1
|
Al-Omar A, Asadi M, Mert U, Muftuoglu C, Karakus HS, Goksel T, Caner A. Effects of Vinorelbine on M2 Macrophages in Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:2252. [PMID: 40076874 PMCID: PMC11900078 DOI: 10.3390/ijms26052252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) significantly influence tumor progression and patient responses to conventional chemotherapy. However, the interplay between anti-cancer drugs, immune responses in the tumor microenvironment, and their implications for cancer treatment remains poorly understood. This study investigates the effects of vinorelbine on M2 macrophages in lung cancer and its capacity to modulate TAMs toward an M1 phenotype. Peripheral blood mononuclear cells (PBMCs) were polarized into M2 macrophages, and subsequent phenotype alterations upon vinorelbine treatment were assessed. Additionally, we evaluated vinorelbine's impact on gene and protein expression associated with cancer progression and cell invasion in non-small-cell lung cancer (NSCLC) cells indirectly co-cultured with M2 macrophages. Notably, vinorelbine, particularly at low concentrations, reprogrammed M2 macrophages to exhibit M1-like characteristics. While M2 macrophages enhanced cancer cell invasion, vinorelbine significantly mitigated this effect. M2 macrophages led to the overexpression of numerous genes linked to tumor growth, angiogenesis, invasion, and immune suppression in NSCLC cells, increasing the BCL2/BAX ratio and promoting cellular resistance to apoptosis. The anti-tumor efficacy of vinorelbine appears to be partly attributed to the reprogramming of M2 macrophages to the M1 phenotype, suggesting that low-dose vinorelbine may optimize therapeutic outcomes while minimizing toxicity in cancer patients.
Collapse
Affiliation(s)
- Ahmed Al-Omar
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Milad Asadi
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Ufuk Mert
- Atatürk Health Care Vocational School, Ege University, Bornova 35100, Izmir, Turkey;
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
| | - Can Muftuoglu
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Haydar Soydaner Karakus
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Ayse Caner
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| |
Collapse
|
2
|
Chawla Y, Anderson EI, Smith M, Jain S, Evans LA, Neff J, Jang JS, Vazquez Rosario IK, Jevremovic D, Petterson XM, Sebastian S, Fonseca R, Kumar SK, Hitosugi T, Gonsalves WI. Lactate metabolism in clonal plasma cells and its therapeutic implications in multiple myeloma patients with elevated serum LDH levels. Cancer Metab 2025; 13:9. [PMID: 39948621 PMCID: PMC11827136 DOI: 10.1186/s40170-025-00379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/09/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION This study aimed to evaluate the metabolic differences between MM cells derived from patients with elevated serum LDH levels and those without elevated serum LDH levels to identify biological differences that could be exploited for therapeutic purposes. METHODS We performed transcriptome assessments of CD138 + MM cells derived from patients with elevated serum LDH levels compared to those without elevated serum LDH levels and validated the findings in a larger public dataset. Functional metabolic assessments of our findings were performed using a combination of stable isotope resolved metabolomics (SIRM), bioenergetic flux measurement assays, and live cell analysis in human myeloma cell lines and primary MM patient cells. RESULTS We identified SLC16A1, responsible for the formation of MCT1, a well-defined bi-directional transporter of lactate in and out of a cell with a predilection to importing extracellular lactate, as differentially expressed between the two groups. This finding was functionally confirmed by higher membranous MCT1 protein expression and SIRM on MM cells derived from patients with elevated serum LDH levels compared to those without elevated serum LDH levels. Finally, disrupting lactate transport in and out of CD138 + MM cells was maximally achievable only with dual inhibition of MCT1 and its partner, MCT4, which was preferentially more cytotoxic in MM cells derived from patients with elevated serum levels of LDH. CONCLUSION MCT1 mRNA and protein expression distinguish MM cells derived from patients with elevated serum LDH levels from those without elevated serum LDH levels. However, only dual inhibition of MCT1 and MCT4 can disrupt lactate transport in multiple myeloma (MM) cells, with preferential cytotoxicity in MM cells from patients with high serum LDH levels.
Collapse
Affiliation(s)
- Yogesh Chawla
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | | | - Matthew Smith
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Sonia Jain
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Laura A Evans
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jadee Neff
- Department of Pathology, Duke Health, Durham, NC, United States
| | - Jin Sung Jang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | - Sinto Sebastian
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, United States
| | - Rafael Fonseca
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, United States
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Taro Hitosugi
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
3
|
Lozano E, Mena MP, Garrabou G, Cardús O, Díaz T, Moreno DF, Mañé-Pujol J, Oliver-Caldés A, Battram A, Tovar N, Cibeira MT, Rodríguez-Lobato LG, Bladé J, Fernández de Larrea C, Rosiñol L. Increased PVR Expression on Bone Marrow Macrophages May Promote Resistance to TIGIT Blockade in Multiple Myeloma. Clin Cancer Res 2024; 30:3944-3955. [PMID: 38990101 DOI: 10.1158/1078-0432.ccr-24-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE TIGIT blockade in our ex vivo model of bone marrow (BM) reduced the number of malignant plasma cells (PC) in only half of patients with multiple myeloma. Here, we wanted to investigate whether increased expression of TIGIT ligands may inhibit T-cell immune response promoting resistance to TIGIT blockade. EXPERIMENTAL DESIGN We first characterized the number and phenotype of BM macrophages in different stages of the disease by multiparameter flow cytometry. We assessed the effect of TIGIT ligands on PC survival by performing experiments in the ex vivo BM model and analyzed changes in gene expression by using NanoString technology and real-time PCR. RESULTS The frequency of BM macrophages was significantly decreased in multiple myeloma, which was accompanied by changes in their immunophenotype. Moreover, we found a higher number of malignant PC in ex vivo BM cells cultured onto the poliovirus receptor (PVR) and nectin-2 compared with control, suggesting that both ligands may support PC survival. In addition, the presence of PVR, but not nectin-2, overcame the therapeutic effect of TIGIT blockade or exogenous IL2. Furthermore, exogenous IL2 increased TIGIT expression on both CD4+ and CD8+ T cells and, indirectly, PVR on BM macrophages. Consistently, PVR reduced the number of cytotoxic T cells and promoted a gene signature with reduced effector molecules. CONCLUSIONS IL2 induced TIGIT on T cells in the BM, in which increased PVR expression resulted in cytotoxic T-cell inhibition, promoting PC survival and resistance to TIGIT blockade.
Collapse
Affiliation(s)
- Ester Lozano
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona (UB), Barcelona, Spain
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mari-Pau Mena
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences-University of Barcelona, Barcelona, Spain
| | - Oriol Cardús
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Tania Díaz
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - David F Moreno
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Mañé-Pujol
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anthony Battram
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Natalia Tovar
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María-Teresa Cibeira
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Luis-Gerardo Rodríguez-Lobato
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Bladé
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Laura Rosiñol
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
5
|
Pamonsupornwichit T, Sornsuwan K, Juntit OA, Yasamut U, Takheaw N, Kasinrerk W, Wanachantararak P, Kodchakorn K, Nimmanpipug P, Intasai N, Tayapiwatana C. Engineered CD147-Deficient THP-1 Impairs Monocytic Myeloid-Derived Suppressor Cell Differentiation but Maintains Antibody-Dependent Cellular Phagocytosis Function for Jurkat T-ALL Cells with Humanized Anti-CD147 Antibody. Int J Mol Sci 2024; 25:6626. [PMID: 38928332 PMCID: PMC11203531 DOI: 10.3390/ijms25126626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.
Collapse
Affiliation(s)
- Thanathat Pamonsupornwichit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nutjeera Intasai
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Gui H, Fan X. Anti-tumor effect of dandelion flavone on multiple myeloma cells and its mechanism. Discov Oncol 2024; 15:215. [PMID: 38850433 PMCID: PMC11162407 DOI: 10.1007/s12672-024-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow and excessive monoclonal immunoglobulin production, leading to organ damage. Despite therapeutic advancements, recurrence and drug resistance remain significant challenges. OBJECTIVE This study investigates the effects of dandelion flavone (DF) on MM cell proliferation, migration, and invasion, aiming to elucidate the mechanisms involved in MM metastasis and to explore the potential of traditional Chinese medicine in MM therapy. METHODS DF's impact on myeloma cell viability was evaluated using the CCK-8 and colony formation assays. Cell mobility and invasiveness were assessed through wound healing and transwell assays, respectively. RT-PCR was employed to quantify mRNA levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Apoptotic rates and molecular markers were analyzed via flow cytometry and RT-PCR. The PI3K/AKT signaling pathway was studied using Western blot and ELISA, with IGF-1 and the PI3K inhibitor LY294002 used to validate the findings. RESULTS DF demonstrated dose-dependent inhibitory effects on MM cell proliferation, migration, and invasion. It reduced mRNA levels of MMP-2 and MMP-9 while increasing those of TIMP-1 and TIMP-2. Furthermore, DF enhanced the expression of pro-apoptotic proteins and inhibited M2 macrophage polarization by targeting key molecules and enzymes. The anti-myeloma activity of DF was mediated through the inhibition of the PI3K/AKT pathway, as evidenced by diminished phosphorylation and differential effects in the presence of IGF-1 and LY294002. CONCLUSION By modulating the PI3K/AKT pathway, DF effectively inhibits MM cell proliferation, migration, and invasion, and induces apoptosis, establishing a novel therapeutic strategy for MM based on traditional Chinese medicine.
