1
|
Lu Y, Wei R, Li J, Xu L. The adult HNRNPH1::ERG positive acute myeloid leukemia with clear lower remission and worse prognosis: A case report and review of the literature. Medicine (Baltimore) 2025; 104:e41809. [PMID: 40193682 PMCID: PMC11977748 DOI: 10.1097/md.0000000000041809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
RATIONALE Acute myeloid leukemia (AML) derived from t(5;21)(q35;q22) translocation, post-transcriptional translation, forming the HNRNPH1::ERG fusion gene is a rare group of recurrent chromosomal abnormality myeloid malignancies. Only 1 adult case of AML has been reported so far. Here we identified a disparate adult case of HNRNPH1::ERG positive AML with clear breakpoint locations by utilizing The RNA sequencing(RNA-seq) and we addressed the clinical, treatment, pathological and molecular mechanism, along with a review of the literature. PATIENTS CONCERNS A 54-year-old man visited our department with fever and fatigue for 10 days. DIAGNOSES Diagnosed with acute myeloid leukemia (AML) through morphology, immunology, Cytogenetics, and Molecular biology (MICM) typing, with a confirmed HNRNPH1-ERG fusion gene. INTERVENTIONS Multiple induction chemotherapy combined with targeted therapy was performed. OUTCOMES He died in February 2024. LESSONS In our review, Only 1 adult case of AML has been reported so far. To summarize the 5 cases in the studies, the HNRNPH1::ERG positive AML cases had a significantly higher blast cell counts and more frequently companied with rare gene mutations, which characterized poorer prognosis and lower remission in adult HNRNPH1::ERG positive AML.
Collapse
Affiliation(s)
- Yanyan Lu
- Department of Hematology, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Wei
- Department of Hematology, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianlan Li
- Department of Laboratory of Experimental Diagnostics, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lianrong Xu
- Department of Hematology, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Bai H, Zhu X, Gao L, Feng S, Li H, Gu X, Xu J, Zong C, Hou X, Yang X, Jiang J, Zhao Q, Wei L, Zhang L, Han Z, Liu W, Qian J. ERG mediates the differentiation of hepatic progenitor cells towards immunosuppressive PDGFRα + cancer-associated fibroblasts during hepatocarcinogenesis. Cell Death Dis 2025; 16:26. [PMID: 39827226 PMCID: PMC11743139 DOI: 10.1038/s41419-024-07270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
Cancer-associated fibroblasts (CAFs) play important roles in the occurrence and development of hepatocellular carcinoma (HCC) and are a key component of the immunosuppressive microenvironment. However, the origin of CAFs has not been fully elucidated. We employed single-cell sequencing technology to identify the dynamic changes in different subsets of fibroblasts at different time points in rat primary HCC model. Inflammation-associated CAFs (Pdgfrα+ CAFs) were subsequently identified, which demonstrated a significant correlation with the survival duration of HCC patients and a dual role in the tumour microenvironment (TME). On the one hand, they secrete the chemokines CCL3 and CXCL12, which recruit macrophages to the tumour site. On the other hand, they produce TGFβ, inducing the polarization of these macrophages towards an immunosuppressive phenotype. According to the in vitro and in vivo results, hepatic progenitor cells (HPCs) can aberrantly differentiate into PDGFRα+ CAFs upon stimulation with inflammatory cytokine. This differentiation is mediated by the activation of the MAPK signaling pathway and the downstream transcription factor ERG via the TLR4 receptor. Downregulating the expression of ERG in HPCs significantly reduces the number of PDGFRα+ CAFs and the infiltration of tumour-associated macrophages in HCC, thereby suppressing hepatocarcinogenesis. Collectively, our findings elucidate the distinct biological functions of PDGFRα+ cancer-associated fibroblasts (PDGFRα+ CAFs) within the TME. These insights contribute to our understanding of the mechanisms underlying the establishment of an immunosuppressive microenvironment in HCC, paving the way for the exploration of novel immunotherapeutic strategies tailored for HCC treatment.
