1
|
Hu X, Cao P, Wang F, Wang T, Duan J, Chen X, Ma X, Zhang Y, Chen J, Liu H, Zhang H, Wu X. Alternative polyadenylation quantitative trait loci contribute to acute myeloid leukemia risk genes regulation. Leuk Res 2024; 141:107499. [PMID: 38640632 DOI: 10.1016/j.leukres.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy with a high relapse rate and progressive drug resistance. Alternative polyadenylation (APA) contributes to post-transcriptional dysregulation, but little is known about the association between APA and AML. The APA quantitative trait locus (apaQTL) is a powerful method to investigate the relationship between APA and single nucleotide polymorphisms (SNPs). We quantified APA usage in 195 Chinese AML patients and identified 4922 cis-apaQTLs related to 1875 genes, most of which were newly reported. Cis-apaQTLs may modulate the APA selection of 115 genes through poly(A) signals. Colocalization analysis revealed that cis-apaQTLs colocalized with cis-eQTLs may regulate gene expression by affecting miRNA binding sites or RNA secondary structures. We discovered 207 cis-apaQTLs related to AML risk by comparing genotype frequency with the East Asian healthy controls from the 1000 Genomes Project. Genes with cis-apaQTLs were associated with hematological phenotypes and tumor incidence according to the PHARMGKB and MGI databases. Collectively, we profiled an atlas of cis-apaQTLs in Asian AML patients and found their association with APA selection, gene expression, AML risk, and complex traits. Cis-apaQTLs may provide insights into the regulatory mechanisms related to APA in AML occurrence, progression, and prognosis.
Collapse
Affiliation(s)
- Xi Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Panxiang Cao
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Tong Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Junbo Duan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xue Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Xiaoli Ma
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Yang Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Jiaqi Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Hongxing Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China.
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaoming Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Xiao S, Chen H, Bai Y, Zhang ZY, Liu Y. Targeting PRL phosphatases in hematological malignancies. Expert Opin Ther Targets 2024; 28:259-271. [PMID: 38653737 PMCID: PMC12050007 DOI: 10.1080/14728222.2024.2344695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Hongxia Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
3
|
Chen H, Bai Y, Kobayashi M, Xiao S, Barajas S, Cai W, Chen S, Miao J, Meke FN, Yao C, Yang Y, Strube K, Satchivi O, Sun J, Rönnstrand L, Croop JM, Boswell HS, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Sukhanova M, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation. Mol Cancer Res 2024; 22:94-103. [PMID: 37756563 PMCID: PMC10841656 DOI: 10.1158/1541-7786.mcr-23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Northwestern University, Chicago, USA
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University, Chicago, USA
| | - Sergio Barajas
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Wenjie Cai
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Sisi Chen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Chonghua Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Katherine Strube
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Odelia Satchivi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - James M. Croop
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K. Altman
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Elizabeth A. Eklund
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | - Wei Tong
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| |
Collapse
|
4
|
Nguele Meke F, Bai Y, Ruiz-Avila D, Carlock C, Ayub J, Miao J, Hu Y, Li Q, Zhang ZY. Inhibition of PRL2 Upregulates PTEN and Attenuates Tumor Growth in Tp53-deficient Sarcoma and Lymphoma Mouse Models. CANCER RESEARCH COMMUNICATIONS 2024; 4:5-17. [PMID: 38047587 PMCID: PMC10764713 DOI: 10.1158/2767-9764.crc-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The phosphatases of regenerating liver (PRL) are oncogenic when overexpressed. We previously found that PRL2 deletion increases PTEN, decreases Akt activity, and suppresses tumor development in a partial Pten-deficient mouse model. The current study aims to further establish the mechanism of PTEN regulation by PRL2 and expand the therapeutic potential for PTEN augmentation mediated by PRL2 inhibition in cancers initiated without PTEN alteration. The TP53 gene is the most mutated tumor suppressor in human cancers, and heterozygous or complete deletion of Tp53 in mice leads to the development of sarcomas and thymic lymphomas, respectively. There remains a lack of adequate therapies for the treatment of cancers driven by Tp53 deficiency or mutations. We show that Prl2 deletion leads to PTEN elevation and attenuation of Akt signaling in sarcomas and lymphomas developed in Tp53 deficiency mouse models. This results in increased survival and reduced tumor incidence because of impaired tumor cell proliferation. In addition, inhibition of PRL2 with a small-molecule inhibitor phenocopies the effect of genetic deletion of Prl2 and reduces Tp53 deficiency-induced tumor growth. Taken together, the results further establish PRL2 as a negative regulator of PTEN and highlight the potential of PRL2 inhibition for PTEN augmentation therapy in cancers with wild-type PTEN expression. SIGNIFICANCE Prl2 deletion attenuates Tp53 deficiency-induced tumor growth by increasing PTEN and reducing Akt activity. Targeting Tp53-null lymphoma with PRL inhibitors lead to reduced tumor burden, providing a therapeutic approach via PTEN augmentation.