Collapse
Affiliation(s)
- Hua Gui
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China
| | - Xiaohong Fan
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China.
| |
Collapse
|
7
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
8
|
John L, Poos AM, Brobeil A, Schinke C, Huhn S, Prokoph N, Lutz R, Wagner B, Zangari M, Tirier SM, Mallm JP, Schumacher S, Vonficht D, Solé-Boldo L, Quick S, Steiger S, Przybilla MJ, Bauer K, Baumann A, Hemmer S, Rehnitz C, Lückerath C, Sachpekidis C, Mechtersheimer G, Haberkorn U, Dimitrakopoulou-Strauss A, Reichert P, Barlogie B, Müller-Tidow C, Goldschmidt H, Hillengass J, Rasche L, Haas SF, van Rhee F, Rippe K, Raab MS, Sauer S, Weinhold N. Resolving the spatial architecture of myeloma and its microenvironment at the single-cell level. Nat Commun 2023; 14:5011. [PMID: 37591845 PMCID: PMC10435504 DOI: 10.1038/s41467-023-40584-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
In multiple myeloma spatial differences in the subclonal architecture, molecular signatures and composition of the microenvironment remain poorly characterized. To address this shortcoming, we perform multi-region sequencing on paired random bone marrow and focal lesion samples from 17 newly diagnosed patients. Using single-cell RNA- and ATAC-seq we find a median of 6 tumor subclones per patient and unique subclones in focal lesions. Genetically identical subclones display different levels of spatial transcriptional plasticity, including nearly identical profiles and pronounced heterogeneity at different sites, which can include differential expression of immunotherapy targets, such as CD20 and CD38. Macrophages are significantly depleted in the microenvironment of focal lesions. We observe proportional changes in the T-cell repertoire but no site-specific expansion of T-cell clones in intramedullary lesions. In conclusion, our results demonstrate the relevance of considering spatial heterogeneity in multiple myeloma with potential implications for models of cell-cell interactions and disease progression.
Collapse
Affiliation(s)
- Lukas John
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra M Poos
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Brobeil
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefanie Huhn
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Nina Prokoph
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raphael Lutz
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Barbara Wagner
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephan M Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single Cell Open Lab, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Dominik Vonficht
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Llorenç Solé-Boldo
- Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Sabine Quick
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon Steiger
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Moritz J Przybilla
- Division Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Katharina Bauer
- Single Cell Open Lab, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Anja Baumann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Hemmer
- Department of Orthopedic Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Rehnitz
- Department of Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Lückerath
- Department of Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christos Sachpekidis
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Reichert
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Bart Barlogie
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jens Hillengass
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Leo Rasche
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Simon F Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Sauer
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Cencini E, Sicuranza A, Ciofini S, Fabbri A, Bocchia M, Gozzetti A. Tumor-Associated Macrophages in Multiple Myeloma: Key Role in Disease Biology and Potential Therapeutic Implications. Curr Oncol 2023; 30:6111-6133. [PMID: 37504315 PMCID: PMC10378698 DOI: 10.3390/curroncol30070455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple myeloma (MM) is characterized by multiple relapse and, despite the introduction of novel therapies, the disease becomes ultimately drug-resistant. The tumor microenvironment (TME) within the bone marrow niche includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages, with a complex cross-talk between these cells and the MM tumor cells. Tumor-associated macrophages (TAM) have an important role in the MM pathogenesis, since they could promote plasma cells proliferation and angiogenesis, further supporting MM immune evasion and progression. TAM are polarized towards M1 (classically activated, antitumor activity) and M2 (alternatively activated, pro-tumor activity) subtypes. Many studies demonstrated a correlation between TAM, disease progression, drug-resistance and reduced survival in lymphoproliferative neoplasms, including MM. MM plasma cells in vitro could favor an M2 TAM polarization. Moreover, a possible correlation between the pro-tumor effect of M2 TAM and a reduced sensitivity to proteasome inhibitors and immunomodulatory drugs was hypothesized. Several clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased microvessel density, chemoresistance and reduced survival, independently of the MM stage. This review provided an overview of the biology and clinical relevance of TAM in MM, as well as a comprehensive evaluation of a potential TAM-targeted immunotherapy.
Collapse
Affiliation(s)
- Emanuele Cencini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Anna Sicuranza
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Sara Ciofini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Monica Bocchia
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Alessandro Gozzetti
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| |
Collapse
|
10
|
Chen M, Jiang J, Hou J. Single-cell technologies in multiple myeloma: new insights into disease pathogenesis and translational implications. Biomark Res 2023; 11:55. [PMID: 37259170 PMCID: PMC10234006 DOI: 10.1186/s40364-023-00502-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of plasma cells. Although therapeutic advances have been made to improve clinical outcomes and to prolong patients' survival in the past two decades, MM remains largely incurable. Single-cell sequencing (SCS) is a powerful method to dissect the cellular and molecular landscape at single-cell resolution, instead of providing averaged results. The application of single-cell technologies promises to address outstanding questions in myeloma biology and has revolutionized our understanding of the inter- and intra-tumor heterogeneity, tumor microenvironment, and mechanisms of therapeutic resistance in MM. In this review, we summarize the recently developed SCS methodologies and latest MM research progress achieved by single-cell profiling, including information regarding the cancer and immune cell landscapes, tumor heterogeneities, underlying mechanisms and biomarkers associated with therapeutic response and resistance. We also discuss future directions of applying transformative SCS approaches with contribution to clinical translation.
Collapse
Affiliation(s)
- Mengping Chen
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jinxing Jiang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
11
|
Yan H, He D, Qu J, Liu Y, Xu R, Gu H, Chen J, Li Y, Zhang E, Zhao Y, He J, Cai Z. Interleukin-32γ promotes macrophage-mediated chemoresistance by inducing CSF1-dependent M2 macrophage polarization in multiple myeloma. Cancer Immunol Immunother 2023; 72:327-338. [PMID: 35881196 PMCID: PMC10991222 DOI: 10.1007/s00262-022-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023]
Abstract
Macrophages (MΦs) are an abundant component in the multiple myeloma (MM) environment and contribute to MM drug resistance. We previously showed that interleukin-32 (IL-32) is highly expressed in MM patients and induces the immunosuppressive function of MΦs. The present study was designed to explore the role of IL-32 in MΦ-mediated MM drug resistance and the underlying mechanism. Our analysis revealed that IL-32 expression was upregulated in relapsed MM patients and associated with CD206+ M2 MΦ infiltration. Subsequently, we found that the most active isoform, IL-32γ, promoted MΦs to protect MM cells from drug-induced apoptosis both in vitro and in vivo. Furthermore, by evaluating many parameters, including surface markers, cytokines, metabolic enzymes and characteristic molecules, IL-32γ was verified to induce the polarization of M2 MΦs, a function that was partly dependent on increasing the expression of colony-stimulating factor 1 (CSF1). Taken together, the results of our study indicate that IL-32γ promotes MΦ-mediated MM drug resistance and modifies MΦs toward the M2 phenotype, providing a crucial theoretical basis for targeted MΦ immunotherapy.
Collapse
Affiliation(s)
- Haimeng Yan
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Donghua He
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Jianwei Qu
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Yang Liu
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Ruyi Xu
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Huiyao Gu
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Jing Chen
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Yi Li
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Enfan Zhang
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Yi Zhao
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Jingsong He
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Zhen Cai
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
12
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
13
|
Wang SSY, Chng WJ, Liu H, de Mel S. Tumor-Associated Macrophages and Related Myelomonocytic Cells in the Tumor Microenvironment of Multiple Myeloma. Cancers (Basel) 2022; 14:5654. [PMID: 36428745 PMCID: PMC9688291 DOI: 10.3390/cancers14225654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is the second-most common hematologic malignancy and remains incurable despite potent plasma cell directed therapeutics. The tumor microenvironment (TME) is a key player in the pathogenesis and progression of MM and is an active focus of research with a view to targeting immune dysregulation. Tumor-associated macrophages (TAM), myeloid derived suppressor cells (MDSC), and dendritic cells (DC) are known to drive progression and treatment resistance in many cancers. They have also been shown to promote MM progression and immune suppression in vitro, and there is growing evidence of their impact on clinical outcomes. The heterogeneity and functional characteristics of myelomonocytic cells in MM are being unraveled through high-dimensional immune profiling techniques. We are also beginning to understand how they may affect and be modulated by current and future MM therapeutics. In this review, we provide an overview of the biology and clinical relevance of TAMs, MDSCs, and DCs in the MM TME. We also highlight key areas to be addressed in future research as well as our perspectives on how the myelomonocytic compartment of the TME may influence therapeutic strategies of the future.