Collapse
Affiliation(s)
- Haoran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Lu Gao
- National Center for Liver Cancer, Shanghai, China
| | - Shiyao Feng
- Department of Urology, Chaohu Hospital of Anhui Medical University, HeFei, Anhui, China
| | - Hegen Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zong
- National Center for Liver Cancer, Shanghai, China
| | - Xiaojuan Hou
- National Center for Liver Cancer, Shanghai, China
| | - Xue Yang
- National Center for Liver Cancer, Shanghai, China
| | | | - Qiudong Zhao
- National Center for Liver Cancer, Shanghai, China
| | - Lixin Wei
- National Center for Liver Cancer, Shanghai, China
| | - Li Zhang
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China.
| | - Zhipeng Han
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- National Center for Liver Cancer, Shanghai, China.
| | - Wenting Liu
- National Center for Liver Cancer, Shanghai, China.
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jianxin Qian
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhu N, Wei J, Wang LM, Huang H, Xiao H. Overexpression of PTPN21 promotes proliferation of EGF-stimulated acute lymphoblastic leukemia cells via the MAPK signaling pathways. Hematology 2024; 29:2356292. [PMID: 38785187 DOI: 10.1080/16078454.2024.2356292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.
Collapse
Affiliation(s)
- Ni Zhu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| | - Jieping Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li-Mengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Loureiro G, Bahia DM, Lee MLM, de Souza MP, Kimura EYS, Rezende DC, Silva MCDA, Chauffaille MDLLF, Yamamoto M. MAPK/ERK and PI3K/AKT signaling pathways are activated in adolescent and adult acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2023; 6:e1912. [PMID: 37867416 PMCID: PMC10728523 DOI: 10.1002/cnr2.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK)/ERK signaling cascade and the phosphoinosytol-3 phosphate/Akt (PI3K/Akt) pathways are involved in proliferation and differentiation of hematopoietic cells. The frequency of PI3K/Akt and MAPK pathway activation in adult acute lymphoblastic leukemia (ALL) still need to be elucidated. AIMS To assess the activity and prognostic implications of MAPK/ERK and PI3K/Akt pathways in adult (ALL). METHODS We examined 28 precursor-B-cell ALL and 6 T-cell primary ALL samples. Flow cytometry was employed to analyze the expression levels of phosphorylated ERK and phosphorylated Akt. RESULTS Ten out of 15 (67%) ALL fresh samples (7 B-cell, 3 T-cell) showed constitutive p-ERK expression. The p-ERK mean fluorescent index ratio (MFI (R)) showed a tendency to be higher in ALL than in normal T lymphocytes (1.26 [0.74-3.10] vs. 1.08 [1.02-1.21], respectively [p = .069]) and was significantly lower than in leukemic cell lines (median MFI (R) 3.83 [3.71-5.97] [p < .001]). Expression of p-Akt was found in 35% (12/34) (10 B-cell, 2 T-cell). The median MFI (R) expression for p-Akt in primary blast cell was 1.13 (0.48-9.90) compared to 1.01 (1.00-1.20) in normal T lymphocytes (p = ns) and lower than in leukemic cell lines (median MFI (R) 2.10 [1.77-3.40] [p = .037]). Moreover, expression of p-ERK was negatively associated with the expression of CD34 (1.22 [0.74-1.33] vs. 1.52 [1.15-3.10] for CD34(+) and CD34(-) group, respectively, p = .009). CONCLUSION Our findings suggest that both MAPK/ERK and PI3K/Akt are constitutively activated in adult ALL, indicating a targeted therapy potential for ALL by using inhibitors of these pathways.
