1
|
Silver AJ, Brown DJ, Olmstead SD, Watke JM, Gorska AE, Tanner L, Ramsey HE, Savona MR. Interallelic gene conversion of leukemia-associated single nucleotide variants. Gene 2025; 958:149493. [PMID: 40222687 DOI: 10.1016/j.gene.2025.149493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
CRISPR-Cas9 is a useful tool for inserting precise genetic alterations through homology-directed repair (HDR), although current methods largely rely on provision of an exogenous repair template. Here, we tested the possibility of interchanging heterozygous single nucleotide variants (SNVs) using mutation-specific guide RNA, and the cell's own wild-type allele rather than an exogenous template. Using high-fidelity Cas9 to perform allele-specific CRISPR across multiple human leukemia cell lines as well as in primary hematopoietic cells from patients with leukemia, we find high levels of reversion to wild-type in the absence of exogenous template. Moreover, we demonstrate that bulk treatment to revert a truncating mutation in ASXL1 using CRISPR-mediated interallelic gene conversion (IGC) is sufficient to prolong survival in a human cell line-derived xenograft model (median survival 33 days vs 27.5 days; p = 0.0040). These results indicate that IGC is a useful laboratory tool which can be applied to numerous types of leukemia and can meaningfully alter cellular phenotypes at scale. Because our method targets single-base mutations, rather than larger variants targeted by IGC in prior studies, it greatly expands the pool of genetic lesions which could potentially be targeted by IGC. This technique may reduce cost and complexity for experiments modeling phenotypic consequences of SNVs. The principles of SNV-specific IGC demonstrated in this proof-of-concept study could be applied to investigate the phenotypic effects of targeted clonal reduction of leukemogenic SNV mutations.
Collapse
Affiliation(s)
- Alexander J Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Donovan J Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah D Olmstead
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jackson M Watke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Agnieszka E Gorska
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Londa Tanner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haley E Ramsey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Khan FU, Khongorzul P, Gris D, Amrani A. Role of USP7 in the regulation of tolerogenic dendritic cell function in type 1 diabetes. Cell Mol Biol Lett 2025; 30:47. [PMID: 40247205 PMCID: PMC12004606 DOI: 10.1186/s11658-025-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Tolerogenic dendritic cells (toDCs) are critical for maintaining immune homeostasis and preventing autoimmune disease development, such as type 1 diabetes (T1D). We have previously shown that DCs of non-obese diabetic (NOD) mice expressing active Stat5b (Stat5b-CA.DCs) acquire toDCs signature and protect against diabetes. However, the mechanisms involved in reprogramming DCs to adopt tolerogenic or immunogenic signatures are not fully known. This study investigates for the first time the role of USP7 in DC-mediated immune regulation in T1D using a transgenic NOD mouse model expressing an active form of Stat5b (NOD.Stat5b-CA). METHODS Splenic DCs were purified from diabetes-prone NOD mice and diabetes-resistant NOD.Stat5b-CA transgenic mice and their tolerogenic and immunogenic phenotypes were analyzed by FACS. Their pro-and anti-inflammatory cytokine patterns, IRF4, IRF8, de-ubiquitin ligase USP7, and methyltransferase Ezh2 expression were assessed by FACS and Western blot. Moreover, the impact of USP7 inhibition in DCs on Th1/Th2/Th17 and Treg and diabetes onset was assessed using an in vivo DC-based transfer model. RESULTS In this study, we found that splenic Stat5b-CA.DCs expressed high levels of USP7, Ezh2, and PD-L-1/2 and contained a higher proportion of tolerogenic conventional DC2 (cDC2) subsets than immunogenic cDC1 compared to NOD mice DCs. We also found that the USP7 blockade increased Stat5b-CA.DCs maturation and proinflammatory cytokines production while decreasing anti-inflammatory cytokines and PD-L1 and PD-L2 expressions. Mechanistically, USP7 blockade in Stat5-CA.DCs promoted cDC1 over cDC2 subsets by increasing IRF8 expression in an Ezh2-dependent manner and decreasing IRF4 expression independently of Ezh2. USP7 blockade also increased Stat5b-CA.DC capacity to promote Th17 and to restrain Th2 and Treg cells. Importantly, the capacity of Stat5b-CA.DCs to protect NOD mice from diabetes were lost when treated with USP7 inhibitor. CONCLUSIONS Our findings underscore the role of the USP7/Ezh2 axis in maintaining tolerogenic DC functions that are required to tailor adaptive immune response and diabetes protection in NOD mice.
