1
|
Saft L, Kvasnicka HM, Boudova L, Gianelli U, Lazzi S, Rozman M. Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase fusion genes: A workshop report with focus on novel entities and a literature review including paediatric cases. Histopathology 2023; 83:829-849. [PMID: 37551450 DOI: 10.1111/his.15021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Myeloid/lymphoid neoplasms with eosinophilia (M/LN-eo) and tyrosine kinase (TK) gene fusions are a rare group of haematopoietic neoplasms with a broad range of clinical and morphological presentations. Paediatric cases have increasingly been recognised. Importantly, not all appear as a chronic myeloid neoplasm and eosinophilia is not always present. In addition, standard cytogenetic and molecular methods may not be sufficient to diagnose M/LN-eo due to cytogenetically cryptic aberrations. Therefore, additional evaluation with fluorescence in-situ hybridisation and other molecular genetic techniques (array-based comparative genomic hybridisation, RNA sequencing) are recommended for the identification of specific TK gene fusions. M/LN-eo with JAK2 and FLT3-rearrangements and ETV6::ABL1 fusion were recently added as a formal member to this category in the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In addition, other less common defined genetic alterations involving TK genes have been described. This study is an update on M/LN-eo with TK gene fusions with focus on novel entities, as illustrated by cases submitted to the Bone Marrow Workshop, organised by the European Bone Marrow Working Group (EBMWG) within the frame of the 21st European Association for Haematopathology congress (EAHP-SH) in Florence 2022. A literature review was performed including paediatric cases of M/LN-eo with TK gene fusions.
Collapse
Affiliation(s)
- Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Hans M Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Ludmila Boudova
- Department of Pathology, Medical Faculty Hospital, Charles University, Pilsen, Czech Republic
| | - Umberto Gianelli
- Università degli Studi di Milano, SC Anatomia Patologica, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Stefano Lazzi
- Department of Biotechnology, Institute of Pathology, University of Siena, Siena, Italy
| | | |
Collapse
|
2
|
Chen X, Wang W, Yeh J, Wu Y, Oehler VG, Naresh KN, Liu YJ. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J Mol Diagn 2023; 25:932-944. [PMID: 37813298 DOI: 10.1016/j.jmoldx.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Recurrent gene rearrangements result in gene fusions that encode chimeric proteins, driving the pathogenesis of many hematologic neoplasms. The fifth edition World Health Organization classification and International Consensus Classification 2022 include an expanding list of entities defined by such gene rearrangements. Therefore, sensitive and rapid methods are needed to identify a broad range of gene fusions for precise diagnosis and prognostication. In this study, we validated the FusionPlex Pan-Heme panel analysis using anchored multiplex PCR/targeted RNA next-generation sequencing for routine clinical testing. Furthermore, we assessed its utility in detecting gene fusions in myeloid and lymphoid neoplasms. The validation cohort of 61 cases demonstrated good concordance between the FusionPlex Pan-Heme panel and other methods, including chromosome analysis, fluorescence in situ hybridization, RT-PCR, and Sanger sequencing, with an analytic sensitivity and specificity of 95% and 100%, respectively. In an independent cohort of 28 patients indicated for FusionPlex testing, gene fusions were detected in 21 patients. The FusionPlex Pan-Heme panel analysis reliably detected fusion partners and patient-specific fusion sequences, allowing accurate classification of hematologic neoplasms and the discovery of new fusion partners, contributing to a better understanding of the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jeffrey Yeh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yu Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vivian G Oehler
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
3
|
Venable ER, Gagnon MF, Pitel BA, Palmer JM, Peterson JF, Baughn LB, Hoppman NL, Greipp PT, Ketterling RP, Patnaik MS, Kelemen K, Xu X. A TRIP11:: FLT3 gene fusion in a patient with myeloid/lymphoid neoplasm with eosinophilia and tyrosine kinase gene fusions: a case report and review of the literature. Cold Spring Harb Mol Case Stud 2023; 9:mcs.a006243. [PMID: 36627146 PMCID: PMC10111796 DOI: 10.1101/mcs.a006243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Myeloid/lymphoid neoplasms with FLT3 gene fusions have recently been included among myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) in the World Health Organization classification and International Consensus Classification. As this entity remains remarkably rare, its scope and phenotypic features are evolving. In this report, we describe a 33-yr-old male with MLN-TK. Conventional chromosome analysis revealed a t(13;14)(q12;q32). Further analysis with mate-pair sequencing (MPseq) confirmed a TRIP11::FLT3 gene fusion. A diagnosis of MLN-TK was rendered. To the best of our knowledge, we report the third case of MLN-TK with a TRIP11::FLT3 gene fusion. In contrast to previously described cases, our case exhibited distinctly mild clinical features and disease behavior, emphasizing the diverse spectrum of MLN-TK at primary presentation and variability in disease course. MLN-TK with FLT3 gene fusions are a genetically defined entity which may be targetable with tyrosine kinase inhibitors with anti-FLT3 activity. Accordingly, from diagnostic and therapeutic viewpoints, genetic testing for FLT3 rearrangements using fluorescence in situ hybridization (FISH) or sequencing-based assays should be pursued for patients with chronic eosinophilia.