Collapse
Affiliation(s)
- Gustavo Loureiro
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Daniella M. Bahia
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Maria Lucia M. Lee
- Instituto de Oncologia PediátricaGrupo de Apoio ao Adolescente e a Criança com Câncer (GRAACC)São PauloSão PauloBrazil
| | | | - Eliza Y. S. Kimura
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Denise Carvalho Rezende
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | | | | | - Mihoko Yamamoto
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| |
Collapse
|
5
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
6
|
Ma L, Yang H, Yang X. Identification and integrative analysis of
microRNAs
in myelodysplastic syndromes based on
microRNAs
expression profile. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Limin Ma
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Haiping Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Xuewen Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| |
Collapse
|
7
|
Strittmatter BG, Jerde TJ, Hollenhorst PC. Ras/ERK and PI3K/AKT signaling differentially regulate oncogenic ERG mediated transcription in prostate cells. PLoS Genet 2021; 17:e1009708. [PMID: 34314419 PMCID: PMC8345871 DOI: 10.1371/journal.pgen.1009708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 07/10/2021] [Indexed: 11/19/2022] Open
Abstract
The TMPRSS2/ERG gene rearrangement occurs in 50% of prostate tumors and results in expression of the transcription factor ERG, which is normally silent in prostate cells. ERG expression promotes prostate tumor formation and luminal epithelial cell fates when combined with PI3K/AKT pathway activation, however the mechanism of synergy is not known. In contrast to luminal fates, expression of ERG alone in immortalized normal prostate epithelial cells promotes cell migration and epithelial to mesenchymal transition (EMT). Migration requires ERG serine 96 phosphorylation via endogenous Ras/ERK signaling. We found that a phosphomimetic mutant, S96E ERG, drove tumor formation and clonogenic survival without activated AKT. S96 was only phosphorylated on nuclear ERG, and differential recruitment of ERK to a subset of ERG-bound chromatin associated with ERG-activated, but not ERG-repressed genes. S96E did not alter ERG genomic binding, but caused a loss of ERG-mediated repression, EZH2 binding and H3K27 methylation. In contrast, AKT activation altered the ERG cistrome and promoted expression of luminal cell fate genes. These data suggest that, depending on AKT status, ERG can promote either luminal or EMT transcription programs, but ERG can promote tumorigenesis independent of these cell fates and tumorigenesis requires only the transcriptional activation function. ERG is the most common oncogene in prostate cancer. The ERG protein can bind DNA and can activate some genes and repress others. Previous studies indicated that ERG cannot promote cancer by itself, but that ERG works together with mutations that activate the protein AKT. In this study we found that activation of AKT changes the genes that ERG regulates, leading to luminal epithelial differentiation, which is a hallmark of most prostate tumors. However, we also found that a mutant version of ERG that can activate, but cannot repress genes, can drive prostate tumorigenesis without activation of AKT, but this mutant ERG cannot promote luminal differentiation. Our findings suggest that ERG mediated tumorigenesis only requires ERG’s activation function and can occur independent of luminal cell differentiation.
Collapse
Affiliation(s)
- Brady G. Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peter C. Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Li Z, Wang F, Tian X, Long J, Ling B, Zhang W, Xu J, Liang A. HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:210. [PMID: 34167558 PMCID: PMC8223385 DOI: 10.1186/s13046-021-02007-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023]
Abstract
Background: Leukaemia stem cells (LSCs) are responsible for the initiation, maintenance, and recurrence of acute myeloid leukaemia (AML), an aggressive haematological malignancy associated with drug resistance and relapse. Identifying therapeutic LSC targets is critical to curing AML. Methods Bioinformatics databases were used to identify therapeutic LSC targets. The conditional knockout mice were used to analyse the role of HCK in leukaemogenesis or normal haematopoiesis. Colony-forming assays, cell counting, and flow cytometry were used to detect the viability and function of leukaemia cells. RT-PCR, western blotting, and RNA sequencing were used to detect mRNA and protein expression. Result HCK is expressed at higher levels in LSCs than in haematopoietic stem cells (HSCs), and high HCK levels are correlated with reduced survival time in AML patients. Knockdown of HCK leads to cell cycle arrest, which results in a dramatic decrease in the proliferation and colony formation in human AML cell lines. Moreover, HCK is required for leukemogenesis and leukaemia maintenance in vivo and in vitro. HCK is necessary for the self-renewal of LSCs during serial transplantation and limiting dilution assay. The phenotypes resulting from HCK deficiency can be rescued by CDK6 overexpression in the human cell line. RNA sequencing and gene expression have demonstrated that HCK may sustain cell cycle entry and maintain the self-renewal ability of LSCs through activating the ERK1/2-c-Myc-CDK6 signalling axis. In contrast, HCK deletion does not affect normal haematopoiesis or haematopoietic reconstruction in mice. Conclusions HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML and may be an ideal therapeutic target for eradicating LSCs without influencing normal haematopoiesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02007-4.
Collapse
Affiliation(s)
- Zheng Li
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Fangce Wang
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Xiaoxue Tian
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Jun Long
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, 650000, Kunming, P.R. China
| | - Wenjun Zhang
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China.
| | - Aibin Liang
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China.