Collapse
Affiliation(s)
- Farhan Ullah Khan
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Puregmaa Khongorzul
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Denis Gris
- Department of Phamacology-Physiology, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Abdelaziz Amrani
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada.
| |
Collapse
|
3
|
Darmusey L, Bagley AJ, Nguyen TT, Carlson HL, Blaylock H, Shrestha SB, Pang A, Tauchmann S, Taylor SC, Foley AC, Niño KE, Pietras EM, Braun TP, Maxson JE. Dual ASXL1 and CSF3R mutations drive myeloid-biased stem cell expansion and enhance neutrophil differentiation. Blood Adv 2025; 9:1593-1607. [PMID: 39777477 PMCID: PMC11986226 DOI: 10.1182/bloodadvances.2024014362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Mutations in the epigenetic regulator Additional Sex Combs-Like 1 (ASXL1) are frequently observed in chronic neutrophilic leukemia (CNL). CNL is a myeloproliferative neoplasm (MPN) driven by activating mutations in the Colony Stimulating Factor 3 Receptor (CSF3R), which cause excessive neutrophil production. Despite the high rates of co-occurrence, the interplay between ASXL1 and CSF3R mutations in hematopoiesis and leukemia remains poorly understood. Here, we present a new mouse model with both Asxl1Y588X and Csf3rT621I mutations, which recapitulates features of human MPNs. Csf3r-mutant mice exhibit an age-associated depletion of hematopoietic stem cells, which is tempered by adding Asxl1Y588X. This combination of mutations causes an expansion of myeloid-biased long-term hematopoietic stem cells. As the mice age, they develop neutrophilia, but leukemia is rare, suggesting additional mutations may be required for transformation. Using models of myeloid differentiation, we find that Asxl1 truncation enhances CSF3RT618I-driven neutrophil differentiation, activating inflammatory pathways associated with mature myeloid cell production. Moreover, cells with both mutations have increased H3K4me1 at neutrophil-associated enhancers. Mutant ASXL1 is known to decrease the genome-wide abundance of the repressive histone mark H2AK119ub. Although we see the expected decrease in H2AK119ub in Asxl1-mutant cells, this effect is reversed when CSF3R is also mutated, suggesting a complex interplay between these mutations in regulating chromatin dynamics during hematopoiesis. Our findings highlight context-dependent effects of ASXL1 mutation in myeloid disorders and provide insights into the mechanisms underlying neutrophil differentiation in ASXL1 and CSF3R dual-mutant MPN.
Collapse
Affiliation(s)
- Lucie Darmusey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Anna J. Bagley
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Thai T. Nguyen
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hanqian L. Carlson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hunter Blaylock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shawn B. Shrestha
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Amara Pang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Samantha Tauchmann
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Sarah C. Taylor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Amy C. Foley
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Katia E. Niño
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric M. Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
4
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Olguín HC. The Gentle Side of the UPS: Ubiquitin-Proteasome System and the Regulation of the Myogenic Program. Front Cell Dev Biol 2022; 9:821839. [PMID: 35127730 PMCID: PMC8811165 DOI: 10.3389/fcell.2021.821839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the ubiquitin-proteasome system (UPS) has emerged as an important regulator of stem cell function. Here we review recent findings indicating that UPS also plays critical roles in the biology of satellite cells, the muscle stem cell responsible for its maintenance and regeneration. While we focus our attention on the control of key transcriptional regulators of satellite cell function, we briefly discuss early studies suggesting the UPS participates more broadly in the regulation of satellite cell stemness and regenerative capacity.