Collapse
Affiliation(s)
- Elise R Venable
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Marie-France Gagnon
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Beth A Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jeanne M Palmer
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Jess F Peterson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patricia T Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Rhett P Ketterling
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA
| | - Mrinal S Patnaik
- Division of Hematology and Oncology, Department of Medicine Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Katalin Kelemen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology; Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55905, USA;
| |
Collapse
|
4
|
Tzankov A, Reichard KK, Hasserjian RP, Arber DA, Orazi A, Wang SA. Updates on eosinophilic disorders. Virchows Arch 2023; 482:85-97. [PMID: 36068374 DOI: 10.1007/s00428-022-03402-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
This review addresses changes and updates in eosinophilic disorders under the International Consensus Classification (ICC). The previous category of myeloid/lymphoid neoplasm with eosinophilia (M/LN-eo) and a specific gene rearrangement is changed to M/LN-eo with tyrosine kinase gene fusions to reflect the underlying genetic lesions. Two new members, M/LN-eo with ETV6::ABL1 fusion and M/LN-eo with various FLT3 fusions, have been added to the category; and M/LN-eo with PCM1::JAK2 and its genetic variants ETV6::JAK2 and BCR::JAK2 are recognized as a formal entity from their former provisional status. The updated understanding of the clinical and molecular genetic features of PDGFRA, PDGFRB and FGFR1 neoplasms is summarized. Clear guidance as to how to distinguish these fusion gene-associated disorders from the overlapping entities of Ph-like B-acute lymphoblastic leukemia (ALL), de novo T-ALL, and systemic mastocytosis is provided. Bone marrow morphology now constitutes one of the diagnostic criteria of chronic eosinophilic leukemia, NOS (CEL, NOS), and idiopathic hypereosinophilia/hypereosinophilic syndrome (HE/HES), facilitating the separation of a true myeloid neoplasm with characteristic eosinophilic proliferation from those of unknown etiology and not attributable to a myeloid neoplasm.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kaaren K Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, NY, Rochester, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, IL, Chicago, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sa A Wang
- Department of Hematopathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
5
|
Clark EE, Walton M, Chow LML, Boyd JT, Yohannan MD, Arya S. Disseminated Juvenile Xanthogranuloma with a Novel MYH9-FLT3 Fusion Presenting as a Blueberry Muffin Rash in a Neonate. AJP Rep 2023; 13:e5-e10. [PMID: 36816441 PMCID: PMC9937778 DOI: 10.1055/a-2015-1080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Juvenile xanthogranuloma (JXG) is a benign proliferative histiocytic disorder of the dendritic cell phenotype. It mostly presents in the pediatric age group as a solitary skin lesion. We describe a rare case of an infant born with disseminated JXG who presented with a blueberry muffin rash at birth. A term infant was noted to have multiple petechiae, purple nodules, and macules (1 mm-2 cm in diameter) and hepatosplenomegaly, at the time of birth. Further investigations revealed thrombocytopenia and direct hyperbilirubinemia and a magnetic resonance imaging showed scattered tiny foci of restricted diffusion in multiple areas