| |
Collapse
|
9
|
Cytarabine and EIP co-administration synergistically reduces viability of acute lymphoblastic leukemia cells with high ERG expression. Leuk Res 2021; 109:106649. [PMID: 34271301 DOI: 10.1016/j.leukres.2021.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
The E26 transformation sequence-related gene ERG encodes a transcription factor involved in normal hematopoiesis, and its expression is abnormal in leukemia. Especially in a type of acute lymphoblastic leukemia (ALL) that is refractory and easy to relapse, the expression of ERG protein is abnormally increased. Chemotherapy can alleviate the condition of ALL, but the location and survival mechanism of the remaining ALL cells after chemotherapy are still not fully understood. It is becoming increasingly clear that the interaction between leukemia cells and their microenvironment plays an important role in the acquisition of drug resistance mutations and disease recurrence. We selected an acute lymphocytic leukemia cell line with high ERG expression, and studied the synergistic effect of chemotherapeutics and small molecule peptides through cell proliferation, apoptosis, and cell cycle experiments; At the same time, we inoculated acute lymphocytic leukemia cells with high ERG expression into mice with severe immunodeficiency to simulate human ALL and investigated (i) the effects of co-administration on the nesting and invasion of leukemia cells and (ii) the effects of the small molecule peptide drug EIP, which targets ERG, on the sensitivity of ALL chemotherapy and the underlying mechanisms.Ara-c and EIP synergistically reduces viability of ALL cells with high ERG expression may be achieved by promoting their apoptosis and inhibiting their nesting.
Collapse
|
10
|
Chen X, Qin Y, Zhang Z, Xing Z, Wang Q, Lu W, Yuan H, Du C, Yang X, Shen Y, Zhao B, Shao H, Wang X, Wu H, Qi Y. Hyper-SUMOylation of ERG Is Essential for the Progression of Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:652284. [PMID: 33842551 PMCID: PMC8032903 DOI: 10.3389/fmolb.2021.652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leukemia is a malignant disease of hematopoietic tissue characterized by the differentiation arrest and malignant proliferation of immature hematopoietic precursor cells in bone marrow. ERG (ETS-related gene) is an important member of the E26 transformation-specific (ETS) transcription factor family that plays a crucial role in physiological and pathological processes. However, the role of ERG and its modification in leukemia remains underexplored. In the present study, we stably knocked down or overexpressed ERG in leukemia cells and observed that ERG significantly promotes the proliferation and inhibits the differentiation of AML (acute myeloid leukemia) cells. Further experiments showed that ERG was primarily modified by SUMO2, which was deconjugated by SENP2. PML promotes the SUMOylation of ERG, enhancing its stability. Arsenic trioxide decreased the expression level of ERG, further promoting cell differentiation. Furthermore, the mutation of SUMO sites in ERG inhibited its ability to promote the proliferation and inhibit the differentiation of leukemia cells. Our results demonstrated the crucial role of ERG SUMOylation in the development of AML, providing powerful targeted therapeutic strategies for the clinical treatment of AML.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Guo C, Ran Q, Sun C, Zhou T, Yang X, Zhang J, Pang S, Xiao Y. Loss of FGFR3 Delays Acute Myeloid Leukemogenesis by Programming Weakly Pathogenic CD117-Positive Leukemia Stem-Like Cells. Front Pharmacol 2021; 11:632809. [PMID: 33584313 PMCID: PMC7879375 DOI: 10.3389/fphar.2020.632809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Chemotherapeutic patients with leukemia often relapse and produce drug resistance due to the existence of leukemia stem cells (LSCs). Fibroblast growth factor receptor 3 (FGFR3) signaling mediates the drug resistance of LSCs in chronic myeloid leukemia (CML). However, the function of FGFR3 in acute myeloid leukemia (AML) is less understood. Here, we identified that the loss of FGFR3 reprograms MLL-AF9 (MA)-driven murine AML cells into weakly pathogenic CD117-positive leukemia stem-like cells by activating the FGFR1-ERG signaling pathway. FGFR3 deletion significantly inhibits AML cells engraftment in vivo and extends the survival time of leukemic mice. FGFR3 deletion sharply decreased the expression of chemokines and the prolonged survival time in mice receiving FGFR3-deficient MA cells could be neutralized by overexpression of CCL3. Here we firstly found that FGFR3 had a novel regulatory mechanism for the stemness of LSCs in AML, and provided a promising anti-leukemia approach by interrupting FGFR3.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiuju Ran
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tingting Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xi Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jizhou Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Shifeng Pang
- Department of Biotechnology, Guangdong Medical University, Dongguan, China
| | - Yechen Xiao
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
12
|
Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 2020; 34:1984-1999. [PMID: 32433508 PMCID: PMC7387246 DOI: 10.1038/s41375-020-0854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Structural and numerical alterations of chromosome 21 are extremely common in hematological malignancies. While the functional impact of chimeric transcripts from fused chromosome 21 genes such as TEL-AML1, AML1-ETO, or FUS-ERG have been extensively studied, the role of gain of chromosome 21 remains largely unknown. Gain of chromosome 21 is a frequently occurring aberration in several types of acute leukemia and can be found in up to 35% of cases. Children with Down syndrome (DS), who harbor constitutive trisomy 21, highlight the link between gain of chromosome 21 and leukemogenesis, with an increased risk of developing acute leukemia compared with other children. Clinical outcomes for DS-associated leukemia have improved over the years through the development of uniform treatment protocols facilitated by international cooperative groups. The genetic landscape has also recently been characterized, providing an insight into the molecular pathogenesis underlying DS-associated leukemia. These studies emphasize the key role of trisomy 21 in priming a developmental stage and cellular context susceptible to transformation, and have unveiled its cooperative function with additional genetic events that occur during leukemia progression. Here, using DS-leukemia as a paradigm, we aim to integrate our current understanding of the role of trisomy 21, of critical dosage-sensitive chromosome 21 genes, and of associated mechanisms underlying the development of hematological malignancies. This review will pave the way for future investigations on the broad impact of gain of chromosome 21 in hematological cancer, with a view to discovering new vulnerabilities and develop novel targeted therapies to improve long term outcomes for DS and non-DS patients.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
- Université Paris Diderot, Paris, France
| | - Rishi S Kotecha
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
13
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
15
|
Lopez CK, Mercher T. [Pediatric de novo acute megakaryoblastic leukemia: an affair of complexes]. Med Sci (Paris) 2018; 34:954-962. [PMID: 30526836 DOI: 10.1051/medsci/2018237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) are generally associated with poor prognosis and the expression of fusion oncogenes involving transcriptional regulators. Recent results indicate that the ETO2-GLIS2 fusion, associated with 25-30 % of pediatric AMKL, binds and alters the activity of regulatory regions of gene expression, called "enhancers", resulting in the deregulation of GATA and ETS factors essential for the development of hematopoietic stem cells. An imbalance in GATA/ETS factor activity is also found in other AMKL subgroups. This review addresses the transcriptional bases of transformation in pediatric AMKL and therapeutic perspectives.
Collapse
Affiliation(s)
- Cécile K Lopez
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Thomas Mercher
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| |
Collapse
|
16
|
Sun L, Zhang Y, Lou J. ARHGAP9 siRNA inhibits gastric cancer cell proliferation and EMT via inactivating Akt, p38 signaling and inhibiting MMP2 and MMP9. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11979-11985. [PMID: 31966562 PMCID: PMC6966049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/05/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE ARHGAP9 is a RhoGTPase activating protein. This study aimed to investigate the effect of ARHGAP9 on cell proliferation of gastric cancer cell. METHODS Human gastric cancer cell line SGC7901 were transfected with ARHGAP9 siRNA and the expression of epithelial to mesenchymal transition (EMT) factors, MMPs, and activated status of Akt and p38 signaling were detected. Moreover, the migration, invasion, and viability of SGC7901 cells were determined. RESULTS ARHGAP9 siRNA successfully inhibited cell viability, migration and invasion. The expression of E-cadherin was significantly upregulated, and expression of Snail, Vimentin, as well as MMP2 and MMP9 were obviously downregulated. Moreover, ARHGAP9 siRNA promoted inactivation of Akt and p38 signaling by inhibiting expression of p-Akt and p-p38. CONCLUSION This study showed that ARHGAP9 contributed to the viability, migration, invasion as well as EMT in gastric cancer cell line SGC7901. ARHGAP9 might be used as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Lingjia Sun
- Department of Gastroenterology, Ningbo No. 2 Hospital No. 41 Xibei Road, Ningbo 315010, Zhejiang, China
| | - Youping Zhang
- Department of Gastroenterology, Ningbo No. 2 Hospital No. 41 Xibei Road, Ningbo 315010, Zhejiang, China
| | - Jie Lou
- Department of Gastroenterology, Ningbo No. 2 Hospital No. 41 Xibei Road, Ningbo 315010, Zhejiang, China
| |
Collapse
|
17
|
Kedage V, Strittmatter BG, Dausinas PB, Hollenhorst PC. Phosphorylation of the oncogenic transcription factor ERG in prostate cells dissociates polycomb repressive complex 2, allowing target gene activation. J Biol Chem 2017; 292:17225-17235. [PMID: 28887309 DOI: 10.1074/jbc.m117.796458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/05/2017] [Indexed: 01/15/2023] Open
Abstract
