1
|
Jain AG, Cortes JE. Asciminib: the tyrosine kinase inhibitor with a unique mechanism of action. Expert Opin Pharmacother 2025; 26:677-684. [PMID: 40087828 DOI: 10.1080/14656566.2025.2480762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
INTRODUCTION Management of chronic phase chronic myeloid leukemia (CML-CP) was revolutionized with the development of tyrosine kinase inhibitors (TKIs). Imatinib (first generation), dasatinib, nilotinib and bosutinib (second generation), and ponatinib (third generation) are the five approved TKIs that inhibit BCR::ABL1 by binding to the ATP binding site of ABL1. About half of the resistance to TKIs develops through acquisition of mutations in the ATP binding site, including T315I. Hence, a novel TKI with a distinct mechanism of action that inhibits bcr-abl1 by specifically targeting the ABL1 myristoyl pocket (STAMP inhibitor) was developed. AREAS COVERED Asciminib was first approved for treatment of CML-CP in the third line setting or beyond and in patients with T315I mutation in October, 2021. More recently, in October, 2024, asciminib was approved for newly diagnosed CML-CP based on ASC4FIRST data showing MMR rate of 67.7% in the asciminib arm compared to 49% in the investigator choice TKI arm (p < 0.001) at 48 weeks. In this review we detail the mechanism of action, preclinical data, clinical data, safety, and tolerability of asciminib. EXPERT OPINION Due to its mechanism of action, asciminib has fewer off-target effects, resulting in an improved safety and tolerability profile.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/administration & dosage
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/adverse effects
- Animals
- Pyrazoles/pharmacology
- Pyrazoles/adverse effects
- Drug Resistance, Neoplasm
- Mutation
- Tyrosine Kinase Inhibitors
- Niacinamide/analogs & derivatives
Collapse
Affiliation(s)
- Akriti G Jain
- Leukemia and Myeloid Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jorge E Cortes
- Georgia Cancer Center, Cecil F. Whitaker Jr. GRA Eminent Scholar Chair in Cancer, Augusta, GA, USA
| |
Collapse
|
2
|
Costa A, Scalzulli E, Bisegna ML, Breccia M. Asciminib in the treatment of chronic myeloid leukemia in chronic phase. Future Oncol 2025; 21:815-831. [PMID: 39936231 PMCID: PMC11921165 DOI: 10.1080/14796694.2025.2464494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
In the evolving therapeutic landscape of chronic myeloid leukemia (CML), asciminib stands out as a critical treatment option. Its ability to bind to and allosterically modulate the myristoyl pocket of BCR::ABL1 enables asciminib to effectively overcome resistance to conventional tyrosine kinase inhibitors (TKIs). Asciminib has shown significant cytogenetic and molecular responses in heavily pretreated patients, those previously exposed to ponatinib, and treatment-naïve individuals, attributed to its pharmacological selectivity and generally favorable safety profile. Asciminib also offers a compelling alternative for patients with a history of cardiovascular events or unfavorable cardiovascular profiles. However, extended follow-up in ongoing trials is necessary for a thorough assessment of its long-term benefits. Mutations in the myristoyl pocket, such as A337V/T and I502L, along with kinase domain mutations, including F359C/I/V at the kinase-SH2 interface and M244V in the N-lobe, have demonstrated the ability to undermine asciminib effectiveness in clinical practice, highlighting the importance of mutational assessment before starting treatment. This review provides an in-depth analysis of the preclinical and clinical evidence supporting the use of asciminib, synthesizing findings from a targeted literature search of PubMed and Web of Science. Our discussion integrates insights into its mechanism of action, clinical efficacy, safety, resistance patterns, and future directions.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mutation
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Treatment Outcome
- Clinical Trials as Topic
- Animals
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Leukemia, Myeloid, Chronic-Phase/genetics
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Batar P, Mezei G, Illes A. Treatment-Emergent Resistance to Asciminib in Chronic Myeloid Leukemia Patients Due to Myristoyl-Binding Pocket-Mutant of BCR::ABL1/A337V Can Be Effectively Overcome with Dasatinib Treatment. Curr Oncol 2025; 32:97. [PMID: 39996897 PMCID: PMC11854241 DOI: 10.3390/curroncol32020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Despite the groundbreaking success of tyrosine kinase inhibitor therapy, the management of chronic myeloid leukemia patients is often impaired by resistance due to specific point mutations in the BCR::ABL1 oncogene. Upon classical ATP-competitive inhibitor treatment, these single nucleotide variants occur in the tyrosine kinase domain of ABL1. The novel allosteric BCR::ABL1 inhibitor asciminib was developed to treat CML patients alone or in combination to overcome or potentially prevent these treatment-emergent TKD mutations. Here, we present a case of a patient undergoing first-line asciminib therapy, and subsequently develop a specific BCR::ABL1/A337V point mutation, which resulted in asciminib resistance. Switching to second-line dasatinib treatment successfully overcame asciminib resistance and helped to achieve a deep molecular response. In case of treatment failures caused by single asciminib-specific point mutations, dasatinib therapy is a feasible choice.
Collapse
Affiliation(s)
- Peter Batar
- Division of Hematology, Institute of Internal Medicine, Clinical Center, University of Debrecen, H-4002 Debrecen, Hungary; (G.M.); (A.I.)
- Department of Hematology, Faculty of Medicine, Doctoral School of Clinical Sciences, University of Debrecen, H-4002 Debrecen, Hungary
| | - Gabriella Mezei
- Division of Hematology, Institute of Internal Medicine, Clinical Center, University of Debrecen, H-4002 Debrecen, Hungary; (G.M.); (A.I.)
- Department of Hematology, Faculty of Medicine, Doctoral School of Clinical Sciences, University of Debrecen, H-4002 Debrecen, Hungary
| | - Arpad Illes
- Division of Hematology, Institute of Internal Medicine, Clinical Center, University of Debrecen, H-4002 Debrecen, Hungary; (G.M.); (A.I.)
- Department of Hematology, Faculty of Medicine, Doctoral School of Clinical Sciences, University of Debrecen, H-4002 Debrecen, Hungary
| |
Collapse
|
4
|
Cullot G, Lagarde V, Cayuela JM, Prouzet-Mauléon V, Turcq B, Hicheri Y, Roy L, Braun T, Mozziconacci MJ, Alary AS, Dulucq S. Asciminib resistance of a new BCR::ABL1 p.I293_K294insSSLRD mutant detected in a Ph + ALL patient. Ann Hematol 2025; 104:1117-1126. [PMID: 39774950 PMCID: PMC11971149 DOI: 10.1007/s00277-024-06142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia patients largely benefit from an expanding tyrosine kinase inhibitors (TKIs) toolbox that has improved the outcome of both diseases. However, TKI success is continuously challenged by mutation-driven acquired resistance and therefore, close monitoring of clonal genetic diversity is necessary to ensure proper clinical management and adequate response to treatment. Here, we report the case of a ponatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) patient harboring a BCR::ABL1 p.I293_K294insSLLRD mutation. Using in vitro proliferation assays on newly generated Ba/F3 cell lines, we confirmed that the mutation confers moderate resistance to ponatinib, and to imatinib and nilotinib. In contrast, BCR::ABL1SLLRD Ba/F3 cells remain highly sensitive to dasatinib. Unexpectedly, the insertion also provides resistance to asciminib with no inhibitory effect up to 1000 nM. Based on predicted structural models, we speculate that the p.I293_K294insSLLRD disrupts the interaction between the SH3 domain and the kinase domain, shifting the equilibrium toward the active conformation. This shift confers resistance to TKIs that preferentially bind to the inactive conformation, as well as to the allosteric asciminib inhibitor. However, the mutation retains sensitivity to dasatinib, which targets the active form of the kinase.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/chemistry
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Mutation
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Cell Line, Tumor
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
- Niacinamide/analogs & derivatives
- Pyrazoles
- Proto-Oncogene Proteins c-abl
Collapse
Affiliation(s)
- Grégoire Cullot
- Univ. Bordeaux, INSERM, BRIC, U1312, Bordeaux, France.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | - Jean-Michel Cayuela
- Laboratory of Hematology, Saint-Louis Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, University Paris Diderot, Paris, France
- Fi-LMC Group, Léon Bérard Center, Lyon, France
| | - Valérie Prouzet-Mauléon
- Univ. Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- CRISP'edit, TBMCore, CNRS UAR3427, INSERM US005, Univ. Bordeaux, Bordeaux, France
| | - Béatrice Turcq
- Univ. Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- CRISP'edit, TBMCore, CNRS UAR3427, INSERM US005, Univ. Bordeaux, Bordeaux, France
- Fi-LMC Group, Léon Bérard Center, Lyon, France
| | - Yosr Hicheri
- Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Lydia Roy
- Fi-LMC Group, Léon Bérard Center, Lyon, France
- University Hospital Henri Mondor, AP-HP & Faculté de Santé, UPEC, Service d'Hématologie Clinique, Créteil, France
| | - Thorsten Braun
- Department of Hematology Hospital Avicenne, Assistance Publique-Hopitaux de Paris, Bobigny, France
| | | | - Anne-Sophie Alary
- Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | - Stéphanie Dulucq
- Univ. Bordeaux, INSERM, BRIC, U1312, Bordeaux, France.