Collapse
Affiliation(s)
- Samuel S. Y. Wang
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
- Cancer Science Institute, National University of Singapore, 14 Medical Dr, #12-01 Centre for Translational Medicine, Singapore 117599, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| |
Collapse
|
14
|
Brennan K, Iversen KF, Blanco-Fernández A, Lund T, Plesner T, Mc Gee MM. Extracellular Vesicles Isolated from Plasma of Multiple Myeloma Patients Treated with Daratumumab Express CD38, PD-L1, and the Complement Inhibitory Proteins CD55 and CD59. Cells 2022; 11:3365. [PMID: 36359760 PMCID: PMC9658084 DOI: 10.3390/cells11213365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Daratumumab (DARA) has improved the outcome of treatment of multiple myeloma (MM). DARA acts via complement-dependent and -independent mechanisms. Resistance to DARA may result from upregulation of the complement inhibitory proteins CD55 and CD59, downregulation of the DARA target CD38 on myeloma cells or altered expression of the checkpoint inhibitor ligand programmed death ligand-1 (PD-L1) or other mechanisms. In this study, EVs were isolated from peripheral blood (PB) and bone marrow (BM) from multiple myeloma (MM) patients treated with DARA and PB of healthy controls. EV size and number and the expression of CD38, CD55, CD59 and PD-L1 as well as the EV markers CD9, CD63, CD81, CD147 were determined by flow cytometry. Results reveal that all patient EV samples express CD38, PD-L1, CD55 and CD59. The level of CD55 and CD59 are elevated on MM PB EVs compared with healthy controls, and the level of PD-L1 on MM PB EVs is higher in patients responding to treatment with DARA. CD147, a marker of various aspects of malignant behaviour of cancer cells and a potential target for therapy, was significantly elevated on MM EVs compared with healthy controls. Furthermore, mass spectrometry data suggests that MM PB EVs bind DARA. This study reveals a MM PB and BM EV protein signature that may have diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kieran Brennan
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| | - Katrine F. Iversen
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Plesner
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| |
Collapse
|
15
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Wang H, Shao R, Liu W, Peng S, Bai S, Fu B, Zhao C, Lu Y. Integrative analysis identifies CXCL11 as an immune-related prognostic biomarker correlated with cell proliferation and immune infiltration in multiple myeloma microenvironment. Cancer Cell Int 2022; 22:187. [PMID: 35568859 PMCID: PMC9107742 DOI: 10.1186/s12935-022-02608-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Purpose The interaction between tumor cells and tumor microenvironment (TME) has an important impact on progression and prognosis of multiple myeloma (MM), and has been proven to be promising therapeutic targets. This study intended to explore the relationship between TME and prognosis and identify valuable biomarkers of MM. Methods The transcriptomic and clinical information of MM retrieved from the Gene Expression Omnibus (GEO) were used to establish the model. The curve of Kaplan–Meier survival and the time-dependent receiver operating characteristic (ROC) were used to appraise the predictive ability. A nomogram was established for clinical application. Furthermore, the CIBERSORT algorithm was used to investigate the relation between IRGPI with the infiltration of immune cells. We also used histology, as well as in vitro and in vivo experiments to validate these findings. Results The results demonstrated an immune-related gene-based prognostic index (IRGPI) combined with clinical information. Patients were separated into high- and low-risk groups based on risk score, which had significantly difference in survival status and immune infiltrations. Furthermore, we identified CXCL11 as a key factor, which positively promotes the progression of MM and correlate with macrophage M2-like polarization and tumor immune cells infiltration. Conclusion Our findings suggest the IRGPI significantly demonstrate the differential prognosis and prediction of immune cells infiltration. It provides some insights into the complex interaction between myeloma tumor cells and the TME, as well as in the development of a novel biomarker target for anti-MM therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02608-9.
Collapse
Affiliation(s)
- Huizhong Wang
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Ruonan Shao
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Wenjian Liu
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Shumei Peng
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 510060, China
| | - Shenrui Bai
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Bibo Fu
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Congling Zhao
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 510060, China.
| | - Yue Lu
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China. .,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
17
|
Gozzetti A, Ciofini S, Sicuranza A, Pacelli P, Raspadori D, Cencini E, Tocci D, Bocchia M. Drug resistance and minimal residual disease in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:171-183. [PMID: 35582527 PMCID: PMC8992600 DOI: 10.20517/cdr.2021.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/12/2022]
Abstract
Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. New drugs have been introduced and complete responses are frequently seen. However, the majority of MM patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock protein induction for proteasome inhibitors; downregulation of CRBN expression; deregulation of IRF4 expression; mutation of CRBN, IKZF1, and IKZF3 for immunomodulatory drugs and decreased target expression; complement protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5. Sustained MRD negativity is related to prolonged survival, and it is evaluated in all recent clinical trials as a surrogate of drug efficacy.
Collapse
Affiliation(s)
- Alessandro Gozzetti
- Hematology, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Qian S, Han X, Sha X, Tian F, Huang H, Jiang P, Huang G, Ma B, Zhang H, Zhu Y, Sun X. Aqueous Extract of Cimicifuga dahurica Reprogramming Macrophage Polarization by Activating TLR4-NF-κB Signaling Pathway. J Inflamm Res 2022; 15:1027-1046. [PMID: 35210810 PMCID: PMC8858003 DOI: 10.2147/jir.s345497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Cimicifuga dahurica (C. dahurica), which has been used in traditional oriental medicine for a long period, was reported to exert extensive antitumor activity, but the effect and molecular biological mechanism of C. dahurica on multiple myeloma (MM) has not been elaborated. Tumor-associated macrophages (TAMs) exhibit a sustained polarization between tumor killing M1 subtype and tumor supporting M2 subtype. And a lower ratio of M1/M2 is associated with tumor angiogenesis, proliferation and invasion. We explored the inhibitory effect of the aqueous extract of the root of C. dahurica (CRAE) on tumor growth by reprogramming macrophage polarization in the tumor microenvironment. Methods Mice bearing SP2/0 multiple myeloma were treated with CRAE. Western blotting (WB), immunohistochemistry (IHC) and immunofluorescence staining were utilized to assess tumor growth and TAM populations. Macrophages were depleted by injection of clodronate liposomes to determine and measure the role of CRAE as an anti-tumor agent by targeting macrophages. To simulate tumor microenvironment, MM cells H929 and TAMs were co-cultured using the transwell co-culture system. By using CRAE as an immunoregulator in M2-like macrophages, we analyzed CRAE-treated macrophage-associated surface markers and cytokines by flow cytometry and WB. Results The results indicated that CRAE treatment could reduce tumor burden of MM mice and a high degree of M1-like macrophages infiltration was detected in tumor tissues. In vitro co-culture system, CRAE significantly promoted the polarization of M2 to M1 phenotype, which led to the increase in apoptosis of myeloma cells. It was found that the M1 polarization induced by CRAE depended on the TLR4-MyD88-TAK1-NF-κB signal transduction. Conclusion This study elucidated the anticancer mechanism of the aqueous extract of C. dahurica (CRAE) through reprogramming macrophage polarization and highlighted that CRAE could act as a potential novel option for cancer immunotherapy.
Collapse
Affiliation(s)
- Shushu Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xuan Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaocao Sha
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Fang Tian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hong Huang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Pengjun Jiang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Guoshun Huang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Bangyun Ma
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hong Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yiye Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xuemei Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Xuemei Sun, Tel +86-25-86617141, Fax +86-25-86518690, Email
| |
Collapse
|
19
|
Leonard NA, Reidy E, Thompson K, McDermott E, Peerani E, Tomas Bort E, Balkwill FR, Loessner D, Ryan AE. Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers (Basel) 2021; 13:cancers13235998. [PMID: 34885111 PMCID: PMC8656544 DOI: 10.3390/cancers13235998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most common type of cancer in the world. Immune cells and normal supporting cells (MSCs) within a tumour affect patient survival and change how well treatments work. This research aimed to develop a more relevant 3D cancer model that combines MSCs and immune cells with cancer cells to test the effects of multiple cell types on tumour growth. We successfully developed a 3D model that shows that MSCs and immune cells can change the cancer-supporting environment around the tumour cells. We show that combining MSCs and immune cells with cancer cells can increase the level of immune-suppressing molecules they release and change immunotherapeutic drug targets on the cancer cells, similar to changes seen in human tumours. Using this 3D model for research may be better for testing new drugs than traditional 2D methods and could enable the identification of new drug targets. Abstract Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. CRC develops in a complex tumour microenvironment (TME) with both mesenchymal stromal cells (MSCs) and immune infiltrate, shown to alter disease progression and treatment response. We hypothesised that an accessible, affordable model of CRC that combines multiple cell types will improve research translation to the clinic and enable the identification of novel therapeutic targets. A viable gelatine-methacrloyl-based hydrogel culture system that incorporates CRC cells with MSCs and a monocyte cell line was developed. Gels were analysed on day 10 by PCR, cytokine array, microscopy and flow cytometry. The addition of stromal cells increased transcription of matrix remodelling proteins FN1 and MMP9, induced release of tumour-promoting immune molecules MIF, Serpin E1, CXCL1, IL-8 and CXCL12 and altered cancer cell expression of immunotherapeutic targets EGFR, CD47 and PD-L1. Treatment with PD153035, an EGFR inhibitor, revealed altered CRC expression of PD-L1 but only in gels lacking MSCs. We established a viable 3D model of CRC that combined cancer cells, MSCs and monocytic cells that can be used to research the role the stroma plays in the TME, identify novel therapeutic targets and improve the transitional efficacy of therapies.