of the brain. Patient received multiple platelet transfusions in the first few weeks with gradual improvement in thrombocytopenia. Ultimately, a biopsy of one of the lesions revealed the diagnosis of disseminated JXG with notable atypical features. Somatic mutation analysis showed a novel MYH9-FLT3 fusion, but a bone marrow biopsy was negative. The lesions faded over time, relative to patient's growth and normal neurodevelopment was noted at 18 months of age. JXG should be considered in the differentials of blueberry muffin rash in an infant. Although, JXG is mostly a self-limited condition, congenital disseminated JXG may be associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Emily E Clark
- Department of Neonatology, Dayton Children's Hospital, Dayton, Ohio
| | - Mollie Walton
- Department of Pediatric Cardiology, Children's Mercy Kansas City, Overland Park, Kansas
| | - Lionel M L Chow
- Department of Pediatric Hematology/Oncology, Wright State University Boonshoft School of Medicine and Dayton Children's Hospital, Dayton, Ohio
| | - J Todd Boyd
- Department of Pathology and Laboratory Medicine, Wright State University Boonshoft School of Medicine and Dayton Children's Hospital, Dayton, Ohio
| | - M David Yohannan
- Department of Neonatology, Dayton Children's Hospital, Dayton, Ohio.,Department of Neonatal-Perinatal Medicine, Wright State University Boonshoft School of Medicine and Dayton Children's Hospital, Dayton, Ohio
| | - Shreyas Arya
- Department of Neonatology, Dayton Children's Hospital, Dayton, Ohio.,Department of Neonatal-Perinatal Medicine, Wright State University Boonshoft School of Medicine and Dayton Children's Hospital, Dayton, Ohio
| |
Collapse
|
6
|
Sahajpal NS, Mondal AK, Tvrdik T, Hauenstein J, Shi H, Deeb KK, Saxe D, Hastie AR, Chaubey A, Savage NM, Kota V, Kolhe R. Clinical Validation and Diagnostic Utility of Optical Genome Mapping for Enhanced Cytogenomic Analysis of Hematological Neoplasms. J Mol Diagn 2022; 24:1279-1291. [PMID: 36265723 DOI: 10.1016/j.jmoldx.2022.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
The current standard-of-care cytogenetic techniques for the analysis of hematological malignancies include karyotyping, fluorescence in situ hybridization, and chromosomal microarray, which are labor intensive and time and cost prohibitive, and they often do not reveal the genetic complexity of the tumor, demonstrating the need for alternative technology for better characterization of these tumors. Herein, we report the results from our clinical validation study and demonstrate the utility of optical genome mapping (OGM), evaluated using 92 sample runs (including replicates) that included 69 well-characterized unique samples (59 hematological neoplasms and 10 controls). The technical performance (quality control metrics) resulted in 100% first-pass rate, with analytical performance (concordance) showing a sensitivity of 98.7%, a specificity of 100%, and an accuracy of 99.2%. OGM demonstrated robust technical, analytical performance, and interrun, intrarun, and interinstrument reproducibility. The limit of detection was determined to be at 5% allele fraction for aneuploidy, translocation, interstitial deletion, and duplication. OGM identified several additional structural variations, revealing the genomic architecture in these neoplasms that provides an opportunity for better tumor classification, prognostication, risk stratification, and therapy selection. Overall, OGM has outperformed the standard-of-care tests in this study and demonstrated its potential as a first-tier cytogenomic test for hematologic malignancies.