In ∼50% of prostate cancers, chromosomal rearrangements cause the fusion of the promoter and 5'-UTR of the androgen-regulated TMPRSS2 (transmembrane protease, serine 2) gene to the open reading frame of ERG, encoding an ETS family transcription factor. This fusion results in expression of full-length or N-terminally truncated ERG protein in prostate epithelia. ERG is not expressed in normal prostate epithelia, but when expressed, it promotes tumorigenesis via altered gene expression, stimulating epithelial-mesenchymal transition, cellular migration/invasion, and transformation. However, limited knowledge about the molecular mechanisms of ERG function in prostate cells has hampered efforts to therapeutically target ERG. ERK-mediated phosphorylation of ERG is required for ERG functions in prostate cells, but the reason for this requirement is unknown. Here, we report a mechanism whereby ERK-mediated phosphorylation of ERG at one serine residue causes a conformational change that allows ERK phosphorylation at a second serine residue, Ser-96. We found that the Ser-96 phosphorylation resulted in dissociation of EZH2 and SUZ12, components of polycomb repressive complex 2 (PRC2), transcriptional activation of ERG target genes, and increased cell migration. Conversely, loss of ERG phosphorylation at Ser-96 resulted in recruitment of EZH2 across the ERG-cistrome and a genome-wide loss of ERG-mediated transcriptional activation and cell migration. In conclusion, our findings have identified critical molecular mechanisms involving ERK-mediated ERG activation that could be exploited for therapeutic intervention in ERG-positive prostate cancers.
Collapse
Affiliation(s)
| | | | - Paige B Dausinas
- Medical Sciences, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|
18
|
Lopez CK, Malinge S, Gaudry M, Bernard OA, Mercher T. Pediatric Acute Megakaryoblastic Leukemia: Multitasking Fusion Proteins and Oncogenic Cooperations. Trends Cancer 2017; 3:631-642. [PMID: 28867167 DOI: 10.1016/j.trecan.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Pediatric leukemia presents specific clinical and genetic features from adult leukemia but the underpinning mechanisms of transformation are still unclear. Acute megakaryoblastic leukemia (AMKL) is the malignant accumulation of progenitors of the megakaryocyte lineage that normally produce blood platelets. AMKL is diagnosed de novo, in patients showing a poor prognosis, or in Down syndrome (DS) patients with a better prognosis. Recent data show that de novo AMKL is primarily associated with chromosomal alterations leading to the expression of fusions between transcriptional regulators. This review highlights the most recurrent genetic events found in de novo pediatric AMKL patients and, based on recent functional analyses, proposes a mechanism of leukemogenesis common to de novo and DS-AMKL.
Collapse
MESH Headings
- Age Factors
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Child
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Muriel Gaudry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
19
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
20
|
Mohamed AA, Tan SH, Xavier CP, Katta S, Huang W, Ravindranath L, Jamal M, Li H, Srivastava M, Srivatsan ES, Sreenath TL, McLeod DG, Srinivasan A, Petrovics G, Dobi A, Srivastava S. Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells. Mol Cancer Res 2017; 15:1308-1317. [PMID: 28607007 DOI: 10.1158/1541-7786.mcr-17-0058] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The oncogenic activation of the ETS-related gene (ERG) due to gene fusions is present in over half of prostate cancers in Western countries. Because of its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for prostate cancer. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified, confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG-positive VCaP cells led to decreased levels of NOTCH1 and 2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH1 and 2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative prostate cancer) and RWPE-1 (benign prostate-derived immortalized) cells. Furthermore, inhibition of NOTCH by the small-molecule γ-secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (bicalutamide and enzalutamide) or the androgen biosynthesis inhibitor (abiraterone) in VCaP cells. Combined treatment with bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival, and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive prostate cancer cells.Implications: Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers. Mol Cancer Res; 15(10); 1308-17. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Wei Huang
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Muhammad Jamal
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed University of Health Sciences, Bethesda, Maryland
| | - Eri S Srivatsan
- Division of General Surgery, Department of Surgery, VAGLAHS/David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California
| | - Taduru L Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| |
Collapse
|
21
|
Zhe Y, Li Y, Liu D, Su DM, Liu JG, Li HY. Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biol 2016; 37:13951-13959. [DOI: 10.1007/s13277-016-5189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023] Open
|