peptide and dendritic cell/tumor fusion vaccines reeducate the immune system, expanding the immune response and generating long-term memory to prevent relapse of disease. Many of these approaches have been combined with existing therapies to enhance antitumor immunity. SUMMARY Immunotherapeutic approaches have remarkably changed the treatment paradigm for multiple myeloma, and encouraging patient responses have warranted further investigation into mAbs, adoptive T-cell therapy, vaccines, and combination therapy.
Collapse
|
37
|
Lu C, Meng S, Jin Y, Zhang W, Li Z, Wang F, Wang-Johanning F, Wei Y, Liu H, Tu H, Su D, He A, Cao X, Zhou F. A novel multi-epitope vaccine from MMSA-1 and DKK1 for multiple myeloma immunotherapy. Br J Haematol 2017; 178:413-426. [PMID: 28508448 DOI: 10.1111/bjh.14686] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
The identification of novel tumour-associated antigens is urgently needed to improve the efficacy of immunotherapy for multiple myeloma (MM). In this study, we identified a membrane protein MMSA-1 (multiple myeloma special antigen-1) that was specifically expressed in MM and exhibited significantly positive correlation with MM. We then identified HLA-A*0201-restricted MMSA-1 epitopes and tested their cytotoxic T lymphocyte (CTL) response. The MMSA-1 epitope SLSLLTIYV vaccine was shown to induce an obvious CTL response in vitro. To improve the immunotherapy, we constructed a multi-epitope peptide vaccine by combining epitopes derived from MMSA-1 and Dickkopf-1 (DKK1). The effector T cells induced by multi-epitope peptide vaccine-loaded dendritic cells lysed U266 cells more effectively than MMSA-1/DKK1 single-epitope vaccine. In myeloma-bearing severe combined immunodeficient mice, the multi-epitope vaccine improved the survival rate significantly compared with single-epitope vaccine. Consistently, multi-epitope vaccine decreased the tumour volume greatly and alleviated bone destruction. The frequencies of CD4+ and CD8+ T cells was significantly increased in mouse blood induced by the multi-epitope vaccine, indicating that it inhibits myeloma growth by changing T cell subsets and alleviating immune paralysis. This study identified a novel peptide from MMSA-1 and the multi-epitope vaccine will be used to establish appropriate individualized therapy for MM.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Meng
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanxia Jin
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wanggang Zhang
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zongfang Li
- National-local Joint Engineering Research Centre of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fang Wang
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Hailing Liu
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Honglei Tu
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan Su
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aili He
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xingmei Cao
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fuling Zhou
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
38
|
He R, Yang N, Zhang P, Liu J, Li J, Zhou F, Zhang W. Identification and expression of MMSA-8, and its clinical significance in multiple myeloma. Oncol Rep 2017; 37:3235-3243. [PMID: 28498418 PMCID: PMC5442394 DOI: 10.3892/or.2017.5609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/26/2017] [Indexed: 01/06/2023] Open
Abstract
In our previous studies, we identified 12 multiple myeloma (MM)-associated antigens by serological analysis of tumor-associated antigens with a recombinant cDNA expression library (SEREX) on MM. MM-associated antigen-8 (MMSA-8) was one of the new antigens identified. We determined the 3′- and 5′-ends of MMSA-8 using SMART-rapid amplification of cDNA ends (RACE) and then cloned its full-length cDNA in the U266 cell line. The full cDNA sequence revealed that MMSA-8 is RPS27A-related transcript variant 1 that is specifically associated with MM. We examined its prognostic significance for the first time, by investigating the correlations between MMSA-8 expression and definite clinicopathological features. We quantitatively assessed MMSA-8 expression using qRT-PCR and western blot analysis in healthy donors and MM patients. The expression levels of MMSA-8 were upregulated with statistical significance in MM patients in contrast to those in healthy donors. The expression of MMSA-8 was also upregulated in relapsed patients compared with that in the complete remission (CR) group. Contrasting MMSA-8 expression levels in different patients with definite clinicopathological features suggested an association between MMSA-8 with unfavorable clinicopathological characteristics, such as international staging system (ISS) stage III, higher lactate dehydrogenase (LDH) levels and higher C-reactive protein (CRP) levels. The expression of MMSA-8 was also increased in patients with unfavorable cytogenetic and genetic abnormalities, including the presence of t(11;14), t(4;14), t(14;16), del(17p), del(13q) and p53 deletion, which was statistically significant. The expression of MMSA-8 exhibited significant variance in the treatment responses of the CR, PR, progression and relapse groups. Univariate and multivariate analyses revealed that high MMSA-8 values were associated with poorer progression-free survival (PFS) and overall survival (OS) in MM patients independently. In conclusion, our data indicated that MMSA-8 is an independent and unfavorable prognostic risk factor in MM; MMSA-8 is also a promising diagnostic and therapeutic target in MM patients, but further validation is needed.