Collapse
Affiliation(s)
- Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tatiana Tvrdik
- Department of Pathology, Emory University, Atlanta, Georgia
| | | | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Kristin K Deeb
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Debra Saxe
- Department of Pathology, Emory University, Atlanta, Georgia
| | | | | | - Natasha M Savage
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
7
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1358] [Impact Index Per Article: 452.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Tang G, Tam W, Short NJ, Bose P, Wu D, Hurwitz SN, Bagg A, Rogers HJ, Hsi ED, Quesada AE, Wang W, Miranda RN, Bueso-Ramos CE, Medeiros LJ, Nardi V, Hasserjian RP, Arber DA, Orazi A, Foucar K, Wang SA. Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod Pathol 2021; 34:1673-1685. [PMID: 33990705 DOI: 10.1038/s41379-021-00817-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Myeloid/lymphoid neoplasms (M/LN) with 13q12/FLT3 rearrangement have been suggested as candidates for possible inclusion in the World Health Organization classification group of M/LN with eosinophilia (M/LN-eo). We report 12 patients with confirmed FLT3 rearrangement, six with t(12;13)/ETV6-FLT3; one with ins(13;22)/BCR-FLT3; and five with an unconfirmed partner gene located on chromosome bands 2p16, 3q27, 5q15, 5q35, and 7q36. Disease presentations were heterogeneous, including lymphoblastic leukemia/lymphoma, myeloid sarcoma, chronic eosinophilic leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndrome. However, some common features were observed, such as extramedullary involvement (n = 7, 58%), associated eosinophilia in blood, bone marrow, or tissue (n = 8, 67%), multilineage involvement, either as biphasic myeloid/lymphoid neoplasms (n = 2) or mixed phenotype acute leukemia (n = 2). Mutations were detected in 4/8 (50%) patients by next-generation sequencing. None (0/10) had FLT3 or KIT mutations. Eleven patients received disease-based chemotherapy or hypomethylating agents, three received FLT3 inhibitors, and five patients proceeded to hematopoietic stem cell transplant. Together with a review of 16 cases published in the literature, it is apparent that M/LNs with FLT3 rearrangement show disease features reminiscent of members in the category of M/LN-eo with PDGFRA, PDGFRB, FGFR1, and PCM1/JAK2 rearrangement, characterized by a specific gene rearrangement, frequent eosinophilia, multi-lineage involvement and therapeutic benefit from kinase inhibitors.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanie N Hurwitz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Kathryn Foucar
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
ETV6-FLT3-positive myeloid/lymphoid neoplasm with eosinophilia presenting in an infant: an entity distinct from JMML. Blood Adv 2021; 5:1899-1902. [PMID: 33792628 DOI: 10.1182/bloodadvances.2020003699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloid/lymphoid neoplasm with eosinophilia (MLN-Eo) is a World Health Organization (WHO) established category of hematologic malignancies primarily arising in adults. We discuss an 8-month-old infant who presented with clinical features similar to those of juvenile myelomonocytic leukemia (JMML) but who was diagnosed with MLN-Eo driven by an ETV6-FLT3 fusion. Results of patient-derived leukemia ex vivo studies demonstrated increased sensitivity to type I FLT3 inhibitors as compared with type II inhibitors. Treatment with the type I inhibitor gilteritinib resulted in complete immunophenotypic and cytogenetic remission. This patient subsequently underwent a hematopoietic stem cell transplant and remains in complete remission 1 year later. This is the youngest patient reported with an ETV6-FLT3 fusion and adds to the mounting reports of FLT3-rearranged MLN-Eo, supporting its addition to the WHO classification. Furthermore, this case highlights the clinical utility of ex vivo drug testing of targeted therapies.