Collapse
|
6
|
Yamamoto K, Goyama S, Asada S, Fujino T, Yonezawa T, Sato N, Takeda R, Tsuchiya A, Fukuyama T, Tanaka Y, Yokoyama A, Toya H, Kon A, Nannya Y, Onoguchi-Mizutani R, Nakagawa S, Hirose T, Ogawa S, Akimitsu N, Kitamura T. A histone modifier, ASXL1, interacts with NONO and is involved in paraspeckle formation in hematopoietic cells. Cell Rep 2021; 36:109576. [PMID: 34433054 DOI: 10.1016/j.celrep.2021.109576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/03/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.
Collapse
Affiliation(s)
- Keita Yamamoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Yokoyama
- National Cancer Center Tsuruoka Metabolomics Laboratory, Yamagata, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Wirth M, Schick M, Keller U, Krönke J. Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers (Basel) 2020; 12:cancers12123764. [PMID: 33327527 PMCID: PMC7764993 DOI: 10.3390/cancers12123764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Multiple myeloma is a cancer of plasma cells causing bone fractures, anemia, renal insufficiency and hypercalcemia. Despite the introduction of new drugs in the past years, it still remains incurable and most patients die from the disease. Multiple myeloma cells are characterized by the production of high amounts of monoclonal antibodies. Therefore, maintaining protein homeostasis from synthesis through folding to degradation is crucial for multiple myeloma cells. While protein ubiquitination and organized degradation are typically considered critical for cellular health, an emerging strategy is to block these processes to induce cell death in disease-state cells characterized by protein over-production. Recent development of compounds that alter the ubiquitin proteasome pathway and drugs that affect ubiquitin-like modifications appear promising in both preclinically and in clinical trials. This review summarizes the impact of protein modifications such as ubiquitination and ubiquitin-like modifications in the biology of multiple myeloma and how it can be exploited to develop new effective therapies for multiple myeloma. Abstract Multiple myeloma is a genetically heterogeneous plasma cell malignancy characterized by organ damage and a massive production of (in-)complete monoclonal antibodies. Coping with protein homeostasis and post-translational regulation is therefore essential for multiple myeloma cells to survive. Furthermore, post-translational modifications such as ubiquitination and SUMOylation play key roles in essential pathways in multiple myeloma, including NFκB signaling, epigenetic regulation, as well as DNA damage repair. Drugs modulating the ubiquitin–proteasome system, such as proteasome inhibitors and thalidomide analogs, are approved and highly effective drugs in multiple myeloma. In this review, we focus on ubiquitin and ubiquitin-like modifications in the biology and current developments of new treatments for multiple myeloma.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-30-450-513-538
| |
Collapse
|
8
|
Li X, Kong L, Yang Q, Duan A, Ju X, Cai B, Chen L, An T, Li Y. Parthenolide inhibits ubiquitin-specific peptidase 7 (USP7), Wnt signaling, and colorectal cancer cell growth. J Biol Chem 2020; 295:3576-3589. [PMID: 32029476 DOI: 10.1074/jbc.ra119.011396] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