Collapse
Affiliation(s)
- Rui He
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Nan Yang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Pengyu Zhang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jie Liu
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Junhui Li
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Fulin Zhou
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wanggang Zhang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
39
|
Boyiadzis M, Bishop MR, Abonour R, Anderson KC, Ansell SM, Avigan D, Barbarotta L, Barrett AJ, Van Besien K, Bergsagel PL, Borrello I, Brody J, Brufsky J, Cairo M, Chari A, Cohen A, Cortes J, Forman SJ, Friedberg JW, Fuchs EJ, Gore SD, Jagannath S, Kahl BS, Kline J, Kochenderfer JN, Kwak LW, Levy R, de Lima M, Litzow MR, Mahindra A, Miller J, Munshi NC, Orlowski RZ, Pagel JM, Porter DL, Russell SJ, Schwartz K, Shipp MA, Siegel D, Stone RM, Tallman MS, Timmerman JM, Van Rhee F, Waller EK, Welsh A, Werner M, Wiernik PH, Dhodapkar MV. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. J Immunother Cancer 2016; 4:90. [PMID: 28018601 PMCID: PMC5168808 DOI: 10.1186/s40425-016-0188-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine's clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves.
Collapse
Affiliation(s)
- Michael Boyiadzis
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, 5150 Centre Avenue, Suite 564, Pittsburg, PA 15232 USA
| | - Michael R. Bishop
- Hematopoietic Cellular Therapy Program, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Rafat Abonour
- Indiana University School of Medicine, 980 W. Walnut St., Walther Hall-R3, C400, Indianapolis, IN 46202 USA
| | | | | | - David Avigan
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 USA
| | - Lisa Barbarotta
- Smilow Cancer Hospital at Yale New Haven, 35 Park Street, New Haven, CT 06519 USA
| | - Austin John Barrett
- National Institutes of Health, Building 10-CRC Room 3-5330, Bethesda, MD 20814 USA
| | - Koen Van Besien
- Weill Cornell Medical College, 407 E 71st St, New York, NY 10065 USA
| | | | - Ivan Borrello
- Johns Hopkins School of Medicine, 1650 Orleans St, Baltimore, MD 21231 USA
| | - Joshua Brody
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Jill Brufsky
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232 USA
| | - Mitchell Cairo
- New York Medical College at Maria Fareri Children’s Hospital, 100 Woods Road, Valhalla, New York 10595 USA
| | - Ajai Chari
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Adam Cohen
- Abramson Cancer Center at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Jorge Cortes
- MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Stephen J. Forman
- City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Jonathan W. Friedberg
- Wilmot Cancer Institute, University of Rochester, 601 Elmwood Avenue, Box 704, Rochester, NY 14642 USA
| | - Ephraim J. Fuchs
- Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, MD 21231 USA
| | - Steven D. Gore
- Yale Cancer Center, 333 Cedar Street, New Haven, CT 06511 USA
| | - Sundar Jagannath
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Brad S. Kahl
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Justin Kline
- The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637 USA
| | - James N. Kochenderfer
- National Institutes of Health, National Cancer Institute, 8500 Roseweood Drive, Bethesda, MD 20814 USA
| | - Larry W. Kwak
- City of Hope National Medical Center, 1500 E. Duarte Road, Beckman Bldg., Room 4117, Duarte, CA 91010 USA
| | - Ronald Levy
- Division of Medical Oncology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305 USA
| | - Marcos de Lima
- Department of Medicine-Hematology and Oncology, Case Western Reserve University, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Mark R. Litzow
- Department of Hematology, Mayo Clinic Cancer Center, 200 First Street SW, Rochester, MN 55905 USA
| | - Anuj Mahindra
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0324, San Francisco, CA 94143 USA
| | - Jeffrey Miller
- Division of Hematology/Oncology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana B106, Boston, MA 02215 USA
| | - Robert Z. Orlowski
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX 77030 USA
| | - John M. Pagel
- Swedish Cancer Institute, 1221 Madison Street, Suite 1020, Seattle, WA 98104 USA
| | - David L. Porter
- University of Pennsylvania, 3400 Civic Center Blvd, PCAM 12 South Pavilion, Philadelphia, PA 19104 USA
| | | | - Karl Schwartz
- Patients Against Lymphoma, 3774 Buckwampum Road, Riegelsville, PA 18077 USA
| | - Margaret A. Shipp
- Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 513, Boston, MA 02215 USA
| | - David Siegel