- Fi-LMC Group, Léon Bérard Center, Lyon, France.
- Laboratory of Hematology, University Hospital of Bordeaux, Bordeaux, France.
| |
Collapse
|
5
|
Ureshino H, Kimura S. Efficacy and Safety of the First-in-Class STAMP-Inhibitor Asciminib in Patients With Chronic Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e57-e61. [PMID: 39510950 DOI: 10.1016/j.clml.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024]
Abstract
The survival outcomes of patients with chronic myeloid leukemia (CML) have significantly improved due to the introduction of adenosine triphosphate (ATP) -competitive ABL1 tyrosine kinase inhibitors (TKIs). However, several patients with CML eventually develop treatment resistance or intolerance during the course of ATP-competitive ABL1 TKI treatment. ABL1 TKIs inhibit other tyrosine kinases via their off-target effects. This mechanism leads to the development of adverse events, which may result in treatment discontinuation. Asciminib is a first-in-class STAMP (specifically targeting the ABL myristoyl pocket) inhibitor used in patients with chronic-phase CML who exhibit resistance or intolerance to two prior TKI therapies. Asciminib was found to have excellent efficacy and safety therapeutic profiles. The lack of comprehensive reviews about asciminib, thus, the current study aimed to evaluate the clinical and preclinical evidence of the efficacy and safety of asciminib.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan; Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
6
|
Laganà A, Scalzulli E, Bisegna ML, Ielo C, Martelli M, Breccia M. Understanding and overcoming resistance to tyrosine kinase inhibitors (TKIs) in Chronic myeloid leukemia (CML). Expert Rev Hematol 2025; 18:65-79. [PMID: 39647915 DOI: 10.1080/17474086.2024.2440776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) represents one of the first neoplasms whose molecular pathogenesis was successfully unraveled, with tyrosine kinase inhibitors (TKIs) representing one of the first-targeted therapies. TKIs have revolutionized long-term outcomes of CML patients and their life expectancy. Nonetheless, a minority of patients will develop TKI resistance due to a complex and multifactorial process that ultimately leads to the emergence of an unresponsive cancer clone. Overcoming TKI resistance is considered one of the major challenges in CML management. AREAS COVERED In this review, the main findings extrapolated from published research, guidelines, and clinical trials regarding TKI resistance (published before October 2024) are discussed. Data have been obtained through broad research on Medline, Embase, Pubmed, and archives from EHA and ASH congresses. EXPERT OPINION Nowadays, asciminib and ponatinib have expanded the therapeutic arsenal for resistant-CML management and allogenic transplant still represents an important alternative in the context of multiple TKI failures. Off-label use of TKIs combination therapies, although theoretically appealing, lacks robust clinical evidence and regulatory approval. Looking ahead, the introduction of novel technologies such as digital PCR (dPCR) and next generation sequencing (NGS) holds great potential to revolutionize the management of TKI-resistant CML cases.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Tyrosine Kinase Inhibitors
- Imidazoles
- Pyridazines
Collapse
Affiliation(s)
- Alessandro Laganà
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
8
|
Yan Z, Shi L, Li W, Liu W, Galderisi C, Spittle C, Li J. A Novel Next-Generation Sequencing Assay for the Identification of BCR::ABL1 Transcript Type and Accurate and Sensitive Detection of TKI-Resistant Mutations. J Appl Lab Med 2024; 9:886-900. [PMID: 39225048 DOI: 10.1093/jalm/jfae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The clinical management of chronic myeloid leukemia (CML) patients requires the identification of the type of BCR::ABL1 transcript at diagnosis and the monitoring of its expression and potential tyrosine kinase inhibitor (TKI) resistance mutations during treatment. Detection of resistant mutation requires transcript type-specific amplification of BCR::ABL1 from RNA. METHODS In this study, a custom RNA-based next-generation sequencing (NGS) assay (Dup-Seq BCR::ABL1) that enables (a) the identification of BCR::ABL1 transcript type and (b) the detection of resistance mutations from common and atypical BCR::ABL1 transcript types was developed and validated. The assay design covers BCR exon 1 to ABL1 exon 10 and employs duplicate PCR amplification for error correction. The custom data analysis pipeline enables breakpoint determination and overlapped mutation calling from duplicates, which minimizes the low-level mutation artifacts. RESULTS This study demonstrates that this novel assay achieves high accuracy (positive percent agreement (PPA) for fusion: 98.5%; PPA and negative percent agreement (NPA) for mutation at 97.8% and 100.0%, respectively) and sensitivity (limit of detection (LOD) for mutation detection at 3% from 10 000 copies of BCR::ABL1 input). CONCLUSIONS The Dup-Seq BCR::ABL1 assay not only allows for the identification of BCR::ABL1 typical and atypical transcript types and accurate and sensitive detection of TKI-resistant mutations but also simplifies molecular testing work flow for the clinical management of CML patients.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Mutation
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Zhenyu Yan
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| | - Lin Shi
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| | - Wei Li
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| | - Weihua Liu
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| | - Chad Galderisi
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| | - Cynthia Spittle
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| | - Jin Li
- ICON Laboratory Services, ICON plc, Cambridge, MA, United States
| |
Collapse
|
9
|
Hoch M, Huth F, Manley PW, Loisios-Konstantinidis I, Combes FP, Li YF, Fu Y, Sy SKB, Obourn V, Chakraborty A, Hourcade-Potelleret F. Clinical Pharmacology of Asciminib: A Review. Clin Pharmacokinet 2024; 63:1513-1528. [PMID: 39467980 PMCID: PMC11573869 DOI: 10.1007/s40262-024-01428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/30/2024]
Abstract
Asciminib is a first-in-class allosteric inhibitor of the kinase activity of BCR::ABL1, specifically targeting the ABL myristoyl pocket (STAMP). This review focuses on the pharmacokinetic (PK) and pharmacodynamic data of asciminib, which is approved at a total daily dose of 80 mg for the treatment of adult patients with chronic myeloid leukemia in chronic phase who are either resistant or intolerant to ≥ 2 tyrosine kinase inhibitors or those harboring the T315I mutation (at a dose of 200 mg twice daily). Asciminib is predicted to be almost completely absorbed from the gut, with an absolute bioavailability (F) of approximately 73%. It should be administered in a fasted state, as food (particularly high-fat meals) reduces exposure. Asciminib displays a slightly greater than dose-proportional increase in exposure, with no time-dependent changes in PK observed following repeated dosing. This drug shows low clearance (6.31 L/h), with a moderate volume of distribution (111 L) and high human plasma protein binding (97.3%). The apparent terminal elimination half-life (t1/2) across studies was estimated to be between 7 and 15 h. The PK of asciminib is not substantially affected by body weight, age, gender, race, or renal or hepatic impairment. Asciminib is primarily metabolized via CYP3A4-mediated oxidation (36.0%) and UGT2B7- and UGT2B17-mediated glucuronidation (13.3% and 7.8%, respectively); biliary secretion via breast cancer resistance protein contributes to about 31.1% to total systemic clearance, which is mainly through hepatic metabolism and biliary secretion through the fecal pathway, with renal excretion playing a minor role. The potential for PK drug interaction for asciminib both as a victim and a perpetrator has been summarized here based on clinical and predicted drug-drug interaction studies. Robust exposure-response models characterized asciminib exposure-efficacy and exposure-safety relationships. In patients without the T315I mutation, the exposure-efficacy analysis of the time course of BCR::ABL1IS percentages highlighted the existence of a slightly positive, albeit not clinically significant, relationship. Higher exposure was required for efficacy in patients harboring the T315I mutation compared with those who did not. The exposure-safety relationship analysis showed no apparent association between exposure and adverse events of interest over the broad range of exposure or dose levels investigated. Asciminib has also been shown to have no clinically relevant effect on cardiac repolarization. Here, we review the clinical pharmacology data available to date for asciminib that supported its clinical development program and regulatory applications.