Collapse
Affiliation(s)
- Niamh A. Leonard
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| | - Eileen Reidy
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Emma McDermott
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Eleonora Peerani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Elena Tomas Bort
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
- Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Aideen E. Ryan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| |
Collapse
|
20
|
Cencini E, Fabbri A, Sicuranza A, Gozzetti A, Bocchia M. The Role of Tumor-Associated Macrophages in Hematologic Malignancies. Cancers (Basel) 2021; 13:cancers13143597. [PMID: 34298810 PMCID: PMC8304632 DOI: 10.3390/cancers13143597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumor-associated macrophages (TAM) represent a leading component of the tumor microenvironment in hematologic malignancies. TAM could display antitumor activity or, conversely, could contribute to tumor growth and survival, depending on their polarization. TAM are polarized towards form M1, with a pro-inflammatory phenotype and an antineoplastic activity, or M2, with an alternately activated phenotype, associated with a poor outcome in patients presenting with leukemia, lymphoma or multiple myeloma. The molecular mechanisms of TAM in different types of hematologic malignancies are different due to the peculiar microenvironment of each disease. TAM could contribute to tumor progression, reduced apoptosis and angiogenesis; a different TAM polarization could explain a reduced treatment response in patients with a similar disease subtype. The aim of our review is to better define the role of TAM in patients with leukemia, lymphoma or multiple myeloma. Finally, we would like to focus on TAM as a possible target for antineoplastic therapy. Abstract The tumor microenvironment includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages; these reactive cells could interplay with malignant cells and promote tumor growth and survival. Among its cellular components, tumor-associated macrophages (TAM) represent a component of the innate immune system and play an important role, especially in hematologic malignancies. Depending on the stimuli that trigger their activation, TAM are polarized towards form M1, contributing to antitumor responses, or M2, associated with tumor progression. Many studies demonstrated a correlation between TAM, disease progression and the patient’s outcome in lymphoproliferative neoplasms, such as Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), even if with conflicting results. A critical hurdle to overcome is surely represented by the heterogeneity in the choice of the optimal markers and methods used for TAM analysis (gene-expression profile vs. immunohistochemistry, CD163vs. CD68vs. CD163/CD68 double-positive cells). TAM have been recently linked to the development and progression of multiple myeloma and leukemia, with a critical role in the homing of malignant cells, drug resistance, immune suppression and angiogenesis. As such, this review will summarize the role of TAM in different hematologic malignancies, focusing on the complex interplay between TAM and tumor cells, the prognostic value of TAM and the possible TAM-targeted therapeutic strategies.
Collapse
|
21
|
Botta C, Mendicino F, Martino EA, Vigna E, Ronchetti D, Correale P, Morabito F, Neri A, Gentile M. Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities. Cancers (Basel) 2021; 13:3213. [PMID: 34203150 PMCID: PMC8268448 DOI: 10.3390/cancers13133213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as "smoldering" MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant "epigenetic" alterations of different normal cell populations within the bone marrow (BM) niche, including the "evasion" from immune-system control. Additionally, MM cells could "educate" the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients' worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.
Collapse
Affiliation(s)
- Cirino Botta
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
- Unit of Hematology, Department of Health Promotion, Maternal-Infant, Internal and Specialized Medicine of Excellence G. D’Alessandro, University of Palermo, 90127 Palermo, Italy
| | - Francesco Mendicino
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| | - Enrica Antonia Martino
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| | - Ernesto Vigna
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (A.N.)
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Fortunato Morabito
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem 91191, Israel;
- Biothecnology Research Unit, AO of Cosenza, 87100 Cosenza, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (A.N.)
- Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Massimo Gentile
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| |
Collapse
|
22
|
Andersen MN, Andersen NF, Lauridsen KL, Etzerodt A, Sorensen BS, Abildgaard N, Plesner T, Hokland M, Møller HJ. STAT3 is over-activated within CD163 pos bone marrow macrophages in both Multiple Myeloma and the benign pre-condition MGUS. Cancer Immunol Immunother 2021; 71:177-187. [PMID: 34061243 DOI: 10.1007/s00262-021-02952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Tumour-associated macrophages (TAMs) support cancer cell survival and suppress anti-tumour immunity. Tumour infiltration by CD163pos TAMs is associated with poor outcome in several human malignancies, including multiple myeloma (MM). Signal transducer and activator of transcription 3 (STAT3) is over-activated in human cancers, and specifically within TAMs activation of STAT3 may induce an immunosuppressive (M2-like) phenotype. Therefore, STAT3-inhibition in TAMs may be a future therapeutic strategy.We investigated TAM markers CD163, CD206, and activated STAT3 (pSTAT3) in patients with MGUS (n = 32) and MM (n = 45), as well as healthy controls (HCs, n = 13).Blood levels of the macrophage biomarkers sCD163 and sCD206, and circulating cytokines, as well as bone marrow mRNA expression of CD163 and CD206, were generally increased in MGUS and MM patients, compared to HCs, but to highly similar levels. By immunohistochemistry, bone marrow levels of pSTAT3 were increased specifically within CD163pos cells in both MGUS and MM patients.In conclusion, macrophage-related inflammatory changes, including activation of STAT3, were present already at the MGUS stage, at similar levels as in MM. Specific increase in pSTAT3 levels within CD163pos cells supports that the CD163 scavenger receptor may be a useful target for future delivery of STAT3-inhibitory drugs to TAMs in MM patients.
Collapse
Affiliation(s)
- Morten N Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| | - Niels F Andersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Trine Plesner
- Department of Histopathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
BMI1 regulates multiple myeloma-associated macrophage's pro-myeloma functions. Cell Death Dis 2021; 12:495. [PMID: 33993198 PMCID: PMC8124065 DOI: 10.1038/s41419-021-03748-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is an aggressive malignancy characterized by terminally differentiated plasma cells accumulation in the bone marrow (BM). MM BM exhibits elevated MΦs (macrophages) numbers relative to healthy BM. Current evidence indicates that MM-MΦs (MM-associated macrophages) have pro-myeloma functions, and BM MM-MΦs numbers negatively correlate with patient survival. Here, we found that BMI1, a polycomb-group protein, modulates the pro-myeloma functions of MM-MΦs, which expressed higher BMI1 levels relative to normal MΦs. In the MM tumor microenvironment, hedgehog signaling in MΦs was activated by MM-derived sonic hedgehog, and BMI1 transcription subsequently activated by c-Myc. Relative to wild-type MM-MΦs, BMI1-KO (BMI1 knockout) MM-MΦs from BM cells of BMI1-KO mice exhibited reduced proliferation and suppressed expression of angiogenic factors. Additionally, BMI1-KO MM-MΦs lost their ability to protect MM cells from chemotherapy-induced cell death. In vivo analysis showed that relative to wild-type MM-MΦs, BMI1-KO MM-MΦs lost their pro-myeloma effects. Together, our data show that BMI1 mediates the pro-myeloma functions of MM-MΦs.
Collapse
|
24
|
CD4+ T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages. Blood Adv 2021; 4:2595-2605. [PMID: 32544236 DOI: 10.1182/bloodadvances.2020001434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow-resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.
Collapse
|
25
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
26
|
Mougiakakos D, Bach C, Böttcher M, Beier F, Röhner L, Stoll A, Rehli M, Gebhard C, Lischer C, Eberhardt M, Vera J, Büttner-Herold M, Bitterer K, Balzer H, Leffler M, Jitschin S, Hundemer M, Awwad MHS, Busch M, Stenger S, Völkl S, Schütz C, Krönke J, Mackensen A, Bruns H. The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages. Cancer Immunol Res 2021; 9:265-278. [PMID: 33563611 DOI: 10.1158/2326-6066.cir-20-0555] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
The bone marrow niche has a pivotal role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the multiple myeloma bone marrow microenvironment. Myeloma-associated macrophages (MAM) in the bone marrow niche are M2 like. They provide nurturing signals to multiple myeloma cells and promote immune escape. Reprogramming M2-like macrophages toward a tumoricidal M1 phenotype represents an intriguing therapeutic strategy. This is especially interesting in view of the successful use of mAbs against multiple myeloma cells, as these therapies hold the potential to trigger macrophage-mediated phagocytosis and cytotoxicity. In this study, we observed that MAMs derived from patients treated with the immunomodulatory drug (IMiD) lenalidomide skewed phenotypically and functionally toward an M1 phenotype. Lenalidomide is known to exert its beneficial effects by modulating the CRBN-CRL4 E3 ligase to ubiquitinate and degrade the transcription factor IKAROS family zinc finger 1 (IKZF1). In M2-like MAMs, we observed enhanced IKZF1 levels that vanished through treatment with lenalidomide, yielding MAMs with a bioenergetic profile, T-cell stimulatory properties, and loss of tumor-promoting capabilities that resemble M1 cells. We also provide evidence that IMiDs interfere epigenetically, via degradation of IKZF1, with IFN regulatory factors 4 and 5, which in turn alters the balance of M1/M2 polarization. We validated our observations in vivo using the CrbnI391V mouse model that recapitulates the IMiD-triggered IKZF1 degradation. These data show a role for IKZF1 in macrophage polarization and can provide explanations for the clinical benefits observed when combining IMiDs with therapeutic antibodies.See related Spotlight on p. 254.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Bach
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabian Beier
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Medical School, Aachen, Germany
| | - Linda Röhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Andrej Stoll
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Lischer
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Eberhardt
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Bitterer
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heidi Balzer
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Magdalena Leffler
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simon Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, Heidelberg, Germany
| | - Mohamed H S Awwad
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, Heidelberg, Germany
| | - Martin Busch
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Jan Krönke
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany.,Charite Berlin Hematology Department at Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
27
|
The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers (Basel) 2021; 13:cancers13040625. [PMID: 33562441 PMCID: PMC7914424 DOI: 10.3390/cancers13040625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between multiple myeloma and immune cells within the bone marrow niche has been identified as an emerging hallmark of this hematological disease. As our knowledge on this interplay increases, it becomes more evident that successful treatment approaches need to boost the body’s natural defenses through immunotherapy. The present review will focus on the mechanisms by which myeloma cancer cells turn immune populations into their “partners in crime”. Additionally, we will provide an overview of currently ongoing pre-clinical studies targeting the bone marrow immune microenvironment. Abstract Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.