It has been well-established that the deubiquitinating enzyme ubiquitin-specific peptidase 7 (USP7) supports cancer growth by up-regulating multiple cellular pathways, including Wnt/β-catenin signaling. Therefore, considerable efforts are directed at identifying and developing USP7 inhibitors. Here, we report that sesquiterpene lactone parthenolide (PTL) inhibits USP7 activity, assessed with deubiquitinating enzyme activity assays, including fluorogenic Ub-AMC/Ub-Rho110, Ub-VME/PA labeling, and Di-Ub hydrolysis assays. Further investigations using cellular thermal shift (CETSA), surface plasmon resonance (SPR), and mass spectrum (MS) assays revealed that PTL directly interacts with USP7. Consistent with the role of USP7 in stimulating Wnt signaling and carcinogenesis, PTL treatment inhibited the activity of Wnt signaling partly by destabilizing β-catenin. Moreover, using cell viability assays, we found that PTL suppresses the proliferation of colorectal cancer cells and induces apoptosis in these cells. Additionally, we examined the effects of two other sesquiterpene lactones (costunolide and α-santonin) on USP7 and Wnt signaling and found that α-methylene-γ-butyrolactone may provide a scaffold for future USP7 inhibitors. In summary, our findings reveal that PTL inhibits USP7 activity, identifying a potential mechanism by which PTL suppresses Wnt/β-catenin signaling. We further suggest that sesquiterpene lactones might represent a suitable scaffold for developing USP7 inhibitors and indicate that PTL holds promise as an anticancer agent targeting aberrant USP7/Wnt signaling.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qihong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aizhu Duan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoman Ju
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bicheng Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
9
|
Nie ZY, Yao M, Yang Z, Yang L, Liu XJ, Yu J, Ma Y, Zhang N, Zhang XY, Liu MH, Jiang LL, Luo JM. De-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses CML cell apoptosis and contributes to Imatinib resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:17. [PMID: 31952546 PMCID: PMC6969434 DOI: 10.1186/s13046-019-1502-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND STAT5 plays an important role in the transformation of hematopoietic cells by BCR-ABL. However, the downstream target genes activated by STAT5 in chronic myeloid leukemia (CML) cells remain largely unclear. Here, we investigated the mechanistic functional relationship between STAT5A-regulated microRNA and CML cell apoptosis. METHODS The expression of USP15, Caspase-6, STAT5A-regulated miR-202-5p and STAT5A was detected by qRT-PCR and Western blotting in CML cell lines and PBMCs of CML patients. Cell apoptosis was evaluated by flow cytometry. Both gain- and loss-of-function experiments were used to investigate the roles of USP15, miR-202-5p and STAT5A in CML. Luciferase reporter assay detected the effect of miR-202-5p on USP15 expression. Xenograft animal model was used to test the effect of anti-miR-202-5p and pimozide on K562 cell xenograft growth. RESULTS USP15 expression was significantly downregulated in CML cell lines and PBMCs of CML patients. Depletion of USP15 increased, whereas overexpression of USP15 reduced the resistance of CML cells to Imatinib. Further, decreased deubiquitinating activity of USP15 by USP15 downregulation led to reduced caspase-6 level, thus attenuating CML cell apoptosis. Mechanistically, miR-202-5p was upregulated in K562G cells and negatively regulated USP15 expression by directly targeting USP15 3'-UTR. Correspondingly, upregulation of miR-202-5p enhanced the resistance of CML cells to Imatinib by inhibiting cell apoptosis. Importantly, STAT5A was upregulated in CML cells and directly activated miR-202-5p transcription by binding to the pre-miR-202 promoter. Pimozide induced CML cell apoptosis and significantly reduced K562 cell xenograft growth in vivo by blocking STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis. CONCLUSIONS we provide the first evidence that de-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses the apoptosis of CML cells, targeting this pathway might be a promising therapeutic approach for the treatment of CML.