- Hackensack University Medical Center, 92 2nd St., Hackensack, NJ 07601 USA
| | - Richard M. Stone
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Martin S. Tallman
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - John M. Timmerman
- University of California, Los Angeles, 10833 LeConte Ave., Los Angeles, CA 90095 USA
| | - Frits Van Rhee
- University of Arkansas for Medical Sciences, Myeloma Institute, 4301 W Markham #816, Little Rock, AR 72205 USA
| | - Edmund K. Waller
- Winship Cancer Institute, Emory University, 1365B Clifton Road NE, Atlanta, GA 30322 USA
| | - Ann Welsh
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 USA
| | - Michael Werner
- Patient Advocate, 33 East Bellevue Place, Chicago, IL 60611 USA
| | - Peter H. Wiernik
- Cancer Research Foundation of New York, 43 Longview Lane, Chappaqua, NY 10514 USA
| | - Madhav V. Dhodapkar
- Department of Hematology & Immunobiology, Yale University, 333 Cedar Street, Box 208021, New Haven, CT 06510 USA
| |
Collapse
|
40
|
Anderson KC. Progress and Paradigms in Multiple Myeloma. Clin Cancer Res 2016; 22:5419-5427. [PMID: 28151709 PMCID: PMC5300651 DOI: 10.1158/1078-0432.ccr-16-0625] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Remarkable progress has been achieved in multiple myeloma, and patient median survival has been extended 3- to 4-fold. Specifically, there have been 18 newly approved treatments for multiple myeloma in the past 12 years, including seven in 2015, and the treatment paradigm and patient outcome have been transformed. The definition of patients benefitting from these therapies has been broadened. Response criteria now include minimal residual disease (MRD), assessed in bone marrow by multicolor flow cytometry or sequencing, and by imaging for extramedullary disease. Initial therapy for transplant candidates is a triplet incorporating novel therapies-that is, lenalidomide, bortezomib, and dexamethasone or cyclophosphamide, bortezomib, and dexamethasone. Lenalidomide maintenance until progression can prolong progression-free and overall survival in standard-risk multiple myeloma, with incorporation of proteasome inhibitor for high-risk disease. Studies are evaluating the value of early versus late transplant and MRD as a therapeutic goal to inform therapy. In nontransplant patients, triplet therapies are also preferred, with doublet therapy reserved for frail patients, and maintenance as described above. The availability of second-generation proteasome inhibitors (carfilzomib and ixazomib), immunomodulatory drugs (pomalidomide), histone deacetylase inhibitors (panobinostat), and monoclonal antibodies (elotuzumab and daratumumab) allows for effective combination therapies of relapsed disease as well. Finally, novel therapies targeting protein degradation, restoring autologous memory anti-multiple myeloma immunity, and exploiting genetic vulnerabilities show promise to improve patient outcome even further. Clin Cancer Res; 22(22); 5419-27. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "MULTIPLE MYELOMA MULTIPLYING THERAPIES".
Collapse
Affiliation(s)
- Kenneth C Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
41
|
Neri P, Bahlis NJ, Lonial S. New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma. Clin Cancer Res 2016; 22:5959-5965. [PMID: 27797968 DOI: 10.1158/1078-0432.ccr-16-0184] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a B-cell malignancy characterized by proliferation of monoclonal plasma cells in the bone marrow. Although new therapeutic options introduced in recent years have resulted in improved survival outcomes, multiple myeloma remains incurable for a large number of patients, and new treatment options are urgently needed. Over the last 5 years, there has been a renewed interest in the clinical potential of immunotherapy for the treatment of multiple myeloma. Clinical progression of myeloma is known to be associated with progressive immune dysregulation and loss of immune surveillance that contribute to disease progression in association with progressive genetic complexity, rendering signaling-based treatments less effective. A variety of strategies to reverse the multiple myeloma-induced immunosuppression has been developed either in the form of immunomodulatory drugs, checkpoint inhibitors, mAbs, engineered T cells, and vaccines. They have shown encouraging results in patients with relapsed refractory multiple myeloma and hold great promise in further improving patient outcomes in multiple myeloma. This review will summarize the major approaches in multiple myeloma immunotherapies and discuss the mechanisms of action and clinical activity of these strategies. Clin Cancer Res; 22(24); 5959-65. ©2016 AACR.