Collapse
|
28
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
29
|
Macrophages in multiple myeloma: key roles and therapeutic strategies. Cancer Metastasis Rev 2021; 40:273-284. [PMID: 33404860 DOI: 10.1007/s10555-020-09943-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Macrophages are a vital component of the tumour microenvironment and crucial mediators of tumour progression. In the last decade, significant strides have been made in understanding the crucial functional roles played by macrophages in the development of the plasma cell (PC) malignancy, multiple myeloma (MM). Whilst the interaction between MM PC and stromal cells within the bone marrow (BM) microenvironment has been extensively studied, we are only just starting to appreciate the multifaceted roles played by macrophages in disease progression. Accumulating evidence demonstrates that macrophage infiltration is associated with poor overall survival in MM. Indeed, macrophages influence numerous pathways critical for the initiation and progression of MM, including homing of malignant cells to BM, tumour cell growth and survival, drug resistance, angiogenesis and immune suppression. As such, therapeutic strategies aimed at targeting macrophages within the BM niche have promise in the clinical setting. This review will discuss the functions elicited by macrophages throughout different stages of MM and provide a comprehensive evaluation of potential macrophage-targeted therapies.
Collapse
|
30
|
Papadimitriou K, Tsakirakis N, Malandrakis P, Vitsos P, Metousis A, Orologas-Stavrou N, Ntanasis-Stathopoulos I, Kanellias N, Eleutherakis-Papaiakovou E, Pothos P, Fotiou D, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Terpos E, Tsitsilonis OE, Kostopoulos IV. Deep Phenotyping Reveals Distinct Immune Signatures Correlating with Prognostication, Treatment Responses, and MRD Status in Multiple Myeloma. Cancers (Basel) 2020; 12:E3245. [PMID: 33158030 PMCID: PMC7692501 DOI: 10.3390/cancers12113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances, Multiple Myeloma (MM) remains an incurable disease with apparent heterogeneity that may explain patients' variable clinical outcomes. While the phenotypic, (epi)genetic, and molecular characteristics of myeloma cells have been thoroughly examined, there is limited information regarding the role of the bone marrow (BM) microenvironment in the natural history of the disease. In the present study, we performed deep phenotyping of 32 distinct immune cell subsets in a cohort of 94 MM patients to reveal unique immune profiles in both BM and peripheral blood (PB) that characterize distinct prognostic groups, responses to induction treatment, and minimal residual disease (MRD) status. Our data show that PB cells do not reflect the BM microenvironment and that the two sites should be studied independently. Adverse ISS stage and high-risk cytogenetics were correlated with distinct immune profiles; most importantly, BM signatures comprised decreased tumor-associated macrophages (TAMs) and erythroblasts, whereas the unique Treg signatures in PB could discriminate those patients achieving complete remission after VRd induction therapy. Moreover, MRD negative status was correlated with a more experienced CD4- and CD8-mediated immunity phenotype in both BM and PB, thus highlighting a critical role of by-stander cells linked to MRD biology.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Nikolaos Tsakirakis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Panagiotis Vitsos
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Andreas Metousis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Nikolaos Orologas-Stavrou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Panagiotis Pothos
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.M.); (I.N.-S.); (N.K.); (E.E.-P.); (D.F.); (M.G.); (E.K.); (M.-A.D.); (E.T.)
| | - Ourania E. Tsitsilonis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| | - Ioannis V. Kostopoulos
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (N.T.); (P.V.); (A.M.); (N.O.-S.); (P.P.)
| |
Collapse
|
31
|
Danziger SA, McConnell M, Gockley J, Young MH, Rosenthal A, Schmitz F, Reiss DJ, Farmer P, Alapat DV, Singh A, Ashby C, Bauer M, Ren Y, Smith K, Couto SS, van Rhee F, Davies F, Zangari M, Petty N, Orlowski RZ, Dhodapkar MV, Copeland WB, Fox B, Hoering A, Fitch A, Newhall K, Barlogie B, Trotter MWB, Hershberg RM, Walker BA, Dervan AP, Ratushny AV, Morgan GJ. Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: A cohort study of patients in the Total Therapy clinical trials. PLoS Med 2020; 17:e1003323. [PMID: 33147277 PMCID: PMC7641353 DOI: 10.1371/journal.pmed.1003323] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is increasingly appreciated as an important determinant of cancer outcome, including in multiple myeloma (MM). However, most myeloma microenvironment studies have been based on bone marrow (BM) aspirates, which often do not fully reflect the cellular content of BM tissue itself. To address this limitation in myeloma research, we systematically characterized the whole bone marrow (WBM) microenvironment during premalignant, baseline, on treatment, and post-treatment phases. METHODS AND FINDINGS Between 2004 and 2019, 998 BM samples were taken from 436 patients with newly diagnosed MM (NDMM) at the University of Arkansas for Medical Sciences in Little Rock, Arkansas, United States of America. These patients were 61% male and 39% female, 89% White, 8% Black, and 3% other/refused, with a mean age of 58 years. Using WBM and matched cluster of differentiation (CD)138-selected tumor gene expression to control for tumor burden, we identified a subgroup of patients with an adverse TME associated with 17 fewer months of progression-free survival (PFS) (95% confidence interval [CI] 5-29, 49-69 versus 70-82 months, χ2 p = 0.001) and 15 fewer months of overall survival (OS; 95% CI -1 to 31, 92-120 versus 113-129 months, χ2 p = 0.036). Using immunohistochemistry-validated computational tools that identify distinct cell types from bulk gene expression, we showed that the adverse outcome was correlated with elevated CD8+ T cell and reduced granulocytic cell proportions. This microenvironment develops during the progression of premalignant to malignant disease and becomes less prevalent after therapy, in which it is associated with improved outcomes. In patients with quantified International Staging System (ISS) stage and 70-gene Prognostic Risk Score (GEP-70) scores, taking the microenvironment into consideration would have identified an additional 40 out of 290 patients (14%, premutation p = 0.001) with significantly worse outcomes (PFS, 95% CI 6-36, 49-73 versus 74-90 months) who were not identified by existing clinical (ISS stage III) and tumor (GEP-70) criteria as high risk. The main limitations of this study are that it relies on computationally identified cell types and that patients were treated with thalidomide rather than current therapies. CONCLUSIONS In this study, we observe that granulocyte signatures in the MM TME contribute to a more accurate prognosis. This implies that future researchers and clinicians treating patients should quantify TME components, in particular monocytes and granulocytes, which are often ignored in microenvironment studies.
Collapse
Affiliation(s)
- Samuel A. Danziger
- Bristol Myers Squibb, Seattle, Washington, United States of America
- * E-mail: (SAD); (AVR); (GJM)
| | - Mark McConnell
- Bristol Myers Squibb, Seattle, Washington, United States of America
| | - Jake Gockley
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Mary H. Young
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Adam Rosenthal
- Cancer Research and Biostatistics, Seattle, Washington, United States of America
| | - Frank Schmitz
- Sage Bionetworks, Seattle, Washington, United States of America
| | - David J. Reiss
- Bristol Myers Squibb, Seattle, Washington, United States of America
| | - Phil Farmer
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daisy V. Alapat
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Amrit Singh
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Michael Bauer
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Yan Ren
- Bristol Myers Squibb, Seattle, Washington, United States of America
| | - Kelsie Smith
- Bristol Myers Squibb, Seattle, Washington, United States of America
| | | | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Faith Davies
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nathan Petty
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert Z. Orlowski
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Madhav V. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | | | - Brian Fox
- Bristol Myers Squibb, Seattle, Washington, United States of America
| | - Antje Hoering
- Cancer Research and Biostatistics, Seattle, Washington, United States of America
| | - Alison Fitch
- Bristol Myers Squibb, Seattle, Washington, United States of America
| | - Katie Newhall
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Bart Barlogie
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | | | - Brian A. Walker
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Alexander V. Ratushny
- Bristol Myers Squibb, Seattle, Washington, United States of America
- * E-mail: (SAD); (AVR); (GJM)
| | - Gareth J. Morgan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (SAD); (AVR); (GJM)
| |
Collapse
|
32
|
Nii T, Kuwahara T, Makino K, Tabata Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng Part A 2020; 26:1272-1282. [PMID: 32434426 DOI: 10.1089/ten.tea.2020.0095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) for the sustained release of drugs. The GM containing adenosine (A) (GM-A) were prepared and cultured with TAM to obtain three-dimensional (3D) TAM aggregates incorporating GM-A (3D TAM-GM-A). The GM-A incorporation enabled TAM to enhance the secretion level of vascular endothelial growth factor. When co-cultured with HepG2 liver cancer cells in an invasion assay, the 3D TAM-GM-A promoted the invasion rate of cancer cells. In addition, the E-cadherin expression level decreased to a significantly greater extent compared with that co-cultured with TAM aggregates incorporating GM, whereas the significantly higher expression of N-cadherin and Vimentin was observed. This indicates that the epithelial-mesenchymal transition event was induced. The GM containing transforming growth factor-β1 (TGF-β1) were prepared to incorporate into 3D CAF (3D CAF-GM-TGF-β1). Following a co-culture of mixed 3D CAF-GM-TGF-β1 and 3D TAM-GM-A and every HepG2, MCF-7 breast cancer cell, or WA-hT lung cancer cell, the invasion rate of every cancer cell enhanced depending on the mixing ratio of 3D TAM-GM-A and 3D CAF-GM-TGF-β1. The amount of matrix metalloproteinase-2 (MMP-2) secreted also enhanced, and the enhancement was well corresponded with that of cancer cell invasion rate. The higher MMP secretion assists the breakdown of basement membrane, leading to the higher rate of cancer cell invasion. This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro. Impact statement This study proposes a cell culture system to enhance the tumor-associated macrophage function based on the combination of three-dimensional (3D) cell aggregates and gelatin hydrogel microspheres (GM) for adenosine delivery. An additional combination of 3D cancer-associated fibroblasts incorporating GM containing transforming growth factor-β1 allowed cancer cells to enhance their invasion rate. This co-culture system is promising to evaluate the ability of cancer cell invasion for anticancer drug screening.