Collapse
Affiliation(s)
- Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Min Yao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Zhan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.,Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jing Yu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Xiao-Yan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Meng-Han Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Ling-Ling Jiang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
10
|
Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 2019; 76:2511-2523. [PMID: 30927018 PMCID: PMC11105736 DOI: 10.1007/s00018-019-03084-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
11
|
Shan H, Li X, Xiao X, Dai Y, Huang J, Song J, Liu M, Yang L, Lei H, Tong Y, Zhou L, Xu H, Wu Y. USP7 deubiquitinates and stabilizes NOTCH1 in T-cell acute lymphoblastic leukemia. Signal Transduct Target Ther 2018; 3:29. [PMID: 30370059 PMCID: PMC6202415 DOI: 10.1038/s41392-018-0028-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 02/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive leukemia that is primarily caused by aberrant activation of the NOTCH1 signaling pathway. Recent studies have revealed that posttranslational modifications, such as ubiquitination, regulate NOTCH1 stability, activity, and localization. However, the specific deubiquitinase that affects NOTCH1 protein stability remains unestablished. Here, we report that ubiquitin-specific protease 7 (USP7) can stabilize NOTCH1. USP7 deubiquitinated NOTCH1 in vivo and in vitro, whereas knockdown of USP7 increased the ubiquitination of NOTCH1. USP7 interacted with NOTCH1 protein in T-ALL cells, and the MATH and UBL domains of USP7 were responsible for this interaction. Depletion of USP7 significantly suppressed the proliferation of T-ALL cells in vitro and in vivo, accompanied by downregulation of the NOTCH1 protein level. Similarly, pharmacologic inhibition of USP7 led to apoptosis of T-ALL cells. More importantly, we found that USP7 was significantly upregulated in human T-ALL cell lines and patient samples, and a USP7 inhibitor exhibited cell cytotoxicity toward primary T-ALL cells, indicating the clinical relevance of these findings. Overall, our results demonstrate that USP7 is a novel deubiquitinase that stabilizes NOTCH1. Therefore, USP7 may be a promising therapeutic target in the currently incurable T-ALL. Inhibiting the protein ubiquitin-specific protease 7 (USP-7) may offer a treatment option for patients with T-cell acute lymphoblastic leukemia (T-ALL), an incurable and aggressive cancer. T-ALL is primarily caused by aberrant activation of the protein NOTCH1, which regulates gene expression relating to cell survival, proliferation, and metastasis. Ying-Li Wu, from China’s Shanghai Jiao Tong University School of Medicine, and a team of researchers report that, in their experiments, USP-7 prevented the breakdown of NOTCH1 by removing the protein tag that would normally signal it for degradation. In addition, USP-7 expression was upregulated in all human T-ALL cells and samples tested. Inhibition of USP-7 suppressed the proliferation of T-ALL cells in vitro and in vivo. These results reveal the role of USP-7 in the pathophysiology of T-ALL and offer USP-7 as a promising potential therapeutic target.
Collapse
Affiliation(s)
- Huizhuang Shan
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiangyun Li
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xinhua Xiao
- 2Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Yuting Dai
- 2Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Jinyan Huang
- 2Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Junjun Song
- 3Shanghai University of Medicine & Health Sciences, No.279, Zhouzhu Road, Shanghai, China
| | - Meng Liu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Yang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hu Lei
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yin Tong
- 4Department of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 China
| | - Li Zhou
- 2Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Hanzhang Xu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yingli Wu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
12
|
Daou S, Barbour H, Ahmed O, Masclef L, Baril C, Sen Nkwe N, Tchelougou D, Uriarte M, Bonneil E, Ceccarelli D, Mashtalir N, Tanji M, Masson JY, Thibault P, Sicheri F, Yang H, Carbone M, Therrien M, Affar EB. Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor suppressor BAP1. Nat Commun 2018; 9:4385. [PMID: 30349006 PMCID: PMC6197237 DOI: 10.1038/s41467-018-06854-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor and deubiquitinase (DUB) BAP1 and its Drosophila ortholog Calypso assemble DUB complexes with the transcription regulators Additional sex combs-like (ASXL1, ASXL2, ASXL3) and Asx respectively. ASXLs and Asx use their DEUBiquitinase ADaptor (DEUBAD) domain to stimulate BAP1/Calypso DUB activity. Here we report that monoubiquitination of the DEUBAD is a general feature of ASXLs and Asx. BAP1 promotes DEUBAD monoubiquitination resulting in an increased stability of ASXL2, which in turn stimulates BAP1 DUB activity. ASXL2 monoubiquitination is directly catalyzed by UBE2E family of Ubiquitin-conjugating enzymes and regulates mammalian cell proliferation. Remarkably, Calypso also regulates Asx monoubiquitination and transgenic flies expressing monoubiquitination-defective Asx mutant exhibit developmental defects. Finally, the protein levels of ASXL2, BAP1 and UBE2E enzymes are highly correlated in mesothelioma tumors suggesting the importance of this signaling axis for tumor suppression. We propose that monoubiquitination orchestrates a molecular symbiosis relationship between ASXLs and BAP1.