Collapse
Affiliation(s)
- Matthias Hoch
- Novartis Biomedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland.
| | - Felix Huth
- Novartis Biomedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | | | | | | | - Ying Fei Li
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Yunlin Fu
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | | | | | | | |
Collapse
|
10
|
Innes AJ, Hayden C, Orovboni V, Claudiani S, Fernando F, Khan A, Rees D, Byrne J, Gallipoli P, Francis S, Copland M, Horne G, Raghavan M, Arnold C, Collins A, Cranfield T, Cunningham N, Danga A, Forsyth P, Frewin R, Garland P, Hannah G, Avenoso D, Hassan S, Huntly BJP, Husain J, Makkuni S, Rothwell K, Khorashad J, Apperley JF, Milojkovic D. Impact of BCR::ABL1 single nucleotide variants on asciminib efficacy. Leukemia 2024; 38:2443-2455. [PMID: 39300220 PMCID: PMC11518997 DOI: 10.1038/s41375-024-02411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Asciminib is a potent and selective inhibitor of BCR::ABL1, with potential to avoid toxicity resulting from off-target kinase inhibition. Forty-nine patients treated with asciminib under a managed access program in the UK were evaluated for toxicity and response. Intolerance, rather than resistance (65% vs. 35%), was the most common reason for cessation of the last-line of treatment but asciminib was well tolerated, with most patients (29, 59%) remaining on treatment at a median of 14 months follow-up, and only 6 (12%) stopping for intolerance. Of 44 patients assessable for response, 29 (66%) achieved a complete cytogenetic response (CCyR) or better, with poorer responses seen in those stopping their last-line of therapy for resistance. Fewer patients with a prior history of a non-T315I-BCR::ABL1 single nucleotide variant (BSNV), or a non-T315I-BSNV detectable at baseline achieved CCyR. Serial tracking of BSNV by next generation sequencing demonstrated clonal expansion of BSNV-harbouring populations, which in some settings was associated with resistance (E459K, F317L, F359I), while in others was seen in the context of ongoing response, often with intensified dosing (T315I, I502F). These data suggest that asciminib exerts selective pressure on some BSNV-harbouring populations in vivo, some of which may respond to intensified dosing.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Female
- Middle Aged
- Male
- Aged
- Adult
- Protein Kinase Inhibitors/therapeutic use
- Polymorphism, Single Nucleotide
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Aged, 80 and over
- Drug Resistance, Neoplasm/genetics
- Young Adult
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Andrew J Innes
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Chloe Hayden
- North West London Pathology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Victoria Orovboni
- North West London Pathology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Simone Claudiani
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Fiona Fernando
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Afzal Khan
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - David Rees
- Medical School, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jennifer Byrne
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sebastian Francis
- Department of haematology, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Horne
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Manoj Raghavan
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Claire Arnold
- Department of Haematology, Belfast City Hospital, Belfast, United Kingdom
| | - Angela Collins
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Tanya Cranfield
- Department of Haematology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | | | - Akila Danga
- Department of Haematology, The Hillingdon Hospital, London, United Kingdom
| | - Peter Forsyth
- Department of Haematology, Raigmore Hospital, NHS Highland, Inverness, United Kingdom
| | - Rebecca Frewin
- Department of Haematology, Gloucestershire Royal Hospital, Gloucester, United Kingdom
| | - Paula Garland
- Department of Haematology, Princess Royal University Hospital, London, United Kingdom
| | - Guy Hannah
- Department of Haematology, Kings College Hospital, London, United Kingdom
| | - Daniele Avenoso
- Department of Haematology, Kings College Hospital, London, United Kingdom
| | - Sandra Hassan
- Department of Haematology, Queen's Hospital, Romford, United Kingdom
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jissan Husain
- Department of Haematology, Ashford and St Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Sudhakaran Makkuni
- Department of Haematology, Mid and South Essex NHS Foundation Trust, Basildon, United Kingdom
| | - Kate Rothwell
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Basildon, United Kingdom
| | - Jamshid Khorashad
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Haemato-oncology Molecular Diagnostic Unit, The Royal Marsden Hospital NHS Foundation Trust, Sutton, United Kingdom
| | - Jane F Apperley
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dragana Milojkovic
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
11
|
Breccia M. Shedding light on resistance to asciminib. Blood 2024; 144:594-595. [PMID: 39115830 DOI: 10.1182/blood.2024024851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
|
12
|
Chatain N, Baumeister J, Szymanski de Toledo MA, Wong DWL, Gupta S, Pannen K, Junge B, Brümmendorf TH, Boor P, Koschmieder S. Asciminib antagonizes transplantable BCR::ABL1-positive lymphoid blast crisis in vivo by targeting malignant stem cells. Leukemia 2024; 38:1825-1830. [PMID: 38906962 PMCID: PMC11286509 DOI: 10.1038/s41375-024-02320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Marcelo A Szymanski de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dickson W L Wong
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
- Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany
| | - Siddharth Gupta
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Bärbel Junge
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Peter Boor
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
- Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
13
|
Burley SK, Wu-Wu A, Dutta S, Ganesan S, Zheng SXF. Impact of structural biology and the protein data bank on us fda new drug approvals of low molecular weight antineoplastic agents 2019-2023. Oncogene 2024; 43:2229-2243. [PMID: 38886570 PMCID: PMC11245395 DOI: 10.1038/s41388-024-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019-2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Amy Wu-Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Steven X F Zheng
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| |
Collapse
|
14
|
Okabe S, Moriyama M, Gotoh A. Effects of bortezomib on ponatinib-resistant Philadelphia chromosome-positive cells. Leuk Lymphoma 2024; 65:696-699. [PMID: 38300854 DOI: 10.1080/10428194.2024.2309308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
MESH Headings
- Humans
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
- Imidazoles/pharmacology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Bortezomib/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Philadelphia Chromosome/drug effects
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Wu A, Liu X, Fruhstorfer C, Jiang X. Clinical Insights into Structure, Regulation, and Targeting of ABL Kinases in Human Leukemia. Int J Mol Sci 2024; 25:3307. [PMID: 38542279 PMCID: PMC10970269 DOI: 10.3390/ijms25063307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia is a multistep, multi-lineage myeloproliferative disease that originates from a translocation event between chromosome 9 and chromosome 22 within the hematopoietic stem cell compartment. The resultant fusion protein BCR::ABL1 is a constitutively active tyrosine kinase that can phosphorylate multiple downstream signaling molecules to promote cellular survival and inhibit apoptosis. Currently, tyrosine kinase inhibitors (TKIs), which impair ABL1 kinase activity by preventing ATP entry, are widely used as a successful therapeutic in CML treatment. However, disease relapses and the emergence of resistant clones have become a critical issue for CML therapeutics. Two main reasons behind the persisting obstacles to treatment are the acquired mutations in the ABL1 kinase domain and the presence of quiescent CML leukemia stem cells (LSCs) in the bone marrow, both of which can confer resistance to TKI therapy. In this article, we systemically review the structural and molecular properties of the critical domains of BCR::ABL1 and how understanding the essential role of BCR::ABL1 kinase activity has provided a solid foundation for the successful development of molecularly targeted therapy in CML. Comparison of responses and resistance to multiple BCR::ABL1 TKIs in clinical studies and current combination treatment strategies are also extensively discussed in this article.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Andrew Wu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaohu Liu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Clark Fruhstorfer
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
| | - Xiaoyan Jiang
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
16
|
Han HJ, Kim JJ, Pyne D, Travas A, Ambalavanan A, Kimura S, Deininger MW, Kim JW, Kim DDH. In vitro evidence of synergistic efficacy with asciminib combined with reduced dose of ATP-binding pocket tyrosine kinase inhibitors according to the ABL1 kinase domain mutation profile. Leukemia 2024; 38:412-415. [PMID: 38155246 DOI: 10.1038/s41375-023-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Ho-Jae Han
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jaeyoon John Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danielle Pyne
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anthea Travas