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
CyBorD-DARA is potent initial induction for MM and enhances ADCP: initial results of the 16-BCNI-001/CTRIAL-IE 16-02 study. Blood Adv 2020; 3:1815-1825. [PMID: 31201169 DOI: 10.1182/bloodadvances.2019000010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Daratumumab (DARA) has shown impressive activity in combination with other agents for the treatment of multiple myeloma (MM). We conducted a phase 1b study to assess the safety and preliminary efficacy, as well as potential mechanisms of action, of DARA (16 mg/kg) in combination with a weekly schedule of subcutaneous bortezomib (1.3-1.5 mg/m2), cyclophosphamide (150-300 mg/m2), and dexamethasone (40 mg) (CyBorD DARA) as initial induction before autologous stem cell transplantation (ASCT). Eligible patients were ≤70 years of age with untreated MM requiring treatment and who lacked significant comorbidities. A total of 18 patients were enrolled. Their median age was 56 years (range, 32-66 years), and all patients had Eastern Cooperative Oncology Group performance status ≤1. The International Staging System stages were I, II, and III in 78%, 17%, and 6% of patients, respectively; 28% of patients had high-risk genetic features. There was no dose-limiting toxicity, and the incidence of grade 3 or 4 infection or neutropenia was <10%. On an intention-to-treat basis, 94% achieved ≥very good partial response with ≥complete response in 44% of patients. Among 14 of 15 patients who underwent ASCT and were evaluable for response, all 14 achieved at least very good partial response, with 8 (57%) of 14 achieving complete response. After ASCT, 10 (83%) of 12 patients in whom minimal residual disease analysis was possible were negative at a sensitivity of 10-5 (56% on intention-to-treat/whole study population) according to next-generation sequencing. Flow cytometry analysis of patient samples indicated CyBorD DARA induced activation of macrophage-mediated antibody-dependent cellular phagocytosis. This trial was registered at www.clinicaltrials.gov as #NCT02955810.
Collapse
|
34
|
The Combination of CD147 and MMP-9 Serum Levels Is Identified as Novel Chemotherapy Response Markers of Advanced Non-Small-Cell Lung Cancer. DISEASE MARKERS 2020; 2020:8085053. [PMID: 32377273 PMCID: PMC7196144 DOI: 10.1155/2020/8085053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/26/2022]
Abstract
To evaluate the correlation between the changes in serum concentrations of cluster of differentiation-147 (scCD147) and chemotherapy outcome in patients with NSCLC and evaluate the combination of scCD147 with serum matrix metalloproteinase-9 (scMMP-9) levels in the prediction of chemotherapy response, eighty-two patients with advanced LC were enrolled. Newly diagnosed cases were treated with platinum-based chemotherapy. We measured scCD147 protein levels in LC cases by ELISA and used receiver operating characteristic (ROC) curves to analyze the results. Four time points were chosen to examine the association between the changes in scCD147 and chemotherapy outcome: before chemotherapy and 21 days after the start of the first, second, and fourth chemotherapy cycles. We assessed the combination of scCD147 and scMMP-9 serum levels in predicting the chemotherapy response. scCD147 was higher in LC cases than that in healthy volunteers (HVs). scCD147 was associated with distant metastases and TNM stage. scCD147 and scMMP-9 appeared to be independent predictive factors for chemotherapy outcomes after the first and second chemotherapy cycles for patients with NSCLC. Multivariable analysis also demonstrated that variations in scCD147 and scMMP-9 could be independent factors for monitoring chemotherapy outcome for patients with NSCLC. Furthermore, when scCD147 and scMMP-9 are combined into a new risk model, it has a markedly better prediction of chemotherapy outcomes than each protein alone. scCD147 and MMP-9 are potential predictive biomarkers for efficacy, and their combination significantly improves the predictive power for chemotherapy response in patients with NSCLC.
Collapse
|
35
|
Kvorning SL, Nielsen MC, Andersen NF, Hokland M, Andersen MN, Møller HJ. Circulating extracellular vesicle-associated CD163 and CD206 in multiple myeloma. Eur J Haematol 2020; 104:409-419. [PMID: 31855290 DOI: 10.1111/ejh.13371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Extracellular vesicles (EVs) are important for intercellular signalling in cancer. Tumour-associated macrophages, expressing the haemoglobin-haptoglobin and mannose receptors CD163 and CD206, are crucial for cancer progression. We recently identified CD163 on EVs in the circulation as a fraction of total soluble CD163 (sCD163). Here, we investigated the presence of CD163 and CD206-positive EVs (EV-CD163, EV-CD206) in patients with multiple myeloma (MM). METHODS We enrolled patients with MM (n = 32), monoclonal gammopathy of undetermined significance (MGUS) (n = 8) and healthy donors (n = 16). Plasma protein levels were determined by ELISA before and after vesicle precipitation. Monocytes were examined by flow cytometry, and leucocyte CD163 mRNA by qPCR. RESULTS Fractions of EV-CD163 and EV-CD206 were significantly elevated in patients with newly diagnosed MM (median = 39.8%, 76.5%, respectively) compared to patients with relapse (15.6%, P = .02, 42.5%, P = .003), remission (16.9%, P < .0001, 25.2%, P < .0001), MGUS (17.8%, P < .01, 33.1%, P = .0005) and healthy donors (14.8%, P < .0001, 35.5%, P < .0001). Whole blood CD163 mRNA did not vary between the groups. The intermediate monocyte subset showed a higher CD163 expression in newly diagnosed patients. CONCLUSIONS Our results indicate that macrophage-derived EVs may play a role in the late phase of malignant progression of MM, and encourage further EV investigations in functional experiments.
Collapse
Affiliation(s)
- Sarah L Kvorning
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marlene C Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Niels F Andersen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Morten N Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Petty AJ, Yang Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells 2019; 8:cells8121526. [PMID: 31783588 PMCID: PMC6952752 DOI: 10.3390/cells8121526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
The growth of hematologic malignant cells can be facilitated by other non-tumor cells within the same microenvironment, including stromal, vascular, immune and mesenchymal stem cells. Macrophages are an integral part of the human innate immune system and the tumor microenvironment. Complex interplays between the malignant hematologic cells and the infiltrating macrophages promote the formation of leukemia, lymphoma or myeloma-associated macrophages. These pro-tumorigenic macrophages in turn play an important part in facilitating tumor growth, metastasis and chemotherapeutic resistance. Previous reports have highlighted the association between tumor-associated macrophages (TAMs) and disease progression in hematologic malignancies. This review summarizes the role of TAMs in different subtypes of leukemia, lymphoma and myeloma, focusing on new insights and targeted therapies.
Collapse
Affiliation(s)
- Amy J. Petty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA;
- Division of Hematology, The Ohio State University Wexner Medical Center, 508 BRT, 460 W 12th Avenue, Columbus, OH 43210, OH, USA
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, 508 BRT, 460 W 12th Avenue, Columbus, OH 43210, OH, USA
- Correspondence: ; Tel.: +1-(614)-685-0643; Fax: +1-(614)-293-7526
| |
Collapse
|
37
|
Wang H, Hu WM, Xia ZJ, Liang Y, Lu Y, Lin SX, Tang H. High numbers of CD163+ tumor-associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib-based regimens. J Cancer 2019; 10:3239-3245. [PMID: 31289595 PMCID: PMC6603386 DOI: 10.7150/jca.30102] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
The prognostic significance of tumor-associated macrophages (TAMs) in multiple myeloma (MM) in the era of novel drugs remains unclear. CD163 expression was detected by immunohistochemistry to determine the number of TAMs in 198 MM patients receiving bortezomib-based regimens and the data were used to evaluate its relevance with clinical characteristics, treatment response, and prognosis. Patients with high levels of infiltrated CD163+ TAMs (>55/HPF) at diagnosis tended to have more adverse clinical characteristics. Patients with high CD163+ TAM content (>55/HPF) at diagnosis had worse progression-free survival (PFS) (P<0.001) and overall survival (OS) (P<0.001),and achieved lower complete remission (CR)/near-CR rate (P<0.001), than patients with low CD163+ TAM levels. Multivariate analysis revealed that CD163+ TAM content was an independent adverse prognostic factor for PFS and OS. Our data indicated that CD163+ TAM content at diagnosis is a powerful predictor of prognosis for MM in the era of novel drugs, and this discovery offers new insight into potential therapeutic strategies.
