1
|
Sokolowski M, Wasserman J, Wasserman D. Gene-level associations in suicide attempter families show overrepresentation of synaptic genes and genes differentially expressed in brain development. Am J Med Genet B Neuropsychiatr Genet 2018; 177:774-784. [PMID: 30381879 DOI: 10.1002/ajmg.b.32694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 01/23/2023]
Abstract
Suicidal behavior (SB) has a complex etiology involving different polygenic and environmental components. Here we used an excess of significant markers (ESM) test to study gene-level associations in previous genome-wide association studies (GWAS) SNP data from a family-based sample, having medically severe suicide attempt (SA) as main outcome in the offspring. In SA without major psychiatric disorders (N = 498), a screening of 5,316 genes across the genome suggested association 17 genes (at fdr < 0.05). Genes RETREG1 (a.k.a. FAM134B), GSN, GNAS, and CACNA1D were particularly robust to different methodological variations. Comparison with the more widely used Multi-marker Analysis of GenoMic Annotation (MAGMA) methods, mainly supported RETREG1, GSN, RNASEH2B, UBE2H, and CACNA1D by using the "mean" model, and ranked 13 of the same genes as ESM among its top-17. Complementing the ESM screen by using MAGMA to analyze 17,899 genes, we observed excess of genes with p < .05 by using the "top" model, and the "mean" model suggested additional genes with genome-wide fdr < 0.25. Overrepresentation analysis of 10 selected gene sets using all genes with p < .05, showed significant results for synaptic genes, genes differentially expressed in brain development and for ~12% of the SA polygenic association genes identified previously in this sample. Exploratory analysis linked some of the ESM top-17 genes to psychotropic drugs and we examined the allelic heterogeneity in the previous SA candidate GRIN2B. This study complemented previous GWAS on SB outcomes, implicating both previous candidate (e.g., GRIN2B and GNAS) and novel genes in SA outcomes, as well as synaptic functions and brain development.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Jerzy Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden.,WHO Collaborating Centre for Research, Methods, Development and Training in Suicide Prevention, Stockholm, Sweden
| |
Collapse
|
2
|
Sokolowski M, Wasserman J, Wasserman D. Rare CNVs in Suicide Attempt include Schizophrenia-Associated Loci and Neurodevelopmental Genes: A Pilot Genome-Wide and Family-Based Study. PLoS One 2016; 11:e0168531. [PMID: 28030616 PMCID: PMC5193342 DOI: 10.1371/journal.pone.0168531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
Suicidal behavior (SB) has a complex etiology involving genes and environment. One of the genetic components in SB could be copy number variations (CNVs), as CNVs are implicated in neurodevelopmental disorders. However, a recently published genome-wide and case-control study did not observe any significant role of CNVs in SB. Here we complemented these initial observations by instead using a family-based trio-sample that is robust to control biases, having severe suicide attempt (SA) in offspring as main outcome (n = 660 trios). We first tested for CNV associations on the genome-wide Illumina 1M SNP-array by using FBAT-CNV methodology, which allows for evaluating CNVs without reliance on CNV calling algorithms, analogous to a common SNP-based GWAS. We observed association of certain T-cell receptor markers, but this likely reflected inter-individual variation in somatic rearrangements rather than association with SA outcome. Next, we used the PennCNV software to call 385 putative rare (<1%) and large (>100 kb) CNVs, observed in n = 225 SA offspring. Nine SA offspring had rare CNV calls in a set of previously schizophrenia-associated loci, indicating the importance of such CNVs in certain SA subjects. Several additional, very large (>1MB) sized CNV calls in 15 other SA offspring also spanned pathogenic regions or other neural genes of interest. Overall, 45 SA had CNVs enriched for 65 medically relevant genes previously shown to be affected by CNVs, which were characterized by a neurodevelopmental biology. A neurodevelopmental implication was partly congruent with our previous SNP-based GWAS, but follow-up analysis here indicated that carriers of rare CNVs had a decreased burden of common SNP risk-alleles compared to non-carriers. In conclusion, while CNVs did not show genome-wide association by the FBAT-CNV methodology, our preliminary observations indicate rare pathogenic CNVs affecting neurodevelopmental functions in a subset of SA, who were distinct from SA having increased SNP risk-allele burden. These observations may open up new avenues in the genetic etiology of SB.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
- * E-mail:
| | - Jerzy Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
- WHO collaborating Centre for research, methods, development and training in suicide prevention, NASP, KI, Stockholm, Sweden
| |
Collapse
|
3
|
Polygenic associations of neurodevelopmental genes in suicide attempt. Mol Psychiatry 2016; 21:1381-90. [PMID: 26666204 DOI: 10.1038/mp.2015.187] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/12/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
Abstract