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amirthagowri Ambalavanan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Jong-Won Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Soverini S. Resistance mutations in CML and how we approach them. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:469-475. [PMID: 38066920 PMCID: PMC10727040 DOI: 10.1182/hematology.2023000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Among the variety of resistance mechanisms that may underlie a non-optimal response to tyrosine kinase inhibitor (TKI) therapy in chronic myeloid leukemia patients, secondary point mutations in the BCR::ABL1 kinase domain (KD) represent the only actionable one. Each of the 5 ATP-competitive inhibitors (imatinib, dasatinib, nilotinib, bosutinib, ponatinib) has a well-defined spectrum of resistance mutations. Growing clinical experience will soon allow to also elucidate the full spectrum of mutations conferring resistance to asciminib (that appear not to be confined to the myristate binding pocket). Regular molecular response (MR) monitoring is fundamental for evaluating treatment efficacy, catching early signs of relapse, and intervening promptly in case of confirmed failure. Whenever MR is not deemed satisfactory according to the European LeukemiaNet or the National Comprehensive Cancer Network definitions, BCR::ABL1 KD mutations testing should be performed. When needed, prompt and informed TKI switch can improve response and outcome and prevent the accumulation of mutations, including highly challenging compound mutations. Novel technologies like next-generation sequencing and digital polymerase chain reaction have recently been explored for BCR::ABL1 KD mutation testing; they have both advantages and disadvantages that are discussed in this article. This review also provides suggestions for interpretation and clinical translation of mutation testing results, which may not always be straightforward, particularly in cases of low-level or unknown mutations.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology “Lorenzo e Ariosto Seràgnoli,” University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Padala S, Cortes J. Asciminib in chronic myeloid leukemia: a STAMP for expedited delivery? Haematologica 2023; 108:2913-2918. [PMID: 37102603 PMCID: PMC10620583 DOI: 10.3324/haematol.2022.282361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Asciminib is a novel tyrosine kinase inhibitor (TKI) that specifically targets the myristoyl pocket. It has increased selectivity and potent activity against BCR-ABL1 and the mutants that most frequently prevent the activity of the ATPbinding competitive inhibitors. Results for clinical trials in patients with chronic myeloid leukemia that have received two or more TKI (randomized against bosutinib) or who have a T315I mutation (single arm study) have shown high levels of activity and a favorable toxicity profile. Its approval has offered new options for patients with these disease features. There are, however, a number of unanswered questions that remain to be defined, including the optimal dose, understanding the mechanisms of resistance, and, importantly, how it compares to ponatinib in these patient populations for whom we now have these two options available. Ultimately, a randomized trial is needed to answer questions to which we currently offer speculative informed guesses. The novelty of its mechanism of action and the exciting early data offer the potential for asciminib to address some of the remaining needs in the management of patients with chronic myeloid leukemia, including second-line therapy after resistance to a front-line second-generation TKI and improving successful treatment-free remission. Multiple studies are ongoing in these areas, and one can only hope that the desired randomized trial comparing asciminib to ponatinib will be conducted soon.
Collapse
Affiliation(s)
- Sandeep Padala
- Georgia Cancer Center at Augusta University, Augusta, GA
| | - Jorge Cortes
- Georgia Cancer Center at Augusta University, Augusta, GA.
| |
Collapse
|
19
|
Verhagen NE, Koenderink JB, Blijlevens NMA, Janssen JJWM, Russel FGM. Transporter-Mediated Cellular Distribution of Tyrosine Kinase Inhibitors as a Potential Resistance Mechanism in Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:2535. [PMID: 38004514 PMCID: PMC10675650 DOI: 10.3390/pharmaceutics15112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic neoplasm characterized by the expression of the BCR::ABL1 oncoprotein, a constitutively active tyrosine kinase, resulting in uncontrolled growth and proliferation of cells in the myeloid lineage. Targeted therapy using tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, bosutinib, ponatinib and asciminib has drastically improved the life expectancy of CML patients. However, treatment resistance occurs in 10-20% of CML patients, which is a multifactorial problem that is only partially clarified by the presence of TKI inactivating BCR::ABL1 mutations. It may also be a consequence of a reduction in cytosolic TKI concentrations in the target cells due to transporter-mediated cellular distribution. This review focuses on drug-transporting proteins in stem cells and progenitor cells involved in the distribution of TKIs approved for the treatment of CML. Special attention will be given to ATP-binding cassette transporters expressed in lysosomes, which may facilitate the extracytosolic sequestration of these compounds.
Collapse
Affiliation(s)
- Noor E. Verhagen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Jan B. Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Nicole M. A. Blijlevens
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Jeroen J. W. M. Janssen
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| |
Collapse
|
20
|
Kim C, Ludewig H, Hadzipasic A, Kutter S, Nguyen V, Kern D. A biophysical framework for double-drugging kinases. Proc Natl Acad Sci U S A 2023; 120:e2304611120. [PMID: 37590418 PMCID: PMC10450579 DOI: 10.1073/pnas.2304611120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.
Collapse
Affiliation(s)
- Chansik Kim
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Adelajda Hadzipasic
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Steffen Kutter
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Vy Nguyen
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| |
Collapse
|
21
|
Kim C, Ludewig H, Hadzipasic A, Kutter S, Nguyen V, Kern D. A biophysical framework for double-drugging kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533217. [PMID: 36993258 PMCID: PMC10055307 DOI: 10.1101/2023.03.17.533217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing this cooperative effect. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the doubledrugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe the first fully-closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light onto the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of doubledrugging strategies.
Collapse
Affiliation(s)
- C. Kim
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - H. Ludewig
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - A. Hadzipasic
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - S. Kutter
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - V. Nguyen
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - D. Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| |
Collapse
|
22
|
Assanto GM, Scalzulli E, Carmosino I, Martelli M, Breccia M. From bench to bedside: bridging the gaps in best practices for real-world chronic myeloid leukemia care. Expert Rev Hematol 2022; 15:963-971. [PMID: 36305791 DOI: 10.1080/17474086.2022.2142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Although tyrosine kinase inhibitors (TKIs) determined an improvement of responses and overall survival (OS) in chronic phase chronic myeloid leukemia (CP-CML) patients, some patients still fail the achievement of important milestones. AREAS COVERED In this review, we focus on the need of appropriate molecular and mutational monitoring during TKI treatment with new laboratory tools and on new compounds developed to counteract the unmet clinical need in CP-CML. EXPERT OPINION The appropriate identification of BCR::ABL1 dependent and independent mechanisms of resistance with Next Generation Sequencing (NGS) and digital droplet PCR (ddPCR) can allow to improve the therapeutic strategies and prevent the onset of a failure to treatment. New compounds have been recently approved or are still in investigational trials to improve the response in some critical forms of resistance and/or intolerance to available TKIs.
Collapse
Affiliation(s)
- Giovanni Manfredi Assanto
- Department Cellular Biotechnol & Hematol, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Emilia Scalzulli
- Department Cellular Biotechnol & Hematol, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Department Cellular Biotechnol & Hematol, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Department Cellular Biotechnol & Hematol, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Department Cellular Biotechnol & Hematol, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
23
|
Poudel G, Tolland MG, Hughes TP, Pagani IS. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers (Basel) 2022; 14:cancers14143300. [PMID: 35884363 PMCID: PMC9317051 DOI: 10.3390/cancers14143300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Chronic myeloid leukaemia (CML) is a type of blood cancer that is currently well-managed with drugs that target cancer-causing proteins. However, a significant proportion of CML patients do not respond to those drug treatments or relapse when they stop those drugs because the cancer cells in those patients stop relying on that protein and instead develop a new way to survive. Therefore, new treatment strategies may be necessary for those patients. In this review, we discuss those additional survival pathways and outline combination treatment strategies to increase responses and clinical outcomes, improving the lives of CML patients. Abstract Tyrosine kinase inhibitors (TKIs) have revolutionised the management of chronic myeloid leukaemia (CML), with the disease now having a five-year survival rate over 80%. The primary focus in the treatment of CML has been on improving the specificity and potency of TKIs to inhibit the activation of the BCR::ABL1 kinase and/or overcoming resistance driven by mutations in the BCR::ABL1 oncogene. However, this approach may be limited in a significant proportion of patients who develop TKI resistance despite the effective inhibition of BCR::ABL1. These patients may require novel therapeutic strategies that target both BCR::ABL1-dependent and BCR::ABL1-independent mechanisms of resistance. The combination treatment strategies that target alternative survival signalling, which may contribute towards BCR::ABL1-independent resistance, could be a successful strategy for eradicating residual leukaemic cells and consequently increasing the response rate in CML patients.