Collapse
Affiliation(s)
- Hua Wang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center;State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wan-Ming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center;State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhong-Jun Xia
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center;State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yang Liang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center;State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yue Lu
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center;State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shu-Xia Lin
- Department of Pathology, Sun Yat-sen University Cancer Center;State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
38
|
Nemkov T, D'Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken) 2019; 2:e1139. [PMID: 32721091 DOI: 10.1002/cnr2.1139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Carcinogenic transformation of white blood cells during hematopoiesis leads to the development of leukemia, a cancer characterized by incompetent immune cells and a disruption of normal bone marrow function. Leukemias are diverse in type, affected population, prognosis, and treatment regimen, yet a common theme in leukemia is the dysregulated metabolism of leukemic cells and leukemic stem cells with respect to their noncancerous counterparts. RECENT FINDINGS In this review, we highlight current findings that elucidate metabolic traits unique to the four major types of leukemia, which confer carcinogenic survival but can be potentially exploited for therapeutic intervention. These metabolic features can work in conjunction with or be independent of unique aspects of the bone marrow microenvironment that can also influence cell survival and proliferation, thus sustaining carcinogenesis. CONCLUSION Deepening our understanding of the interactions of leukemias with their niche environments in vivo will inform future treatments for leukemia, particularly for those that are refractive to tyrosine kinase inhibitors and other therapeutic mainstays.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
39
|
Park SY, Kim IS. Harnessing immune checkpoints in myeloid lineage cells for cancer immunotherapy. Cancer Lett 2019; 452:51-58. [PMID: 30910590 DOI: 10.1016/j.canlet.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Myeloid lineage immune cells, such as macrophages and dendritic cells, play important roles in the induction of antitumor immunity during the initial stage of the cancer-immunity cycle, eliciting antitumor adaptive immunity by phagocytosing cancer cells and processing cancer-specific antigens, and then presenting these antigens to T cells. During this process, cancer cell phagocytosis can be prevented by inhibitory signals, and the signaling cascades that elicit immune responses against cancer antigens can be inhibited by immunosuppressive myeloid cells in the tumor microenvironment. A number of therapeutic strategies for enhancing cancer cell phagocytosis and promoting antitumor immunity by targeting myeloid lineage cells have recently been developed. Here, we discuss recent advances in cancer immunotherapy that involve the targeting of myeloid lineage immune cells to induce effective antitumor immunity.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea.
| | - In-San Kim
- Biomedical Research Institute, Korea Institute Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST school, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
40
|
Yan H, Dong M, Liu X, Shen Q, He D, Huang X, Zhang E, Lin X, Chen Q, Guo X, Chen J, Zheng G, Wang G, He J, Yi Q, Cai Z. Multiple myeloma cell-derived IL-32γ increases the immunosuppressive function of macrophages by promoting indoleamine 2,3-dioxygenase (IDO) expression. Cancer Lett 2019; 446:38-48. [PMID: 30660652 DOI: 10.1016/j.canlet.2019.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022]
Abstract
The interaction of multiple myeloma (MM) cells with macrophages (MΦs) contributes to the pathophysiology of MM. We previously showed that IL-32 is overexpressed in MM patients. The present study was designed to explore the clinical significance of IL-32 in MM and to further elucidate the mechanisms underlying the IL-32-mediated immune function of MΦs. Our results showed that high IL-32 expression in MM patients was associated with more advanced clinical stage. RNA-sequencing revealed that IL-32γ significantly induced the production of the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO) in MΦs, and this effect was verified by qRT-PCR, western blotting, and immunofluorescence. Furthermore, MM cells with IL-32-knockdown showed a reduced ability to promote IDO expression. As a binding protein for IL-32, proteinase 3 (PR3) was universally expressed on the surfaces of MΦs, and knockdown of PR3 or inhibition of the STAT3 and NF-κB pathways hindered the IL-32γ-mediated stimulation of IDO expression. Finally, IDO-positive IL-32γ-educated MΦs inhibited CD4+ T cell proliferation and IL-2, IFN-γ, and TNF-α production. Taken together, our results indicate that IL-32γ derived from MM cells promotes the immunosuppressive function of MΦs and is a potential target for MM treatment.
Collapse
Affiliation(s)
- Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinling Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Shen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gang Wang
- Department of Hematology, People's Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Hematology, Zhejiang University, China.
| |
Collapse
|
41
|
Flamann C, Busch L, Mackensen A, Bruns H. Combination of lenalidomide and vitamin D enhances MOR202-mediated cytotoxicity of macrophages: It takes three to tango. Oncotarget 2019; 10:10-12. [PMID: 30713598 PMCID: PMC6343758 DOI: 10.18632/oncotarget.26531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Affiliation(s)
- Cindy Flamann
- Heiko Bruns: Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard Busch
- Heiko Bruns: Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Mackensen
- Heiko Bruns: Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- Heiko Bruns: Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Peripheral Blood Lymphocyte-to-Monocyte Ratio as a Useful Prognostic Factor in Newly Diagnosed Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9434637. [PMID: 30599001 PMCID: PMC6287166 DOI: 10.1155/2018/9434637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
The survival of individuals with tumors may be predicted by the peripheral blood lymphocyte-to-monocyte ratio (LMR) upon diagnosis in recent studies. For patients with multiple myeloma (MM) in the era of novel agents, the prognostic significance of LMR remains unclear. In this study, the prognostic impact of LMR is evaluated by 285 patients with MM who are treated with proteasome inhibitor and/or immunomodulatory drug. LMR is a proven predictor of survival using the receiver operating characteristic curve, with 4.2 as the cutoff point. Patients with LMR ≤ 4.2 at diagnosis had poorer overall survival (OS) and progression-free survival (PFS) than those with LMR > 4.2. In addition, multivariate analysis showed that LMR less than 4.2 is an independent predictor for the OS (hazard ratio [HR]: 1.703; 95% confidence interval [CI]: 1.020–2.842; P = 0.042) and PFS (HR: 1.831; 95% CI: 1.098–3.053; P = 0.021). According to the test, the LMR at diagnosis, which functions as a simple index reflecting host systemic immunity, can predict clinical outcomes in patients with MM who are treated with new agents.
Collapse
|
43
|
Li H, Huang N, Zhu W, Wu J, Yang X, Teng W, Tian J, Fang Z, Luo Y, Chen M, Li Y. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018; 18:579. [PMID: 29783929 PMCID: PMC5963019 DOI: 10.1186/s12885-018-4299-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) play a critical role in modulating the tumor microenvironment and promote tumor metastases. Our studies have demonstrated that ginsenoside Rh2 (G-Rh2), a monomeric compound extracted from ginseng, is a promising anti-tumor agent in lung cancer cells. However, it remains unclear whetherG-Rh2 can modulate the differentiation of TAMs and its interaction with tumor microenvironment. In this study, we investigated how G-Rh2 regulates the phenotype of macrophages and affects the migration of non-small cell lung cancer (NSCLC) cells. Methods Murine macrophage-like RAW264.7 cells and human THP-1 monocyte were differentiated into M1 and M2 subsets of macrophages with different cytokines combination, which were further identified by flow cytometry with specific biomarkers. M2 macrophages were sorted out to co-culture with NSCLC cell lines, A549 and H1299. Wound healing assay was performed to examine the cell migration. Expression levels of matrix metalloproteinases 2 and 9 (MMP-2, − 9) and vascular endothelial growth factor-C (VEGF-C) were measured by RT-qPCR and western blot, and the release of VEGF in the supernatant was measured by a VEGF ELISA kit. Finally, modulation of TAMs phenotype and VEGF expression by G-Rh2 was examined in vivo. Results We demonstrated that M2 subset of macrophages alternatively differentiated from RAW264.7 or THP-1cells promote migration of NSCLC cells. Further examinations revealed that NSCLC significantly increased the release of VEGF to the media and elevated the expression levels of VEGF at mRNA and protein levels after being co-cultured with M2 macrophages. Similar alterations in MMP-2 and MMP-9 were observed in NSCLC after being co-cultured. Of note,G-Rh2 had a potential to effectively convert M2 phenotype to M1 subset of macrophages. Importantly, G-Rh2 had a preference to decrease the expression levels of VEGF, MMP2, and MMP9 in co-cultured lung cancer cells, over than those in lung cancer cells without co-culturing. Consistently, G-Rh2 reduced M2 macrophage marker CD206 and VEGF expression levels in vivo. Conclusions All of these results suggested that M2 subset macrophages drive lung cancer cells with more aggressive phenotypes. G-Rh2 has a potential to convert TAMs from M2 subset to M1 in the microenvironment and prevents lung cancer cell migration, suggesting the therapeutic effects of G-Rh2onlung cancer.
Collapse
Affiliation(s)
- Honglin Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Nan Huang
- Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Weikang Zhu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Xiaohui Yang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Jianhui Tian
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Min Chen
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China.
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China.
| |
Collapse
|
44
|
Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway. Leukemia 2018; 32:2445-2458. [PMID: 29654274 DOI: 10.1038/s41375-018-0114-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Macrophages are key mediators of the therapeutic effects exerted by monoclonal antibodies, such as the anti-CD38 antibody MOR202, currently introduced in multiple myeloma (MM) therapy. Therefore, it is important to understand how antibody-mediated effector functions of myeloma-associated macrophages (MAMs) are regulated. Here, we focused on the effects of vitamin D, a known regulator of macrophage effector functions. Consequently, it was the aim of this study to assess whether modulation of the vitamin D pathway alters the tumoricidal activity of MAMs. Here, we demonstrate that MAMs display a defective vitamin D pathway with reduced expression level of CYP27B1 and limited tumoricidal activity which can be restored by the IMiD lenalidomide in vitro. Furthermore, our data indicate that the vitamin D pathway of MAMs from MM patients does recover during an IMiD-containing therapy shown by an improved MOR202-mediated cytotoxic activity of these MAMs against primary MM cells ex vivo. Here, the ex vivo cytotoxic activity could be further enhanced by vitamin D supplementation. These data suggest that vitamin D holds a key role for the effector functions of MAMs and that vitamin D supplementation in IMiD combination trials could further increase the therapeutic efficacy of anti-CD38 antibodies such as MOR202, which remains to be investigated in clinical studies.