Collapse
Affiliation(s)
- Salima Daou
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Haithem Barbour
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Oumaima Ahmed
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Louis Masclef
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Nadine Sen Nkwe
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Daméhan Tchelougou
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Maxime Uriarte
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Laboratory of Proteomics and Bioanalytical Mass Spectrometry, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Derek Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Nazar Mashtalir
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mika Tanji
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center (Oncology Axis), Laval University Cancer Research Center, 9 McMahon, Quebec, PQ, G1R 2J6, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Laboratory of Proteomics and Bioanalytical Mass Spectrometry, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Haining Yang
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Michele Carbone
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, University of Montréal, Montréal, QC, H3T 1J4, Canada. .,Département de pathologie et biologie cellulaire, University of Montréal, Montréal, QC, H3C 3J7, Canada.
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
13
|
Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun 2018; 9:2733. [PMID: 30013160 PMCID: PMC6048047 DOI: 10.1038/s41467-018-05085-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8.
Collapse
|
14
|
Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases. Signal Transduct Target Ther 2018; 3:17. [PMID: 29967688 PMCID: PMC6023882 DOI: 10.1038/s41392-018-0012-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Herpesvirus-associated ubiquitin-specific protease (HAUSP) is a USP family deubiquitinase. HAUSP is a protein of immense biological importance as it is involved in several cellular processes, including host-virus interactions, oncogenesis and tumor suppression, DNA damage and repair processes, DNA dynamics and epigenetic modulations, regulation of gene expression and protein function, spatio-temporal distribution, and immune functions. Since its discovery in the late 1990s as a protein interacting with a herpes virus regulatory protein, extensive studies have assessed its complex roles in p53-MDM2-related networks, identified numerous additional interacting partners, and elucidated the different roles of HAUSP in the context of cancer, development, and metabolic and neurological pathologies. Recent analyses have provided new insights into its biochemical and functional dynamics. In this review, we provide a comprehensive account of our current knowledge about emerging insights into HAUSP in physiology and diseases, which shed light on fundamental biological questions and promise to provide a potential target for therapeutic intervention. Improved understandings of a molecular-tag-removing enzyme could lead to the development of therapies for many diseases. Dr. Mrinal K Ghosh of the Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB) and colleagues reviewed 20 years of research on herpesvirus-associated ubiquitin-specific protease (HAUSP), involved in a wide range of cellular processes through its role in removing the ubiquitin from molecules, thus signaling their fate. It was first discovered in/as a herpes virus infected cells, ultimately enhancing infection. It was later found to have a wide range of functions depending on the molecules it interacts with under normal physiological and disease conditions. Targeting HAUSP with drugs shows promise for suppressing prostate, lung, colon, breast, blood, and other cancers. It could also impact treatment of neurological conditions such as Huntington’s disease, and metabolic disorders, such as diabetes.
Collapse
|
15
|
Yeasmin Khusbu F, Chen FZ, Chen HC. Targeting ubiquitin specific protease 7 in cancer: A deubiquitinase with great prospects. Cell Biochem Funct 2018; 36:244-254. [PMID: 29781103 DOI: 10.1002/cbf.3336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Deubiquitinase (DUB)-mediated cleavage of ubiquitin chain balances ubiquitination and deubiquitination for determining protein fate. USP7 is one of the best characterized DUBs and functionally important. Numerous proteins have been identified as potential substrates and binding partners of USP7; those play crucial roles in diverse array of cellular and biological processes including tumour suppression, cell cycle, DNA repair, chromatin remodelling, and epigenetic regulation. This review aims at summarizing the current knowledge of this wide association of USP7 with many cellular processes that enlightens the possibility of abnormal USP7 activity in promoting oncogenesis and the importance of identification of specific inhibitors.