Collapse
|
10
|
Pozdnyakova O, Orazi A, Kelemen K, King R, Reichard KK, Craig FE, Quintanilla-Martinez L, Rimsza L, George TI, Horny HP, Wang SA. Myeloid/Lymphoid Neoplasms Associated With Eosinophilia and Rearrangements of PDGFRA, PDGFRB, or FGFR1 or With PCM1-JAK2. Am J Clin Pathol 2021; 155:160-178. [PMID: 33367495 DOI: 10.1093/ajcp/aqaa208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To summarize cases submitted to the 2019 Society for Hematopathology/European Association for Haematopathology Workshop under the category of myeloid/lymphoid neoplasms with eosinophilia and PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2 rearrangements, focusing on recent updates and relevant practice findings. METHODS The cases were summarized according to their respective gene rearrangement to illustrate the spectrum of clinical, laboratory, and histopathology manifestations and to explore the appropriate molecular genetic tests. RESULTS Disease presentations were heterogeneous, including myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDSs), MDS/MPN, acute myeloid leukemia, acute B- or T-lymphoblastic lymphoma/acute lymphoblastic lymphoma (ALL/LBL), or mixed-lineage neoplasms. Frequent extramedullary involvement occurred. Eosinophilia was common but not invariably present. With the advancement of RNA sequencing, cryptic rearrangements were recognized in genes other than PDGFRA. Additional somatic mutations were more frequent in the FGFR1-rearranged cases. Cases with B-ALL presentations differed from Philadelphia-like B-ALL by the presence of an underlying MPN. Cases with FLT3 and ABL1 rearrangements could be potential candidates for future inclusion in this category. CONCLUSIONS Accurate diagnosis and classification of this category of myeloid/lymphoid neoplasms has important therapeutic implications. With the large number of submitted cases, we expand our understanding of these rare neoplasms and improve our ability to diagnose these genetically defined disorders.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, P. L. Foster School of Medicine, El Paso
| | | | - Rebecca King
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | | | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Lisa Rimsza
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | | | - Sa A Wang
- MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
11
|
Shao H, Wang W, Song J, Tang G, Zhang X, Tang Z, Srivastava J, Shah B, Medeiros LJ, Zhang L. Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement. Leuk Res 2020; 99:106460. [PMID: 33166908 DOI: 10.1016/j.leukres.2020.106460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement are a unique category in the WHO classification, and include cases with rearrangement of PDGFRA, PDGFRB, FGFR1, and PCM1-JAK2. We report three patients presented with eosinophilia and FLT3 rearrangement: the first case with chronic eosinophilic leukemia, not otherwise specified and T-lymphoblastic leukemia/lymphoma; the second case with myeloid sarcoma; and the last case with high-grade myelodysplastic syndrome. The first case showed t(13;14)(q12;q32), which encoded FLT3-TRIP11. The patient was treated with intense chemotherapy and subsequently sorafenib with clinical improvement. Unfortunately, the patient showed persistent residual disease and passed away 9 months after the diagnosis from pneumonia. The other two cases both showed ETV6-FLT3. The second patient was treated with local radiation and systemic chemotherapy including sorafenib and was alive. The third patient was treated with chemotherapy but showed transformation to acute myeloid leukemia and died 15 months after diagnosis. These cases are among a growing number of cases with FLT3 rearrangement that all showed similar clinicopathologic features characterized by myeloproliferative neoplasm with eosinophilia and frequent T lymphoblastic leukemia/lymphoma. Therefore, we propose that the myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement be included in the WHO category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement.
Collapse
MESH Headings
- Abnormal Karyotype
- Aged
- Bone Marrow/pathology
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 13/ultrastructure
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/ultrastructure
- Disease Progression
- Eosinophilia/complications
- Eosinophilia/genetics
- Eosinophilia/pathology
- Humans
- Hypereosinophilic Syndrome/complications
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/pathology
- Leukemia/classification
- Lymph Nodes/pathology
- Lymphoma/classification
- Male
- Middle Aged
- Myelodysplastic Syndromes/complications
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Oncogene Proteins, Fusion/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/complications
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Proteins c-ets/genetics
- Repressor Proteins/genetics
- Sarcoma, Myeloid/complications
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Translocation, Genetic
- World Health Organization
- fms-Like Tyrosine Kinase 3/genetics
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Haipeng Shao
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jinming Song
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jaya Srivastava
- Adaptive Biotechnologies, 1551 Eastlake Ave E, Ste 200, Seattle, WA, United States
| | - Bijal Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States.