Collapse
|
45
|
Gui QL, Wang YS, Huang S, Wan Y, Wang HP, Zhu ZG, Li MM, Zhu HY, Tao QS, Shen YY, Zhang Q, Qin H. [Infiltration of tumor associated macrophages in multiple myeloma and its clinical significance]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:122-127. [PMID: 29562446 PMCID: PMC7342570 DOI: 10.3760/cma.j.issn.0253-2727.2018.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/15/2022]
Abstract
Objective: To investigate the clinical significance of tumor associated macrophages (TAM) in multiple myeloma (MM) and the relationship with angiogenesis and immunosuppression. Methods: Seventy cases of MM patients diagnosed from August 2015 to June 2017 were enrolled in the study as experimental group, 20 cases of benign hematological diseases (13 with iron deficiency anemia and 7 with megaloblastic anemia) patients as control group. Immunohistochemical method was used to detect the expression of CD163, CD34 and VEGF in bone marrow samples, and flow cytometry was used to detect the proportion of regulatory T cell (Treg cells), ELISA was used to detect the level of IL-10, and the clinical features were analyzed. Results: ①Among the 70 patients, there were 31 males and 39 females with a median age of 65 (50~78) years old. TAM infiltration density, microvascular density (MVD), VEGF expression level, Treg ratio and IL-10 level in bone marrow samples of 70 MM patients were significantly higher than those of benign hematological diseases (P<0.05). ②In the MM group, the above indexes of the patients with disease stabilized (15 cases) were lower than those of the newly diagnosed group (35 cases) and the relapse refractory group (20 cases) (P<0.05), those of relapse refractory group were higher than those of newly diagnosed group (P>0.05). ③Of the 35 newly diagnosed MM patients, 27 completed 4 courses of treatment. In the effective group (15 cases), the TAM infiltration density after treatment was significantly lower than that before treatment, the difference was statistically significant[(20.20±7.66) vs (28.87±11.97), t=2.362, P=0.025]; while in the ineffective group of 12 cases, the difference of the TAM infiltration density before and after treatment was not statistically significant[(42.00±13.76) vs (48.25±13.59), t=1.119, P=0.275]. ④TAM infiltration density in the effective group after bortezomib treatment (21 cases) were lower than those in the non-bortezomib treatment group (18 cases)[(16.52 ±4.26) vs (19.27 ±5.82), t=1.662, P=0.170]. ⑤The TAM infiltration density in MM patients was positively correlated with MVD, VEGF expression level, Treg cell ratio and IL-10 level (P<0.001). Conclusion: The infiltration of TAM in the microenvironment of MM, which may promoting angiogenesis and inhibiting immune response, is related to the occurrence, development, therapeutic effect and drug resistance of MM.
Collapse
Affiliation(s)
- Q L Gui
- Department of Hematology the Second Affiliated Hospital of Medical University Of Anhui, Hefei 230601, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Prognostic value of diametrically polarized tumor-associated macrophages in multiple myeloma. Oncotarget 2017; 8:112685-112696. [PMID: 29348856 PMCID: PMC5762541 DOI: 10.18632/oncotarget.22340] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are correlated with the prognosis of different types of solid tumors and lymphoma, according to many clinical studies. In vitro experiments have demonstrated the roles of these cells in myeloma cell survival, angiogenesis, immunomodulation, drug resistance, and the interaction between malignant myeloma cells and the microenvironment. Here, we investigated the prognostic significance of TAMs in patients with multiple myeloma (MM). We evaluated the polarized functional status of bone marrow infiltrated by TAMs by immunohistochemical staining of CD68, iNOS, and CD163 in 240 patients with MM from January 2009 to December 2014. The overall response rates to chemotherapy were lower in patients with high CD68+ or CD163+ TAM densities than in those with low densities. Kaplan-Meier analysis showed that the progression-free survival (PFS, p = 0.001) and overall survival (OS, p < 0.001) of patients with low CD163+ TAM density were significantly higher than those of patients with high CD163+ TAM density. Furthermore, combined analysis of iNOS+ and CD163+ TAMs (iNOS/CD163 signature) exhibited greater power in predicting patient outcomes for both PFS (p < 0.001) and OS (p < 0.001). Moreover, Cox regression analysis identified iNOS+ and CD163+ TAMs as independent prognostic factors (p = 0.007, p < 0.001, respectively). These factors could be combined with the international staging system (ISS) to generate a predictive nomogram for patient outcomes. Our findings suggest that the mosaic of diametrically polarized TAMs is a novel independent prognostic factor that could be integrated into the evaluation of and therapy for MM.
Collapse
|
47
|
Herlihy SE, Lin C, Nefedova Y. Bone marrow myeloid cells in regulation of multiple myeloma progression. Cancer Immunol Immunother 2017; 66:1007-1014. [PMID: 28378067 PMCID: PMC11029144 DOI: 10.1007/s00262-017-1992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/22/2017] [Indexed: 12/25/2022]
Abstract
Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Room 376, Philadelphia, PA, 19104, USA
| | - Cindy Lin
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Room 376, Philadelphia, PA, 19104, USA
| | - Yulia Nefedova
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Room 376, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Andersen MN, Ludvigsen M, Abildgaard N, Petruskevicius I, Hjortebjerg R, Bjerre M, Honoré B, Møller HJ, Andersen NF. Serum galectin-1 in patients with multiple myeloma: associations with survival, angiogenesis, and biomarkers of macrophage activation. Onco Targets Ther 2017; 10:1977-1982. [PMID: 28435287 PMCID: PMC5388249 DOI: 10.2147/ott.s124321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-1 (Gal-1) is known to regulate cell signaling within the immune system and may be a target for new anticancer immune therapy. In patients with chronic lymphocytic leukemia (CLL) and classical Hodgkin lymphoma (cHL), high levels of Gal-1 within the tumor microenvironment were associated with worse disease state or poor outcome. Gal-1 can be secreted from cells by an unknown mechanism, and levels in blood samples were associated with high tumor burden and worse disease state in cHL and CLL patients. However, serum levels of Gal-1 have never been investigated in patients with multiple myeloma (MM). We measured serum Gal-1 levels in samples from patients with treatment demanding MM at the time of diagnosis (n=102) and after treatment (n=24) and examined associations of serum Gal-1 with clinicopathological information obtained from patient medical records, as well as data on bone marrow angiogenesis and the macrophage activation biomarkers soluble CD163 (sCD163) and soluble mannose receptor. Serum Gal-1 levels were not elevated in patients with MM at diagnosis compared with healthy donors (median values 8.48 vs 11.93 ng/mL, P=0.05), which is in contrast to results in cHL and CLL. Furthermore, Gal-1 levels did not show association with bone marrow angiogenesis, clinicopathological parameters, overall survival, or response to treatment. There was a statically significant association between Gal-1 and sCD163 levels (R=0.24, P=0.02), but not with soluble mannose receptor (P=0.92). In conclusion, our results indicate that Gal-1 is not an important serum biomarker in MM, which is in contrast to data from patients with cHL and CLL. However, the association with sCD163 is in line with previous data showing that Gal-1 may be involved in alternative (M2-like) activation of macrophages.
Collapse
Affiliation(s)
- Morten Nørgaard Andersen
- Department of Biomedicine, Faculty of Health, Aarhus University.,Department of Clinical Biochemistry.,Department of Hematology, Aarhus University Hospital, Aarhus
| | - Maja Ludvigsen
- Department of Biomedicine, Faculty of Health, Aarhus University.,Department of Hematology, Aarhus University Hospital, Aarhus
| | | | | | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Bent Honoré
- Department of Biomedicine, Faculty of Health, Aarhus University
| | | | | |
Collapse
|
49
|
Panchabhai S, Schlam I, Sebastian S, Fonseca R. PKM2 and other key regulators of Warburg effect positively correlate with CD147 (EMMPRIN) gene expression and predict survival in multiple myeloma. Leukemia 2017; 31:991-994. [PMID: 28025580 DOI: 10.1038/leu.2016.389] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S Panchabhai
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - I Schlam
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - S Sebastian
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - R Fonseca
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
50
|
Asimakopoulos F, Hope C, Johnson MG, Pagenkopf A, Gromek K, Nagel B. Extracellular matrix and the myeloid-in-myeloma compartment: balancing tolerogenic and immunogenic inflammation in the myeloma niche. J Leukoc Biol 2017; 102:265-275. [PMID: 28254840 DOI: 10.1189/jlb.3mr1116-468r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The last 10-15 years have witnessed a revolution in treating multiple myeloma, an incurable cancer of Ab-producing plasma cells. Advances in myeloma therapy were ushered in by novel agents that remodel the myeloma immune microenvironment. The first generation of novel agents included immunomodulatory drugs (thalidomide analogs) and proteasome inhibitors that target crucial pathways that regulate immunity and inflammation, such as NF-κB. This paradigm continued with the recent regulatory approval of mAbs (elotuzumab, daratumumab) that impact both tumor cells and associated immune cells. Moreover, recent clinical data support checkpoint inhibition immunotherapy in myeloma. With the success of these agents has come the growing realization that the myeloid infiltrate in myeloma lesions-what we collectively call the myeloid-in-myeloma compartment-variably sustains or deters tumor cells by shaping the inflammatory milieu of the myeloma niche and by promoting or antagonizing immune-modulating therapies. The myeloid-in-myeloma compartment includes myeloma-associated macrophages and granulocytes, dendritic cells, and myeloid-derived-suppressor cells. These cell types reflect variable states of differentiation and activation of tumor-infiltrating cells derived from resident myeloid progenitors in the bone marrow-the canonical myeloma niche-or myeloid cells that seed both canonical and extramedullary, noncanonical niches. Myeloma-infiltrating myeloid cells engage in crosstalk with extracellular matrix components, stromal cells, and tumor cells. This complex regulation determines the composition, activation state, and maturation of the myeloid-in-myeloma compartment as well as the balance between immunogenic and tolerogenic inflammation in the niche. Redressing this balance may be a crucial determinant for the success of antimyeloma immunotherapies.
Collapse
Affiliation(s)
- Fotis Asimakopoulos
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA; .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Chelsea Hope
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Michael G Johnson
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Adam Pagenkopf
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Kimberly Gromek
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Bradley Nagel
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|