Collapse
Affiliation(s)
- Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Diego Ruiz-Avila
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinan Ayub
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Carlock C, Bai Y, Paige-Hood A, Li Q, Nguele Meke F, Zhang ZY. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight 2023; 8:e170065. [PMID: 37665633 PMCID: PMC10619439 DOI: 10.1172/jci.insight.170065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.
Collapse
Affiliation(s)
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology
- Department of Chemistry
- Institute for Cancer Research, and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Chen H, Bai Y, Kobayashi M, Xiao S, Cai W, Barajas S, Chen S, Miao J, Meke FN, Vemula S, Ropa JP, Croop JM, Boswell HS, Wan J, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 phosphatase enhances oncogenic FLT3 signaling via dephosphorylation of the E3 ubiquitin ligase CBL at tyrosine 371. Blood 2023; 141:244-259. [PMID: 36206490 PMCID: PMC9936309 DOI: 10.1182/blood.2022016580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology and Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Shiyu Xiao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sergio Barajas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sisi Chen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - James P. Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - James M. Croop
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Department of Medical Genetics, Indiana University, Indianapolis, IN
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jessica K. Altman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Elizabeth A. Eklund
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wei Tong
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, NB
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Yan Liu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
7
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
8
|
Yao C, Kobayashi M, Chen S, Nabinger SC, Gao R, Liu SZ, Asai T, Liu Y. Necdin modulates leukemia-initiating cell quiescence and chemotherapy response. Oncotarget 2017; 8:87607-87622. [PMID: 29152105 PMCID: PMC5675657 DOI: 10.18632/oncotarget.20999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating illness which carries a very poor prognosis, with most patients living less than 18 months. Leukemia relapse may occur because current therapies eliminate proliferating leukemia cells but fail to eradicate quiescent leukemia-initiating cells (LICs) that can reinitiate the disease after a period of latency. While we demonstrated that p53 target gene Necdin maintains hematopoietic stem cell (HSC) quiescence, its roles in LIC quiescence and response to chemotherapy are unclear. In this study, we utilized two well-established murine models of human AML induced by MLL-AF9 or AML1-ETO9a to determine the role of Necdin in leukemogenesis. We found that loss of Necdin decreased the number of functional LICs and enhanced myeloid differentiation in vivo, leading to delayed development of leukemia induced by MLL-AF9. Importantly, Necdin null LICs expressing MLL-AF9 were less quiescent than wild-type LICs. Further, loss of Necdin enhanced the response of MLL-AF9+ leukemia cells to chemotherapy treatment, manifested by decreased viability and enhanced apoptosis. We observed decreased expression of Bcl2 and increased expression of p53 and its target gene Bax in Necdin null leukemia cells following chemotherapy treatment, indicating that p53-dependent apoptotic pathways may be activated in the absence of Necdin. In addition, we found that loss of Necdin decreased the engraftment of AML1-ETO9a+ hematopoietic stem and progenitor cells in transplantation assays. However, Necdin-deficiency did not affect the response of AML1-ETO9a+ hematopoietic cells to chemotherapy treatment. Thus, Necdin regulates leukemia-initiating cell quiescence and chemotherapy response in a context-dependent manner. Our findings suggest that pharmacological inhibition of Necdin may hold potential as a novel therapy for leukemia patients with MLL translocations.
Collapse
Affiliation(s)
- Chonghua Yao
- Department of Rheumatism, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen Z Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Takashi Asai
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|