Collapse
Affiliation(s)
- Farjana Yeasmin Khusbu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fang-Zhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Inoue D, Fujino T, Sheridan P, Zhang YZ, Nagase R, Horikawa S, Li Z, Matsui H, Kanai A, Saika M, Yamaguchi R, Kozuka-Hata H, Kawabata KC, Yokoyama A, Goyama S, Inaba T, Imoto S, Miyano S, Xu M, Yang FC, Oyama M, Kitamura T. A novel ASXL1-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia 2018; 32:1327-1337. [PMID: 29556021 DOI: 10.1038/s41375-018-0083-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
ASXL1 plays key roles in epigenetic regulation of gene expression through methylation of histone H3K27, and disruption of ASXL1 drives myeloid malignancies, at least in part, via derepression of posterior HOXA loci. However, little is known about the identity of proteins that interact with ASXL1 and about the functions of ASXL1 in modulation of the active histone mark, such as H3K4 methylation. In this study, we demonstrate that ASXL1 is a part of a protein complex containing HCFC1 and OGT; OGT directly stabilizes ASXL1 by O-GlcNAcylation. Disruption of this novel axis inhibited myeloid differentiation and H3K4 methylation as well as H2B glycosylation and impaired transcription of genes involved in myeloid differentiation, splicing, and ribosomal functions; this has implications for myelodysplastic syndrome (MDS) pathogenesis, as each of these processes are perturbed in the disease. This axis is responsible for tumor suppression in the myeloid compartment, as reactivation of OGT induced myeloid differentiation and reduced leukemogenecity both in vivo and in vitro. Our data also suggest that MLL5, a known HCFC1/OGT-interacting protein, is responsible for gene activation by the ASXL1-OGT axis. These data shed light on the novel roles of the ASXL1-OGT axis in H3K4 methylation and activation of transcription.
Collapse
Affiliation(s)
- Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan.
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Paul Sheridan
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Yao-Zhong Zhang
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Zaomin Li
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 8608556, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 7348553, Japan
| | - Makoto Saika
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Rui Yamaguchi
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Kimihito Cojin Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 7348553, Japan
| | - Seiya Imoto
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Satoru Miyano
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan.
| |
Collapse
|
17
|
Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov 2018; 4:4. [PMID: 29423272 PMCID: PMC5802628 DOI: 10.1038/s41421-017-0004-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.
Collapse
|
18
|
H3
K27M/I
mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood 2017; 130:2204-2214. [DOI: 10.1182/blood-2017-03-774653] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Key Points
First characterization of neomorphic H3K27 mutations in AML. H3 K27 mutations are associated with and collaborate with RUNX1 mutations and translocations.
Collapse
|
19
|
Urreizti R, Cueto-Gonzalez AM, Franco-Valls H, Mort-Farre S, Roca-Ayats N, Ponomarenko J, Cozzuto L, Company C, Bosio M, Ossowski S, Montfort M, Hecht J, Tizzano EF, Cormand B, Vilageliu L, Opitz JM, Neri G, Grinberg D, Balcells S. A De Novo Nonsense Mutation in MAGEL2 in a Patient Initially Diagnosed as Opitz-C: Similarities Between Schaaf-Yang and Opitz-C Syndromes. Sci Rep 2017; 7:44138. [PMID: 28281571 PMCID: PMC5345063 DOI: 10.1038/srep44138] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Opitz trigonocephaly C syndrome (OTCS) is a rare genetic disorder characterized by craniofacial anomalies, variable intellectual and psychomotor disability, and variable cardiac defects with a high mortality rate. Different patterns of inheritance and genetic heterogeneity are known in this syndrome. Whole exome and genome sequencing of a 19-year-old girl (P7), initially diagnosed with OTCS, revealed a de novo nonsense mutation, p.Q638*, in the MAGEL2 gene. MAGEL2 is an imprinted, maternally silenced, gene located at 15q11-13, within the Prader-Willi region. Patient P7 carried the mutation in the paternal chromosome. Recently, mutations in MAGEL2 have been described in Schaaf-Yang syndrome (SHFYNG) and in severe arthrogryposis. Patient P7 bears resemblances with SHFYNG cases but has other findings not described in this syndrome and common in OTCS. We sequenced MAGEL2 in nine additional OTCS patients and no mutations were found. This study provides the first clear molecular genetic basis for an OTCS case, indicates that there is overlap between OTCS and SHFYNG syndromes, and confirms that OTCS is genetically heterogeneous. Genes encoding MAGEL2 partners, either in the retrograde transport or in the ubiquitination-deubiquitination complexes, are promising candidates as OTCS disease-causing genes.