| |
Collapse
|
12
|
Bubola J, Antonescu CR, Weinreb I, Swanson D, De Almeida JR, MacMillan CM, Dickson BC. A novel low-grade nasopharyngeal adenocarcinoma characterized by a GOLGB1-BRAF fusion gene. Genes Chromosomes Cancer 2020; 60:49-53. [PMID: 32951290 DOI: 10.1002/gcc.22897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
Nasopharyngeal adenocarcinoma is a rare malignancy that is classified into conventional/surface- and salivary-types. Herein we report the case of a 52-year-old male who presented with a right nasopharyngeal mass and right-sided hearing loss. Diagnostic imaging revealed a circumscribed 1.7 cm mass centred in the right antero-lateral aspect of the nasopharynx. A biopsy showed a gland-forming neoplasm that was in continuity with the surface epithelium. The tumor exhibited a nested to micro-papillary architecture, with mild cytologic atypia. Immunohistochemistry demonstrated diffuse staining for CK7, SOX10, and p16; the abluminal layer was highlighted by CK5 and p63, while the luminal cells expressed CD117. The tumor was not amenable to subclassification and was diagnosed as a low-grade nasopharyngeal adenocarcinoma, not otherwise specified (NOS). Subsequent RNA sequencing was performed which identified a novel GOLGB1-BRAF fusion product. Based on its unique morphology and molecular findings, this is presumed to represent a novel subtype of nasopharyngeal adenocarcinoma. In addition to being of diagnostic relevance, this fusion may ultimately represent a potential therapeutic target.
Collapse
Affiliation(s)
- Justin Bubola
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R De Almeida
- Department of Otolaryngology Head and Neck Surgery, Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Christina M MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Gerds AT, Gotlib J, Bose P, Deininger MW, Dunbar A, Elshoury A, George TI, Gojo I, Gundabolu K, Hexner E, Hobbs G, Jain T, Jamieson C, Kuykendall AT, McMahon B, Mohan SR, Oehler V, Oh S, Pardanani A, Podoltsev N, Ranheim E, Rein L, Salit R, Snyder DS, Stein BL, Talpaz M, Thota S, Vachhani P, Wadleigh M, Walsh K, Ward DC, Bergman MA, Sundar H. Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1248-1269. [PMID: 32886902 DOI: 10.6004/jnccn.2020.0042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophilic disorders and related syndromes represent a heterogeneous group of neoplastic and nonneoplastic conditions, characterized by more eosinophils in the peripheral blood, and may involve eosinophil-induced organ damage. In the WHO classification of myeloid and lymphoid neoplasms, eosinophilic disorders characterized by dysregulated tyrosine kinase (TK) fusion genes are recognized as a new category termed, myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1 or with PCM1-JAK2. In addition to these aforementioned TK fusion genes, rearrangements involving FLT3 and ABL1 genes have also been described. These new NCCN Guidelines include recommendations for the diagnosis, staging, and treatment of any one of the myeloid/lymphoid neoplasms with eosinophilia (MLN-Eo) and a TK fusion gene included in the 2017 WHO Classification, as well as MLN-Eo and a FLT3 or ABL1 rearrangement.
Collapse
Affiliation(s)
- Aaron T Gerds
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | | | - Ivana Gojo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | - Vivian Oehler
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Stephen Oh
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | - Rachel Salit
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | - Katherine Walsh
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Dawn C Ward
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|
14
|
Yang LH, Zhao Y, Maule J, Rapisardo S, Wang E. T-lymphoblastic lymphoma and acute myeloid leukaemia transformed from myeloid neoplasm with eosinophilia: a divergent evolution of myeloid neoplasm with monosomy 7 but no detectable tyrosine kinase gene rearrangements designated by the WHO Classification. Br J Haematol 2020; 190:e307-e312. [PMID: 32525559 DOI: 10.1111/bjh.16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lian-He Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, P. R. of China.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, P. R. of China.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jake Maule
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah Rapisardo
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
15
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
16
|
Satoh A, Hayashi-Nishino M, Shakuno T, Masuda J, Koreishi M, Murakami R, Nakamura Y, Nakamura T, Abe-Kanoh N, Honjo Y, Malsam J, Yu S, Nishino K. The Golgin Protein Giantin Regulates Interconnections Between Golgi Stacks. Front Cell Dev Biol 2019; 7:160. [PMID: 31544102 PMCID: PMC6732663 DOI: 10.3389/fcell.2019.00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Golgins are a family of Golgi-localized long coiled-coil proteins. The major golgin function is thought to be the tethering of vesicles, membranes, and cytoskeletal elements to the Golgi. We previously showed that knockdown of one of the longest golgins, Giantin, altered the glycosylation patterns of cell surfaces and the kinetics of cargo transport, suggesting that Giantin maintains correct glycosylation through slowing down transport within the Golgi. Giantin knockdown also altered the sizes and numbers of mini Golgi stacks generated by microtubule de-polymerization, suggesting that it maintains the independence of individual Golgi stacks. Therefore, it is presumed that Golgi stacks lose their independence following Giantin knockdown, allowing easier and possibly increased transport among stacks and abnormal glycosylation. To gain structural insights into the independence of Golgi stacks, we herein performed electron tomography and 3D modeling of Golgi stacks in Giantin knockdown cells. Compared with control cells, Giantin-knockdown cells had fewer and smaller fenestrae within each cisterna. This was supported by data showing that the diffusion rate of Golgi membrane proteins is faster in Giantin-knockdown Golgi, indicating that Giantin knockdown structurally and functionally increases connectivity among Golgi cisternae and stacks. This increased connectivity suggests that contrary to the cis-golgin tether model, Giantin instead inhibits the tether and fusion of nearby Golgi cisternae and stacks, resulting in transport difficulties between stacks that may enable the correct glycosylation of proteins and lipids passing through the Golgi.