The risk for suicidal behavior (SB) is elevated in schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD), but also occurs in subjects without psychiatric diagnoses. Genome-wide association studies (GWAS) on SB may help to understand this risk, but have been hampered by low power due to limited sample sizes, weakly ascertained SB or a reliance on single-nucleotide protein (SNP)-by-SNP analyses. Here, we tried to mitigate such issues with polygenic risk score (PRS) association tests combined with hypothesis-driven strategies using a family-based sample of 660 trios with a well-ascertained suicide attempt (SA) outcome in the offspring (Genetic Investigation of Suicide and SA, GISS). Two complementary sources of PRS information were used. First, a PRS that was discovered and validated in the GISS SA revealed the polygenic association of SNPs in 750 neurodevelopmental genes, which was driven by the SA phenotype, rather than the major psychiatric diagnoses. Second, a PRS based on three different genome-wide association studies (on SCZ, BPD or MDD) from the Psychiatric Genomics Consortium (PGC) showed an association of the PGC-SCZ PRS in the SA subjects with and without major psychiatric diagnoses. We characterized the PGC-SCZ overlap in the SA subjects without diagnoses. The extended major histocompatibility complex region did not contribute to the overlap, but we delineated the genic overlap to neurodevelopmental genes that partially overlapped with those identified by the GISS PRS. Among the 590 SA polygenes implicated here, there were several developmentally important functions (cell adhesion/migration, small GTPase and receptor tyrosine kinase signaling), and 16 of the SA polygenes have previously been studied in SB (BDNF, CDH10, CDH12, CDH13, CDH9, CREB1, DLK1, DLK2, EFEMP1, FOXN3, IL2, LSAMP, NCAM1, nerve growth factor (NGF), NTRK2 and TBC1D1). These novel genome-wide insights, supported by two lines of evidence, suggested the importance of a polygenic neurodevelopmental etiology in SB, even in the absence of major psychiatric diagnoses.
Collapse
|
4
|
Fernàndez-Castillo N, Cormand B. Aggressive behavior in humans: Genes and pathways identified through association studies. Am J Med Genet B Neuropsychiatr Genet 2016; 171:676-96. [PMID: 26773414 DOI: 10.1002/ajmg.b.32419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Aggressive behavior has both genetic and environmental components. Many association studies have been performed to identify genetic factors underlying aggressive behaviors in humans. In this review we summarize the previous work performed in this field, considering both candidate gene (CGAS) and genome-wide association studies (GWAS), excluding those performed in samples where the primary diagnosis is a psychiatric or neurological disorder other than an aggression-related phenotype. Subsequently, we have studied the enrichment of pathways and functions in GWAS data. The results of our searches show that most CGAS have identified associations with genes involved in dopaminergic and serotonergic neurotransmission and in hormone regulation. On the other hand, GWAS have not yet identified genome-wide significant associations, but top nominal findings are related to several signaling pathways, such as axon guidance or estrogen receptor signaling, and also to neurodevelopmental processes and synaptic plasticity. Future studies should use larger samples, homogeneous phenotypes and standardized measurements to identify genes that underlie aggressive behaviors in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
5
|
Zanella R, Morés N, Morés MAZ, Peixoto JO, Zanella EL, Ciacci-Zanella JR, Ibelli AMG, Gava D, Cantão ME, Ledur MC. Genome-wide association study of periweaning failure-to-thrive syndrome (PFTS) in pigs. Vet Rec 2016; 178:653. [PMID: 27162284 DOI: 10.1136/vr.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Porcine periweaning-failure-to-thrive syndrome (PFTS) is a condition that affects newly weaned piglets. It is characterised by a progressive debilitation leading to death, in the absence of infectious, nutritional, management or environmental factors. In this study, we present the first report of PFTS in South America and the results of a genome-wide association study to identify the genetic markers associated with the appearance of this condition in a crossbred swine population. Four chromosomal regions were associated with PFTS predisposition, one located on SSCX, one on SSC8, and the two other regions on SSC14. Regions on SSC8 and SSC14 harbour important functional candidate genes involved in human depression and might have an important role in PFTS. Our findings contribute to the increasing knowledge about this syndrome, which has been investigated since 2007, and to the identification of the aetiology of this disease.
Collapse
Affiliation(s)
- R Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - N Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M A Z Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - J O Peixoto
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - E L Zanella
- R. Zanella's present address is College of Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - J R Ciacci-Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - A M G Ibelli
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - D Gava
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M E Cantão
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M C Ledur
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| |
Collapse
|
6
|
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:3-43. [PMID: 26345359 DOI: 10.1002/ajmg.b.32364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.