Collapse
Affiliation(s)
- Paola Neri
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Nizar J Bahlis
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
42
|
Nahas MR, Avigan D. Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opin Biol Ther 2016; 16:1093-104. [DOI: 10.1080/14712598.2016.1190828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Li N, Wang XM, Jiang LJ, Zhang M, Li N, Wei ZZ, Zheng N, Zhao YJ. Effects of endoplasmic reticulum stress on the expression of inflammatory cytokines in patients with ulcerative colitis. World J Gastroenterol 2016; 22:2357-2365. [PMID: 26900298 PMCID: PMC4735010 DOI: 10.3748/wjg.v22.i7.2357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/05/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the changes of X-box binding protein 1 splicing (XBP1s) and inflammatory cytokine expression in patients with ulcerative colitis (UC) in response to endoplasmic reticulum stress (ERS).
METHODS: Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction were performed to detect the forms of XBP1s and the expression of interleukin (IL)-2, interferon (IFN)-γ, and IL-17α. Differences between patients with UC and normal subjects were then determined.
RESULTS: Mononuclear cells of the peripheral blood of normal subjects and UC patients with were stimulated with no drugs (control), phytohemagglutinin (PHA), thapsigargin (TG), or both PHA and TG. XBP1s in patients with UC exhibited splicing, which was greater with co-stimulation than single stimulation. Co-stimulation increased the expression level of IL-2, IFN-γ, and IL-17α.
CONCLUSION: The T lymphocytes of both normal subjects and patients with UC responded to ERS by activating the XBP1s-mediated signalling pathway, upregulating the expression of inflammatory cytokines, and increasing the occurrence of inflammation. The mononuclear cells in the peripheral blood of patients with UC were more sensitive to ERS than those in the peripheral blood of normal subjects.
Collapse
|
44
|
Matsushita M, Otsuka Y, Tsutsumida N, Tanaka C, Uchiumi A, Ozawa K, Suzuki T, Ichikawa D, Aburatani H, Okamoto S, Kawakami Y, Hattori Y. Identification of Novel HLA-A*24:02-Restricted Epitope Derived from a Homeobox Protein Expressed in Hematological Malignancies. PLoS One 2016; 11:e0146371. [PMID: 26784514 PMCID: PMC4718592 DOI: 10.1371/journal.pone.0146371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022] Open
Abstract
The homeobox protein, PEPP2 (RHOXF2), has been suggested as a cancer/testis (CT) antigen based on its expression pattern. However, the peptide epitope of PEPP2 that is recognized by cytotoxic T cells (CTLs) is unknown. In this study, we revealed that PEPP2 gene was highly expressed in myeloid leukemia cells and some other hematological malignancies. This gene was also expressed in leukemic stem-like cells. We next identified the first reported epitope peptide (PEPP2(271-279)). The CTLs induced by PEPP2(271-279) recognized PEPP2-positive target cells in an HLA-A*24:02-restricted manner. We also found that a demethylating agent, 5-aza-2'-deoxycytidine, could enhance PEPP2 expression in leukemia cells but not in blood mononuclear cells from healthy donors. The cytotoxic activity of anti-PEPP2 CTL against leukemic cells treated with 5-aza-2'-deoxycytidine was higher than that directed against untreated cells. These results suggest a clinical rationale that combined treatment with this novel antigen-specific immunotherapy together with demethylating agents might be effective in therapy-resistant myeloid leukemia patients.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
- * E-mail:
| | - Yohei Otsuka
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| | - Naoya Tsutsumida
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| | - Chiaki Tanaka
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| | - Akane Uchiumi
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| | - Koji Ozawa
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| | - Takuma Suzuki
- Division of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
| | - Daiju Ichikawa
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Laboratory Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Keio University, School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University, School of Medicine, Tokyo, Japan
| | - Yutaka Hattori
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
45
|
Kocoglu M, Badros A. The Role of Immunotherapy in Multiple Myeloma. Pharmaceuticals (Basel) 2016; 9:ph9010003. [PMID: 26784207 PMCID: PMC4812367 DOI: 10.3390/ph9010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma is the second most common hematologic malignancy. The treatment of this disease has changed considerably over the last two decades with the introduction to the clinical practice of novel agents such as proteasome inhibitors and immunomodulatory drugs. Basic research efforts towards better understanding of normal and missing immune surveillence in myeloma have led to development of new strategies and therapies that require the engagement of the immune system. Many of these treatments are under clinical development and have already started providing encouraging results. We, for the second time in the last two decades, are about to witness another shift of the paradigm in the management of this ailment. This review will summarize the major approaches in myeloma immunotherapies.