Collapse
Affiliation(s)
- Roser Urreizti
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Anna Maria Cueto-Gonzalez
- Department of Clinical and Molecular Genetics and Rare Diseases Unit, Hospital Vall d'Hebron, Barcelona, Spain
| | - Héctor Franco-Valls
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain
| | - Sílvia Mort-Farre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain
| | - Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos Company
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mattia Bosio
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Magda Montfort
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduardo F Tizzano
- CIBERER, Barcelona, Spain.,Department of Clinical and Molecular Genetics and Rare Diseases Unit, Hospital Vall d'Hebron, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - John M Opitz
- Pediatrics Medical Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Giovanni Neri
- Istituto di Medicina Genomica, Università Cattolica Sacro Cuore, Policlínico A Gemelli, Rome, Italy
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Susana Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,CIBERER, Barcelona, Spain
| |
Collapse
|
20
|
A novel de-novo frameshift mutation of the ASXL1 gene in a classic case of Bohring-Opitz syndrome. Clin Dysmorphol 2017; 25:101-5. [PMID: 27043953 DOI: 10.1097/mcd.0000000000000126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Micol JB, Abdel-Wahab O. The Role of Additional Sex Combs-Like Proteins in Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026526. [PMID: 27527698 DOI: 10.1101/cshperspect.a026526] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Additional sex combs-like (ASXL) proteins are mammalian homologs of Addition of sex combs (Asx), a protein that regulates the balance of trithorax and Polycomb function in Drosophila. All three ASXL family members (ASXL1, ASXL2, and ASXL3) are affected by somatic or de novo germline mutations in cancer or rare developmental syndromes, respectively. Although Asx is characterized as a catalytic partner for the deubiquitinase Calypso (or BAP1), there are domains of ASXL proteins that are distinct from Asx and the roles and redundancies of ASXL members are not yet well understood. Moreover, it is not yet fully clarified if commonly encountered ASXL1 mutations result in a loss of protein or stable expression of a truncated protein with dominant-negative or gain-of-function properties. This review summarizes our current knowledge of the biological and functional roles of ASXL members in development, cancer, and transcription.
Collapse
Affiliation(s)
- Jean-Baptiste Micol
- Hematology Department, INSERM UMR1170, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
22
|
Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol 2015; 44:172-6.e1. [PMID: 26700326 DOI: 10.1016/j.exphem.2015.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
Recent progress in deep sequencing technologies has revealed many novel mutations in a variety of genes in patients with myelodysplastic syndromes (MDS). Most of these mutations are thought to be loss-of-function mutations, with some exceptions, such as the gain-of-function IDH1/2 and SRSF2 mutations. Among the mutations, ASXL1 mutations attract much attention; the ASXL1 mutations are identified in a variety of hematologic malignancies and always predicts poor prognosis. It was found that the C-terminal truncating mutants of the ASXL1 or ASXL1 deletion induced MDS-like diseases in mouse. In addition, it has recently been reported that ASXL1 mutations are frequently found in clonal hematopoiesis in healthy elderly people, who frequently progress to hematologic malignancies. However, the underlying molecular mechanisms by which ASXL1 mutations induce hematologic malignancies are not fully understood. Moreover, whether ASXL1 mutations are loss-of-function mutations or dominant-negative or gain-of-function mutations remains a matter of controversy. We here present solid evidence indicating that the C-terminal truncating ASXL1 protein is indeed expressed in cells harboring homozygous mutations of ASXL1, indicating the ASXL1 mutations are dominant-negative or gain-of-function mutations; for the first time, we detected the truncated ASXL1 proteins in two cell lines lacking the intact ASXL1 gene by mass spectrometry and Western blot analyses. Thus, together with our previous results, the present results indicate that the truncating ASXL1 mutant is indeed expressed in MDS cells and may play a role in MDS pathogenesis not previously considered.
Collapse
|