Collapse
Affiliation(s)
- Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
| | - Molly G. Tolland
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Timothy P. Hughes
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Correspondence:
| |
Collapse
|
24
|
Allosteric Enhancement of the BCR-Abl1 Kinase Inhibition Activity of Nilotinib by Co-Binding of Asciminib. J Biol Chem 2022; 298:102238. [PMID: 35809644 PMCID: PMC9386466 DOI: 10.1016/j.jbc.2022.102238] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Inhibitors that bind competitively to the ATP binding pocket in the kinase domain of the oncogenic fusion protein BCR–Abl1 are used successfully in targeted therapy of chronic myeloid leukemia (CML). Such inhibitors provided the first proof of concept that kinase inhibition can succeed in a clinical setting. However, emergence of drug resistance and dose-dependent toxicities limit the effectiveness of these drugs. Therefore, treatment with a combination of drugs without overlapping resistance mechanisms appears to be an appropriate strategy. In the present work, we explore the effectiveness of combination therapies of the recently developed allosteric inhibitor asciminib with the ATP-competitive inhibitors nilotinib and dasatinib in inhibiting the BCR–Abl1 kinase activity in CML cell lines. Through these experiments, we demonstrate that asciminib significantly enhances the inhibition activity of nilotinib, but not of dasatinib. Exploring molecular mechanisms for such allosteric enhancement via systematic computational investigation incorporating molecular dynamics, metadynamics simulations, and density functional theory calculations, we found two distinct contributions. First, binding of asciminib triggers conformational changes in the inactive state of the protein, thereby making the activation process less favorable by ∼4 kcal/mol. Second, the binding of asciminib decreases the binding free energies of nilotinib by ∼3 and ∼7 kcal/mol for the wildtype and T315I-mutated protein, respectively, suggesting the possibility of reducing nilotinib dosage and lowering risk of developing resistance in the treatment of CML.
Collapse
|
25
|
Teng M, Luskin MR, Cowan-Jacob SW, Ding Q, Fabbro D, Gray NS. The Dawn of Allosteric BCR-ABL1 Drugs: From a Phenotypic Screening Hit to an Approved Drug. J Med Chem 2022; 65:7581-7594. [PMID: 35609336 DOI: 10.1021/acs.jmedchem.2c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is driven by the constitutive activity of the BCR-ABL1 fusion oncoprotein. Despite the great success of drugs that target the BCR-ABL1 ATP-binding site in transforming CML into a manageable disease, emerging resistance point mutations impair inhibitor binding, thereby limiting the effectiveness of these drugs. Recently, allosteric inhibitors that interact with the ABL1 myristate-binding site have been shown to awaken an endogenous regulatory mechanism and reset full-length BCR-ABL1 into an inactive assembled state. The discovery and development of these allosteric inhibitors demonstrates an in-depth understanding of the fundamental regulatory mechanisms of kinases. In this review, we illustrate the structural basis of c-ABL1's dynamic regulation of autoinhibition and activation, discuss the discovery of allosteric inhibitors and the characterization of their mechanism of action, present the therapeutic potential of dual binding to delay the development of mutation-driven acquired resistance, and suggest key lessons learned from this program.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Marlise R Luskin
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Sandra W Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel CH-4056, Switzerland
| | - Qiang Ding
- Allorion Therapeutics, Guangzhou, Guangdong 511300, China
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Pan YL, Zeng SX, Hao RR, Liang MH, Shen ZR, Huang WH. The progress of small-molecules and degraders against BCR-ABL for the treatment of CML. Eur J Med Chem 2022; 238:114442. [PMID: 35551036 DOI: 10.1016/j.ejmech.2022.114442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
Chronic myeloid leukemia (CML) is a malignant disease of the hematopoietic system with crucial pathogenic protein named BCR-ABL, which endangers the life of patients severely. As a milestone of targeted drug, Imatinib has achieved great success in the treatment of CML. Nevertheless, inevitable drug resistance of Imatinib has occurred frequently in clinical due to the several mutations in the BCR-ABL kinase. Subsequently, the second-generation of tyrosine kinase inhibitors (TKIs) against BCR-ABL was developed to address the mutants of Imatinib resistance, except T315I. To date, the third-generation of TKIs targeting T315I has been developed for improving the selectivity and safety. Notably, the first allosteric inhibitor has been in market which could overcome the mutations in ATP binding site effectively. Meanwhile, some advanced technology, such as proteolysis-targeting chimeras (PROTAC) based on different E3 ligand, are highly expected to overcome the drug resistance by selectively degrading the targeted proteins. In this review, we summarized the current research progress of inhibitors and degraders targeting BCR-ABL for the treatment of CML.
Collapse
Affiliation(s)
- You-Lu Pan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shen-Xin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rong-Rong Hao
- Hangzhou Chinese Academy of Sciences-Hangzhou Medical College Advanced Medical Technology Institute, Zhejiang, China
| | - Mei-Hao Liang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheng-Rong Shen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wen-Hai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Manley PW, Huth F, Moussaoui S, Schoepfer J. A kinase inhibitor which specifically targets the ABL myristate pocket (STAMP), but unlike asciminib crosses the blood–brain barrier. Bioorg Med Chem Lett 2022; 59:128577. [DOI: 10.1016/j.bmcl.2022.128577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
|
28
|
Abstract
Asciminib (Scemblix®) is an orally administered, small molecule, selective allosteric inhibitor that targets the myristoyl pocket of the BCR-ABL1 tyrosine kinase and is being developed by Novartis for the treatment of haematological malignancies, including Philadelphia chromosome-positive (Ph+) chronic myeloid leukaemia (CML). The drug is active against a number of the single catalytic-site mutations, such as T315I, that confer resistance to conventional tyrosine kinase inhibitors (TKIs) that bind to the ATP-binding site of BCR-ABL1. In October 2021, asciminib monotherapy was granted accelerated approval for the treatment of adults with Ph+ CML in chronic phase (CML-CP), previously treated with ≥ 2 TKIs, and full approval for the treatment of adults with Ph+ CML-CP with the T315I mutation. The drug is under regulatory review for use as monotherapy in CML in the EU, and is in phase 1-3 development exploring its potential in first-line, later-line and paediatric patients with CML. This article summarizes the milestones in the development of asciminib leading to this first approval for the treatment of adults with Ph+ CML-CP, previously treated with ≥ 2 TKIs, and Ph+ CML-CP with the T315I mutation.
Collapse
|
29
|
Zerbit J, Tamburini J, Goldwirt L, Decroocq J, Cayuela JM, Chapuis N, Contejean A, Batista R, Bouscary D, Willems L. Asciminib and ponatinib combination in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma 2021; 62:3558-3560. [PMID: 34405773 DOI: 10.1080/10428194.2021.1966787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jérémie Zerbit
- Pharmacy Department, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Jerome Tamburini
- Hematology Department, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Lauriane Goldwirt
- Pharmacology Department, Saint-Louis Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Justine Decroocq
- Pharmacology Department, Saint-Louis Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Jean Michel Cayuela
- Laboratory of Hematology, Saint-Louis Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, University Paris Diderot, Paris, France
| | - Nicolas Chapuis
- Laboratory of Hematology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Adrien Contejean
- Hematology Department, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Rui Batista
- Pharmacy Department, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Didier Bouscary
- Pharmacology Department, Saint-Louis Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| | - Lise Willems
- Pharmacology Department, Saint-Louis Hospital, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
30
|
Breccia M, Colafigli G, Scalzulli E, Martelli M. Asciminib: an investigational agent for the treatment of chronic myeloid leukemia. Expert Opin Investig Drugs 2021; 30:803-811. [PMID: 34130563 DOI: 10.1080/13543784.2021.1941863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Tyrosine kinase inhibitors (TKIs) have drastically changed the outcome of chronic myeloid leukemia (CML) patients. However, a subset of patients experienced resistance and/or intolerance and need to switch to other agents. Resistance to second-generation TKIs used in first-line treatment is less of an issue when compared to imatinib in first line. New drugs that are able to improve efficacy, without long-term off-target effects are needed. Allosteric inhibitors such as asciminib (ABL001) were created to overcome resistance and off-target toxicity.Areas covered: In this review, we report the mechanism of action, pharmacokinetic data, and the clinical trial results of asciminib tested in chronic phase CML patients.Expert Opinion: Asciminib, the first example of allosteric inhibition, could be a promising approach as third-line therapy and in the subset of patients with T315I mutation that, for coexistent comorbidities, cannot receive other drugs. Future results will probably help to move the drug to earlier lines of treatment.