Collapse
Affiliation(s)
- Kim Veroude
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Mireille J Bakker
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Sokolowski M, Wasserman J, Wasserman D. An overview of the neurobiology of suicidal behaviors as one meta-system. Mol Psychiatry 2015; 20:56-71. [PMID: 25178164 DOI: 10.1038/mp.2014.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/19/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
Suicidal behaviors (SB) may be regarded as the outmost consequence of mental illnesses, or as a distinct entity per se. Regardless, the consequences of SB are very large to both society and affected individuals. The path leading to SB is clearly a complex one involving interactions between the subject's biology and environmental influences throughout life. With the aim to generate a representative and diversified overview of the different neurobiological components hypothesized or shown implicated across the entire SB field up to date by any approach, we selected and compiled a list of 212 gene symbols from the literature. An increasing number of novel gene (products) have been introduced as candidates, with half being implicated in SB in only the last 4 years. These candidates represent different neuro systems and functions and might therefore be regarded as competing or redundant explanations. We then adopted a unifying approach by treating them all as parts of the same meta-system, using bioinformatic tools. We present a network of all components connected by physical protein-protein interactions (the SB interactome). We proceeded by exploring the differences between the highly connected core (~30% of the candidate genes) and its peripheral parts, observing more functional homogeneity at the core, with multiple signal transduction pathways and actin-interacting proteins connecting a subset of receptors in nerve cell compartments as well as development/morphology phenotypes and the stress-sensitive synaptic plasticity processes of long term potentiation/depression. We suggest that SB neurobiology might also be viewed as one meta-system and perhaps be explained as intrinsic unbalances acting within the core or as imbalances arising between core and specific peripheral components.
Collapse
Affiliation(s)
- M Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - J Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - D Wasserman
- 1] National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden [2] WHO Collaborating Centre for Research, Methods Development and Training in Suicide Prevention, Stockholm, Sweden
| |
Collapse
|
8
|
Sokolowski M, Wasserman J, Wasserman D. Genome-wide association studies of suicidal behaviors: a review. Eur Neuropsychopharmacol 2014; 24:1567-77. [PMID: 25219938 DOI: 10.1016/j.euroneuro.2014.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 11/17/2022]
Abstract
Suicidal behaviors represent a fatal dimension of mental ill-health, involving both environmental and heritable (genetic) influences. The putative genetic components of suicidal behaviors have until recent years been mainly investigated by hypothesis-driven research (of "candidate genes"). But technological progress in genotyping has opened the possibilities towards (hypothesis-generating) genomic screens and novel opportunities to explore polygenetic perspectives, now spanning a wide array of possible analyses falling under the term Genome-Wide Association Study (GWAS). Here we introduce and discuss broadly some apparent limitations but also certain developing opportunities of GWAS. We summarize the results from all the eight GWAS conducted up to date focused on suicidality outcomes; treatment emergent suicidal ideation (3 studies), suicide attempts (4 studies) and completed suicides (1 study). Clearly, there are few (if any) genome-wide significant and reproducible findings yet to be demonstrated. We then discuss and pinpoint certain future considerations in relation to sample sizes, the units of genetic associations used, study designs and outcome definitions, psychiatric diagnoses or biological measures, as well as the use of genomic sequencing. We conclude that GWAS should have a lot more potential to show in the case of suicidal outcomes, than what has yet been realized.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), S-171 77 Stockholm, Sweden.
| | - Jerzy Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), S-171 77 Stockholm, Sweden
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), S-171 77 Stockholm, Sweden
| |
Collapse
|
9
|
Verweij KJH, Zietsch BP, Medland SE, Gordon SD, Benyamin B, Nyholt DR, McEvoy BP, Sullivan PF, Heath AC, Madden PAF, Henders AK, Montgomery GW, Martin NG, Wray NR. A genome-wide association study of Cloninger's temperament scales: implications for the evolutionary genetics of personality. Biol Psychol 2010; 85:306-17. [PMID: 20691247 DOI: 10.1016/j.biopsycho.2010.07.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/16/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
Abstract
Variation in personality traits is 30-60% attributed to genetic influences. Attempts to unravel these genetic influences at the molecular level have, so far, been inconclusive. We performed the first genome-wide association study of Cloninger's temperament scales in a sample of 5117 individuals, in order to identify common genetic variants underlying variation in personality. Participants' scores on Harm Avoidance, Novelty Seeking, Reward Dependence, and Persistence were tested for association with 1,252,387 genetic markers. We also performed gene-based association tests and biological pathway analyses. No genetic variants that significantly contribute to personality variation were identified, while our sample provides over 90% power to detect variants that explain only 1% of the trait variance. This indicates that individual common genetic variants of this size or greater do not contribute to personality trait variation, which has important implications regarding the genetic architecture of personality and the evolutionary mechanisms by which heritable variation is maintained.
Collapse
Affiliation(s)
- Karin J H Verweij
- Genetic Epidemiology, Molecular Epidemiology, and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|