Collapse
Affiliation(s)
- Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | | | - Takuto Shakuno
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Junko Masuda
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mayuko Koreishi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Runa Murakami
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Graduate School Tokushima University, Tokushima, Japan
| | - Yasuko Honjo
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Joerg Malsam
- Center for Biochemistry (BZH), Heidelberg University, Heidelberg, Germany
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Georgiadis P, Gavriil M, Rantakokko P, Ladoukakis E, Botsivali M, Kelly RS, Bergdahl IA, Kiviranta H, Vermeulen RCH, Spaeth F, Hebbels DGAJ, Kleinjans JCS, de Kok TMCM, Palli D, Vineis P, Kyrtopoulos SA. DNA methylation profiling implicates exposure to PCBs in the pathogenesis of B-cell chronic lymphocytic leukemia. ENVIRONMENT INTERNATIONAL 2019; 126:24-36. [PMID: 30776747 PMCID: PMC7063446 DOI: 10.1016/j.envint.2019.01.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 05/03/2023]
Abstract
OBJECTIVES To characterize the impact of PCB exposure on DNA methylation in peripheral blood leucocytes and to evaluate the corresponding changes in relation to possible health effects, with a focus on B-cell lymphoma. METHODS We conducted an epigenome-wide association study on 611 adults free of diagnosed disease, living in Italy and Sweden, in whom we also measured plasma concentrations of 6 PCB congeners, DDE and hexachlorobenzene. RESULTS We identified 650 CpG sites whose methylation correlates strongly (FDR < 0.01) with plasma concentrations of at least one PCB congener. Stronger effects were observed in males and in Sweden. This epigenetic exposure profile shows extensive and highly statistically significant overlaps with published profiles associated with the risk of future B-cell chronic lymphocytic leukemia (CLL) as well as with clinical CLL (38 and 28 CpG sites, respectively). For all these sites, the methylation changes were in the same direction for increasing exposure and for higher disease risk or clinical disease status, suggesting an etiological link between exposure and CLL. Mediation analysis reinforced the suggestion of a causal link between exposure, changes in DNA methylation and disease. Disease connectivity analysis identified multiple additional diseases associated with differentially methylated genes, including melanoma for which an etiological link with PCB exposure is established, as well as developmental and neurological diseases for which there is corresponding epidemiological evidence. Differentially methylated genes include many homeobox genes, suggesting that PCBs target stem cells. Furthermore, numerous polycomb protein target genes were hypermethylated with increasing exposure, an effect known to constitute an early marker of carcinogenesis. CONCLUSIONS This study provides mechanistic evidence in support of a link between exposure to PCBs and the etiology of CLL and underlines the utility of omic profiling in the evaluation of the potential toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Marios Gavriil
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Security, Environmental Health unit, P.O. Box 95, Kuopio, Finland
| | - Efthymios Ladoukakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Maria Botsivali
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Rachel S Kelly
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Ingvar A Bergdahl
- Department of Biobank Research, and Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Hannu Kiviranta
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Florentin Spaeth
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | | | | | | | - Domenico Palli
- The Institute for Cancer Research and Prevention, Florence, Italy
| | - Paolo Vineis
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
18
|