Collapse
Affiliation(s)
- Massimo Breccia
- Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Gioia Colafigli
- Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Emilia Scalzulli
- Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
31
|
Loscocco F, Visani G, Ruzzo A, Bagaloni I, Fuligni F, Galimberti S, Di Paolo A, Stagno F, Pregno P, Annunziata M, Gozzini A, Barulli S, Gabucci E, Magnani M, Isidori A. Clinical Relevance of ABCB1, ABCG2, and ABCC2 Gene Polymorphisms in Chronic Myeloid Leukemia Patients Treated With Nilotinib. Front Oncol 2021; 11:672287. [PMID: 34055641 PMCID: PMC8155509 DOI: 10.3389/fonc.2021.672287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have radically changed the outcome of chronic myeloid leukemia (CML) patients in the last 20 years. Moreover, the advent of second generation TKIs, namely nilotinib and dasatinib, have largely increased the number of CML patients achieving deep and sustained molecular responses. However, the possible mechanisms capable of influencing the maintenance of the long-term molecular response are not yet fully known and understood. In this light, polymorphisms in MDR-ABC transporters may influence the efficacy and safety of TKIs. In this study, we examined seven single nucleotide polymorphisms (SNPs) in four ABC transporter genes: ABCC1 rs212090 (5463T>A), ABCC2 rs3740066 (3972C>T), ABCC2 rs4148386 G>A, ABCC2 rs1885301 (1549G>A), ABCG2 rs2231137 (34G>A), ABCG2 rs2231142 G>C, ABCB1 rs1045642 (3435C>T), to determine their effect on the achievement and/or loss of molecular response in 90 CML patients treated with nilotinib. We found that ABCC2 rs3740066 CC and CT as well as the ABCB1 rs1045642 TT genotypes correlated with a higher probability to achieve MR3 in a shorter time (p=0.02, p=0.004, and p=0.01), whereas ABCG2 rs2231137 GG was associated with lower probability of MR3 achievement (p=0.005). Moreover, ABCC2 rs3740066 CC genotype, the ABCB1 rs1045642 CC and TT genotypes were positively correlated with MR4 achievement (p=0.02, p=0.007, and p=0.003). We then generated a predictive model incorporating the information of four genotypes, to evaluate the combined effect of the SNPs. The combination of SNPs present in the model affected the probability and the time to molecular response. This model had a high prognostic significance for both MR3 and MR4 (p=0.005 and p=0.008, respectively). Finally, we found ABCG2 rs2231142 GG genotype to be associated with a decrease risk of MR3 loss. In conclusion, MDR-transporters SNPs may significantly affect the achievement and loss of molecular response in CML patients treated with nilotinib.
Collapse
Affiliation(s)
- Federica Loscocco
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Giuseppe Visani
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Irene Bagaloni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Fabio Fuligni
- Genetics and Genome Biology, Paediatric Laboratory Medicine (PLM), The Hospital for Sick Children, Toronto, ON, Canada
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Stagno
- AOU Policlinico Vittorio Emanuele, Divisioni Clinicizzata di Ematologia con Trapianto di Midollo Osseo, Catania, Italy
| | - Patrizia Pregno
- AOU Città Della Scienza e Della Salute di Torino, Hematology, Torino, Italy
| | | | | | - Sara Barulli
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Elisa Gabucci
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Alessandro Isidori
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, Pesaro, Italy
| |
Collapse
|
32
|
Sampaio MM, Santos MLC, Marques HS, Gonçalves VLDS, Araújo GRL, Lopes LW, Apolonio JS, Silva CS, Santos LKDS, Cuzzuol BR, Guimarães QES, Santos MN, de Brito BB, da Silva FAF, Oliveira MV, Souza CL, de Melo FF. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94. [PMID: 33680875 PMCID: PMC7918527 DOI: 10.5306/wjco.v12.i2.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm and was the first neoplastic disease associated with a well-defined genotypic anomaly - the presence of the Philadelphia chromosome. The advances in cytogenetic and molecular assays are of great importance to the diagnosis, prognosis, treatment, and monitoring of CML. The discovery of the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) 1 fusion oncogene has revolutionized the treatment of CML patients by allowing the development of targeted drugs that inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (known as TKIs) are the standard therapy for CML and greatly increase the survival rates, despite adverse effects and the odds of residual disease after discontinuation of treatment. As therapeutic alternatives, the subsequent TKIs lead to faster and deeper molecular remissions; however, with the emergence of resistance to these drugs, immunotherapy appears as an alternative, which may have a cure potential in these patients. Against this background, this article aims at providing an overview on CML clinical management and a summary on the main targeted drugs available in that context.
Collapse
Affiliation(s)
- Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Novaes Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
33
|
CML Chapter. Cancer Treat Res 2021; 181:97-114. [PMID: 34626357 DOI: 10.1007/978-3-030-78311-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discovery of the tyrosine kinase inhibitor (TKI) imatinib in the early 2000's revolutionized the treatment and prognosis of patients with chronic myeloid leukemia (CML) [Hochhaus et al. in N Engl J Med 376:917-927, 2017]. The treatment of patients with CML has changed dramatically since the approval of imatinib and other TKIs. Before the TKI era, newly diagnosed patients would undergo HLA typing to try to identify a well-matched donor, and then proceed quickly to allogeneic hematopoietic cell transplantation (HCT). With the introduction of imatinib followed a few years later by dasatinib, nilotinib, then bosutinib, treatment approaches changed in a dramatic way. Transplantation is no longer an upfront treatment option for newly diagnosed CML patients, and in fact, it is very rarely used in the management of a patient with CML currently. The management of CML patients has been a model of personalized medicine or targeted therapy that is being emulated in the treatment of many other hematologic malignancies and solid tumors such as lung cancer [Soverini et al. in Mol Cancer 17:49, 2018]. The Philadelphia Chromosome (Ph) which leads to the formation of the BCR-ABL fusion gene and its product the BCR-ABL protein is the cause of CML. With effective targeting of this protein with the available TKIs, the disease is completely controllable if not curable for most patients. Life expectancy for patients with CML is essentially normal. Quality of life becomes an important goal including the potential for pregnancy, and ultimately the chance to discontinue all TKI therapy permanently. The three cases outlined below serve to highlight some of the important issues in the management of patients with CML in the post-TKI era.
Collapse
|
34
|
Manley PW, Barys L, Cowan-Jacob SW. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk Res 2020; 98:106458. [DOI: 10.1016/j.leukres.2020.106458] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
|
35
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
36
|
|
37
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Pisa R, Kapoor TM. Chemical strategies to overcome resistance against targeted anticancer therapeutics. Nat Chem Biol 2020; 16:817-825. [PMID: 32694636 DOI: 10.1038/s41589-020-0596-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Emergence of resistance is a major factor limiting the efficacy of molecularly targeted anticancer drugs. Understanding the specific mutations, or other genetic or cellular changes, that confer drug resistance can help in the development of therapeutic strategies with improved efficacies. Here, we outline recent progress in understanding chemotype-specific mechanisms of resistance and present chemical strategies, such as designing drugs with distinct binding modes or using proteolysis targeting chimeras, to overcome resistance. We also discuss how targeting multiple binding sites with bifunctional inhibitors or identifying collateral sensitivity profiles can be exploited to limit the emergence of resistance. Finally, we highlight how incorporating analyses of resistance early in drug development can help with the design and evaluation of therapeutics that can have long-term benefits for patients.