Collapse
Affiliation(s)
- Mehmet Kocoglu
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA.
| | - Ashraf Badros
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies. Curr Hematol Malig Rep 2015; 10:395-404. [DOI: 10.1007/s11899-015-0283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Mimura N, Hideshima T, Anderson KC. Novel therapeutic strategies for multiple myeloma. Exp Hematol 2015; 43:732-41. [PMID: 26118499 DOI: 10.1016/j.exphem.2015.04.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Multiple myeloma (MM) is a plasma-cell malignancy which remains incurable despite the recent emergence of multiple novel agents. Importantly, recent genetic and molecular analyses have revealed the complexity and heterogeneity of this disease, highlighting the need for therapeutic strategies to eliminate all clones. Moreover, the bone marrow microenvironment, including stromal cells and immune cells, plays a central role in MM pathogenesis, promoting tumor cell growth, survival, and drug resistance. New classes of agents including proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, and histone deacetylase inhibitors have shown remarkable efficacy; however, novel therapeutic approaches are still urgently needed to further improve patient outcomes. In this review, we discuss the recent advances and future strategies to ultimately develop MM therapies with curative potential.
Collapse
Affiliation(s)
- Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan.
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the clonal proliferation of malignant plasma cells in the bone marrow and the development of osteolytic bone lesions. MM has emerged as a paradigm within the cancers for the success of drug discovery and translational medicine. This article discusses immunotherapy as an encouraging option for the goal of inducing effective and long-lasting therapeutic outcome. Divided into two distinct approaches, passive or active, immunotherapy, which targets tumor-associated antigens has shown promising results in multiple preclinical and clinical studies.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
49
|
|
50
|
Bae J, Keskin DB, Cowens K, Lee AH, Dranoff G, Munshi NC, Anderson KC. Lenalidomide Polarizes Th1-specific Anti-tumor Immune Response and Expands XBP1 Antigen-Specific Central Memory CD3 +CD8 + T cells against Various Solid Tumors. ACTA ACUST UNITED AC 2015; 3. [PMID: 27668268 PMCID: PMC5032910 DOI: 10.4172/2329-6917.1000178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction Effective combination immunotherapeutic strategies may be required to enhance effector cells’ anti-tumor activities and improve clinical outcomes. Methods XBP1 antigen-specific cytotoxic T lymphocytes (XBP1-CTL) generated using immunogenic heteroclitic XBP1 US184-192 (YISPWILAV) and XBP1 SP367-375 (YLFPQLISV) peptides or various solid tumor cells over-expressing XBP1 target antigen were evaluated, either alone or in combination with lenalidomide, for phenotype and immune functional activity. Results Lenalidomide treatment of XBP1-CTL increased the proportion of CD45RO+ memory CD3+CD8+ T cells, but not the total CD3+CD8+ T cells. Lenalidomide upregulated critical T cell activation markers and costimulatory molecules (CD28, CD38, CD40L, CD69, ICOS), especially within the central memory CTL subset of XBP1-CTL, while decreasing TCRαβ and T cell checkpoint blockade (CTLA-4, PD-1). Lenalidomide increased the anti-tumor activities of XBP1-CTL memory subsets, which were associated with expression of Th1 transcriptional regulators (T-bet, Eomes) and Akt activation, thereby resulting in enhanced IFN-γ production, granzyme B upregulation and specific CD28/CD38-positive and CTLA-4/PD-1-negative cell proliferation. Conclusions These studies suggest the potential benefit of lenalidomide treatment to boost anti-tumor activities of XBP1-specific CTL against a variety of solid tumors and enhance response to an XBP1-directing cancer vaccine regime.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Derin B Keskin
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Kristen Cowens
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Ann-Hwee Lee
- Weill Cornell Medical College, New York, NY, USA
| | - Glen Dranoff
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|