McEvoy CR, Xu H, Smith K, Etemadmoghadam D, San Leong H, Choong DY, Byrne DJ, Iravani A, Beck S, Mileshkin L, Tothill RW, Bowtell DD, Bates BM, Nastevski V, Browning J, Bell AH, Khoo C, Desai J, Fellowes AP, Fox SB, Prall OW. Profound MEK inhibitor response in a cutaneous melanoma harboring a GOLGA4-RAF1 fusion. J Clin Invest 2019; 129:1940-1945. [PMID: 30835257 PMCID: PMC6486352 DOI: 10.1172/jci123089] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BRAF and CRAF are critical components of the MAPK signaling pathway which is activated in many cancer types. In approximately 1% of melanomas, BRAF or CRAF are activated through structural arrangements. We describe here a metastatic melanoma with a GOLGA4-RAF1 fusion and pathogenic variants in CTNNB1 and CDKN2A. Anti-CTLA4/anti-PD1 combination immunotherapy failed to control tumor progression. In the absence of other actionable variants the patient was administered MEK inhibitor therapy on the basis of its potential action against RAF1 fusions. This resulted in a profound and clinically significant response. We demonstrated that GOLGA4-RAF1 expression was associated with ERK activation, elevated expression of the RAS/RAF downstream co-effector ETV5, and a high Ki67 index. These findings provide a rationale for the dramatic response to targeted therapy. This study shows that thorough molecular characterization of treatment-resistant cancers can identify therapeutic targets and personalize management, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Christopher R. McEvoy
- Department of Pathology, and
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Huiling Xu
- Department of Pathology, and
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | - Amir Iravani
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sophie Beck
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Linda Mileshkin
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Richard W. Tothill
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - David D. Bowtell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | | | | | | | | | - Chloe Khoo
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jayesh Desai
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Department of Surgery, St Vincent’s Hospital, Fitzroy, Australia
- Clinical School, Austin Health, Heidelberg, Australia
- Department of Surgery, Royal Melbourne Hospital, Parkville, Australia
| | - Andrew P. Fellowes
- Department of Pathology, and
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B. Fox
- Department of Pathology, and
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
19
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
20
|
Zhang H, Paliga A, Hobbs E, Moore S, Olson S, Long N, Dao KHT, Tyner JW. Two myeloid leukemia cases with rare FLT3 fusions. Cold Spring Harb Mol Case Stud 2018; 4:a003079. [PMID: 30559310 PMCID: PMC6318770 DOI: 10.1101/mcs.a003079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic rearrangements involving FLT3 are rare and only recently have been detected in myeloid/lymphoid neoplasms associated with eosinophilia (MLN-eos) and chronic myeloproliferative disorders. Here we report two cases with FLT3 fusions in patients demonstrating mixed features of myelodysplastic/myeloproliferative neoplasms. In the first case, FLT3 was fused with a new fusion partner MYO18A in a patient with marrow features most consistent with atypical chronic myeloid leukemia; the second case involving ETV6-FLT3 fusion was observed in a case with bone marrow features most consistent with chronic myelomonocytic leukemia. Notably, we observed that samples from both patients demonstrated FLT3 inhibitor (quizartinib and sorafenib) sensitivity in ex vivo drug screening assay.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Aleksandra Paliga
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Evie Hobbs
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Stephen Moore
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Susan Olson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Nicola Long
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Kim-Hien T Dao
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| |
Collapse
|
21
|
Chung A, Hou Y, Ohgami RS, Von Gehr A, Fisk DG, Roskin KM, Li X, Gojenola L, Bangs CD, Arber DA, Fire AZ, Cherry AM, Zehnder JL, Gotlib J, Merker JD. A novel TRIP11-FLT3 fusion in a patient with a myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet 2017; 216-217:10-15. [DOI: 10.1016/j.cancergen.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 01/30/2023]
|