Collapse
Affiliation(s)
- Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
39
|
Lu X, Smaill JB, Ding K. Medicinal Chemistry Strategies for the Development of Kinase Inhibitors Targeting Point Mutations. J Med Chem 2020; 63:10726-10741. [PMID: 32432477 DOI: 10.1021/acs.jmedchem.0c00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinically acquired resistance to small molecule kinase inhibitors (SMKIs) has become a major "unmet clinical need" in cancer therapy. To date, there are six SMKIs to be approved for the treatment of cancer patients through targeting of clinically acquired resistance caused by on-target mutations. These are mainly focused on the mutant kinases Bcr-Abl T315I, EGFR T790M, and ALK L1196M. Herein, we summarize the major medicinal chemistry strategies employed in the discovery of these representative SMKIs, such as avoiding steric hindrance, making additional interactions with mutated residues, and forming a covalent bond with an active site cysteine to override resistance observed for reversible inhibitors. Additionally, we also briefly describe allosteric kinase inhibitors and proteolysis targeting chimera (PROTAC) as two other potential strategies while addressing future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
40
|
G. Lindström HJ, Friedman R. The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib. BMC Cancer 2020; 20:397. [PMID: 32380976 PMCID: PMC7204252 DOI: 10.1186/s12885-020-06782-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic myeloid leukaemia is in principle a treatable malignancy but drug resistance is lowering survival. Recent drug discoveries have opened up new options for drug combinations, which is a concept used in other areas for preventing drug resistance. Two of these are (I) Axitinib, which inhibits the T315I mutation of BCR-ABL1, a main source of drug resistance, and (II) Asciminib, which has been developed as an allosteric BCR-ABL1 inhibitor, targeting an entirely different binding site, and as such does not compete for binding with other drugs. These drugs offer new treatment options. METHODS We measured the proliferation of KCL-22 cells exposed to imatinib-dasatinib, imatinib-asciminib and dasatinib-asciminib combinations and calculated combination index graphs for each case. Moreover, using the median-effect equation we calculated how much axitinib can reduce the growth advantage of T315I mutant clones in combination with available drugs. In addition, we calculated how much the total drug burden could be reduced by combinations using asciminib and other drugs, and evaluated which mutations such combinations might be sensitive to. RESULTS Asciminib had synergistic interactions with imatinib or dasatinib in KCL-22 cells at high degrees of inhibition. Interestingly, some antagonism between asciminib and the other drugs was present at lower degrees on inhibition. Simulations revealed that asciminib may allow for dose reductions, and its complementary resistance profile could reduce the risk of mutation based resistance. Axitinib, however, had only a minor effect on T315I growth advantage. CONCLUSIONS Given how asciminib combinations were synergistic in vitro, our modelling suggests that drug combinations involving asciminib should allow for lower total drug doses, and may result in a reduced spectrum of observed resistance mutations. On the other hand, a combination involving axitinib was not shown to be useful in countering drug resistance.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Axitinib/administration & dosage
- Cell Line, Tumor
- Computer Simulation
- Dasatinib/administration & dosage
- Drug Discovery/methods
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Humans
- Imatinib Mesylate/administration & dosage
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
- Niacinamide/administration & dosage
- Niacinamide/analogs & derivatives
- Pyrazoles/administration & dosage
Collapse
Affiliation(s)
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, 391 82 Sweden
| |
Collapse
|
41
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
42
|
Özgür Yurttaş N, Eşkazan AE. Novel therapeutic approaches in chronic myeloid leukemia. Leuk Res 2020; 91:106337. [PMID: 32200189 DOI: 10.1016/j.leukres.2020.106337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
The tyrosine kinase inhibitors (TKIs) have revolutionized the management of chronic myeloid leukemia (CML) and BCR-ABL1 inhibitors form the mainstay of CML treatment. Although patients with CML generally do well under TKI therapy, there is a subgroup of patients who are resistant and/or intolerant to TKIs. In these group of patients, there is the need of additional treatment strategies. In this review, we provide an update on the current knowledge of these novel treatment approaches that can be used alone and/or in combination with TKIs.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Clinical Trials as Topic
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Everolimus/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Gene Expression
- Histone Deacetylase Inhibitors/therapeutic use
- Homoharringtonine/therapeutic use
- Humans
- Immunotherapy/methods
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy/methods
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Piperidines/therapeutic use
- Polyethylene Glycols/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Quinolones/therapeutic use
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
43
|
Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discov Today 2019; 25:177-184. [PMID: 31634592 DOI: 10.1016/j.drudis.2019.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/11/2019] [Indexed: 01/31/2023]
Abstract
Allosteric drugs have several significant advantages over traditional orthosteric drugs, encompassing higher selectivity and lower toxicity. Although allosteric drugs have potential advantages as therapeutic agents to treat human diseases, allosteric drug-resistance mutations still occur, rendering these drugs ineffective. Here, we review the emergence of allosteric drug-resistance mutations with an emphasis on examples covering clinically important therapeutic targets, including Breakpoint cluster region-Abelson tyrosine kinase (Bcr-Abl), Akt kinase [also called Protein Kinase B (PKB)], isocitrate dehydrogenase (IDH), MAPK/ERK kinase (MEK), and SRC homology 2 domain-containing phosphatase 2 (SHP2). We also discuss challenges associated with tackling allosteric drug resistance and the possible strategies to overcome this issue.
Collapse
|
44
|
Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD, Pomicter AD, Yan D, Senina AV, Qiang W, Kelley TW, Szankasi P, Heinrich MC, Tyner JW, Rea D, Cayuela JM, Kim DW, Tognon CE, O'Hare T, Druker BJ, Deininger MW. Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell 2019; 36:431-443.e5. [PMID: 31543464 PMCID: PMC6893878 DOI: 10.1016/j.ccell.2019.08.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/03/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
BCR-ABL1 point mutation-mediated resistance to tyrosine kinase inhibitor (TKI) therapy in Philadelphia chromosome-positive (Ph+) leukemia is effectively managed with several approved drugs, including ponatinib for BCR-ABL1T315I-mutant disease. However, therapy options are limited for patients with leukemic clones bearing multiple BCR-ABL1 mutations. Asciminib, an allosteric inhibitor targeting the myristoyl-binding pocket of BCR-ABL1, is active against most single mutants but ineffective against all tested compound mutants. We demonstrate that combining asciminib with ATP site TKIs enhances target inhibition and suppression of resistant outgrowth in Ph+ clinical isolates and cell lines. Inclusion of asciminib restores ponatinib's effectiveness against currently untreatable compound mutants at clinically achievable concentrations. Our findings support combining asciminib with ponatinib as a treatment strategy for this molecularly defined group of patients.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Binding Sites/drug effects
- Binding Sites/genetics
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Targeted Therapy/methods
- Mutation
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Primary Cell Culture
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
Collapse
Affiliation(s)
- Christopher A Eide
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Matthew S Zabriskie
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Samantha L Savage Stevens
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Nadeem A Vellore
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Hein Than
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Anna Reister Schultz
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip Clair
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Amber D Bowler
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Dongqing Yan
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Anna V Senina
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA
| | - Wang Qiang
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Michael C Heinrich
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Portland VA Health Care System, Portland, OR, USA; Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Delphine Rea
- Service d'Hematologie Adulte, INSERM UMR 1160, Hospital Saint-Louis, 75010 Paris, France
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint-Louis, AP-HP and EA3518, University Paris Diderot, Paris, France
| | - Dong-Wook Kim
- Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea; Department of Hematology, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cristina E Tognon
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas O'Hare
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian J Druker
- OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, LBRB 513, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA; Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 4280, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
45
|
Ma Y, Zhang Q, Kong P, Xiong J, Zhang X, Zhang C. Treatment Selection for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in the Era of Tyrosine Kinase Inhibitors. Chemotherapy 2019; 64:81-93. [PMID: 31390613 DOI: 10.1159/000501061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022]
Abstract
With the advent of tyrosine kinase inhibitors (TKIs), the treatment of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) has entered a new era. The efficacy of TKIs compared with other ALL treatment options is emphasized by a rapid increase in the number of TKI clinical trials. Subsequently, the use of traditional approaches, such as combined chemotherapy and even allogeneic hematopoietic stem cell transplantation (allo-HSCT), for the treatment of ALL is being challenged in the clinic. In light of the increased use of TKIs in the clinic, several questions have been raised. First, is it necessary to use intensive chemotherapy during the induction course of therapy to achieve a minimal residual disease (MRD)-negative status? Must a patient reach a complete molecular response/major molecular response before receiving allo-HSCT? Does MRD status affect long-term survival after allo-HSCT? Is auto-HSCT an appropriate alternative for allo-HSCT in those Ph+ ALL patients who lack suitable donors? Here, we review the recent literature in an attempt to summarize the current status of TKI usage in the clinic, including several new therapeutic approaches, provide answers for the above questions, and speculate on the future direction of TKI utilization for the treatment of Ph+ ALL patients.
Collapse
Affiliation(s)
- Yingying Ma
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Quanchao Zhang
- Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Peiyan Kong
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jingkang Xiong
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xi Zhang
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Cheng Zhang
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China,
| |
Collapse
|
46
|
[Recommendations from the French CML Study Group (Fi-LMC) for BCR-ABL1 kinase domain mutation analysis in chronic myeloid leukemia]. Bull Cancer 2019; 107:113-128. [PMID: 31353136 DOI: 10.1016/j.bulcan.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/22/2022]
Abstract
In the context of chronic myeloid leukemia (CML) resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL1 tyrosine kinase domain (TKD) mutations still remain the sole biological marker that directly condition therapeutic decision. These recommendations aim at updating the use of BCR-ABL1 mutation testing with respect to new available therapeutic options and at repositioning different testing methods at the era of next generation sequencing (NGS). They have been written by a panel of experts from the French Study Group on CML (Fi-LMC), after a critical review of relevant publications. TKD mutation testing is recommended in case of treatment failure but not in case of optimal response. For patients in warning situation, mutation testing must be discussed depending on the type of TKI used, lasting of the treatment, kinetic evolution of BCR-ABL1 transcripts along time and necessity for switching treatment. The kind and the frequency of TKD mutations occasioning resistance mainly depend on the TKI in use and disease phase. Because of its better sensitivity, NGS methods are recommended for mutation testing rather than Sanger's. Facing a given TKD mutation, therapeutic decision should be taken based on in vitro sensitivity and clinical efficacy data. Identification by sequencing of a TKD mutation known to induce resistance must lead to a therapeutic change. The clinical value of testing methods more sensitive than NGS remains to be assessed.
Collapse
|
47
|
A modified DAW-22 compound F-B1 inhibits Bcr/Abl and induces apoptosis in chronic myelogenous leukemia cells. Anticancer Drugs 2018; 30:159-166. [PMID: 30422832 DOI: 10.1097/cad.0000000000000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Bcr/Abl kinase is an oncogenic fusion protein that plays a central role in the pathogenesis of chronic myeloid leukemia (CML). Some small-molecule kinase inhibitors such as imatinib were developed in the treatment of CML; however, resistant to imatinib is an emerging problem of CML therapy. Hence, additional approaches or compounds targeting leukemogenic cells are required. F-B1 is a new compound obtained by modifying DAW-22, a natural sesquiterpenoid coumarin, which was isolated from traditional Chinese medicine Ferula ferulaeoides (Steud.) Korov. F-B1 was found to inhibit the growth of myelogenous leukemia cell lines, that is, K562 cells bearing wild-type Bcr/Abl and imatinib-resistant K562G cells. F-B1 potently down-regulated the mRNA and protein levels of Bcr/Abl, followed by suppression of the downstream molecules such as Akt, externally regulated kinases, and nuclear factor κB. In addition, F-B1 also induced cell apoptosis by impairing the balance between proapoptotic protein Bax and antiapoptotic proteins Bcl-2 and Bcl-XL and increased the activity of mitochondrial-dependent apoptosis in nude mouse xenografts. Experimental validation results together demonstrated that F-B1 can inhibit Bcr/Abl fusion proteins in K562 and K562G cells, implying that F-B1 might be a promising drug to treat CML, especially the imatinib-resistant CML.
Collapse
|
48
|
Menssen HD, Quinlan M, Kemp C, Tian X. Relative Bioavailability and Food Effect Evaluation for 2 Tablet Formulations of Asciminib in a 2-Arm, Crossover, Randomized, Open-Label Study in Healthy Volunteers. Clin Pharmacol Drug Dev 2018; 8:385-394. [PMID: 30059193 DOI: 10.1002/cpdd.602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022]
Abstract
Asciminib (ABL001) is an orally administered allosteric inhibitor of the BCR-ABL tyrosine kinase. The current study evaluated the relative bioavailability of its 2 tablet variants, AAA and NXA, compared with the capsule CSF and assessed the impact of food in healthy participants in a 2-arm, randomized, open-label, 4-way crossover design. The primary pharmacokinetic parameters analyzed were area under the plasma concentration-time curve (AUC) from time 0 to the time of last measurable concentration (AUClast ), AUC from time 0 to infinity (AUCinf ), and peak concentration (Cmax ). Forty-five healthy volunteers were enrolled, 22 in the AAA arm and 23 in the NXA arm. Under fasting conditions, the AUCinf , AUClast , and Cmax of the AAA tablet were similar to those of the capsule, but slightly higher (∼20%) for NXA and decreased with a high-fat meal (∼65%) and a low-fat meal (∼30%) for both tablet formulations. Overall, 20 participants (9 in the AAA arm; 11 in the NXA arm) experienced at least 1 adverse event, the most common in both arms being headache. The study showed that under fasting conditions, tablet AAA had bioavailability similar to that in the capsule CSF. The bioavailability of both tablet formulations decreased with food, with a more pronounced effect observed with a high-fat meal.
Collapse
Affiliation(s)
| | | | - Charisse Kemp
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Xianbin Tian
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
49
|
Massaro F, Colafigli G, Molica M, Breccia M. Novel tyrosine-kinase inhibitors for the treatment of chronic myeloid leukemia: safety and efficacy. Expert Rev Hematol 2018. [PMID: 29522367 DOI: 10.1080/17474086.2018.1451322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) is characterized by a pathognomonic chromosomal translocation, which leads to the fusion of breakpoint cluster region (BCR) and Abelson leukemia virus 1 (ABL1) genes, generating an oncoprotein with deregulated tyrosine kinase activity. Areas covered: In the last two decades, BCR/ABL1 kinase has become the molecular target for tyrosine kinase inhibitors (TKIs), a class of drugs that impressively improved overall survival. Despite these results, a proportion of patients experiences resistance to TKIs and need to change treatment. Furthermore, TKIs are unable to eradicate leukemic stem cells, allowing the persistence of neoplastic clones. Therefore, there is still clinical need for new agents to overcome common resistance mechanisms to available drugs. This review explores the horizon of drugs actually under investigation for CML patients resistant to conventional treatment. Expert commentary: Radotinib is an ATP-competitive TKI that showed significant activity also in front-line setting and could find employment indications in CML. Asciminib, an allosteric ABL1 inhibitor, could demonstrate a higher capacity in overcoming common TKIs resistant mutations, including T315I, but clinical findings are needed. CML stem cell target will probably require new therapeutic strategies: combinations of several compounds acting with different mechanisms of action are actually under investigation.
Collapse
Affiliation(s)
- Fulvio Massaro
- a Department of Cellular Biotechnologies and Hematology , Policlinico Umberto 1, 'Sapienza' University , Rome , Italy
| | - Gioia Colafigli
- a Department of Cellular Biotechnologies and Hematology , Policlinico Umberto 1, 'Sapienza' University , Rome , Italy
| | - Matteo Molica
- a Department of Cellular Biotechnologies and Hematology , Policlinico Umberto 1, 'Sapienza' University , Rome , Italy
| | - Massimo Breccia
- a Department of Cellular Biotechnologies and Hematology , Policlinico Umberto 1, 'Sapienza' University , Rome , Italy
| |
Collapse
|
50
|
Kavanagh S, Nee A, Lipton JH. Emerging alternatives to tyrosine kinase inhibitors for treating chronic myeloid leukemia. Expert Opin Emerg Drugs 2018; 23:51-62. [PMID: 29480034 DOI: 10.1080/14728214.2018.1445717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION BCR-ABL-directed tyrosine kinase inhibitors (TKIs) have revolutionised therapy for chronic myeloid leukemia. However, despite the availability and efficacy of this class of agents, lifelong treatment is still required in a significant proportion of patients Areas covered: We give an overview of the currently available BCR-ABL-directed TKIs and other conventional therapies for CML. We proceed to review the current market and some of the scientific rationale for new drug development before outlining a number of novel therapies, considered broadly as immunotherapies and targeted agents. Published English-language literature was reviewed regarding currently available TKIs; clinical trials repositories were reviewed to identify novel agents recently investigated or under active study. Expert opinion: We recommend discussion with patients and enrolment on an appropriate clinical trial where feasible. In situations where no trials are available, or if patients decline enrolment, we recommend use of an appropriate BCR-ABL directed TKI, selected on the basis of an evaluation of patient risk factors and side effect profile. Allogeneic stem cell transplant continues to have a role though this is generally limited to cases with advanced phases of disease or in cases with resistance-conferring mutations.
Collapse
Affiliation(s)
- Simon Kavanagh
- a Princess Margaret Cancer Centre , University Health Network , Toronto , ON , Canada
| | - Aisling Nee
- a Princess Margaret Cancer Centre , University Health Network , Toronto , ON , Canada
| | - Jeffrey H Lipton
- a Princess Margaret Cancer Centre , University Health Network , Toronto , ON , Canada
| |
Collapse
|