1
|
Kania A, Porco N, Caravaggio F. Measuring Alcohol-Induced Striatal Dopamine Release in Healthy Humans With [ 11C]-Raclopride: A Meta-Analysis. Synapse 2025; 79:e70007. [PMID: 39729041 DOI: 10.1002/syn.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [11C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [11C]-raclopride binding potential (BPND) in the ventral striatum (Cohen's d = -0.76), indicative of increased DA release, particularly at lower blood alcohol concentration (BAC) levels (0.08 gm%; Z = 2.34, p = 0.02). That oral alcohol may increase DA release in the ventral striatum at lower doses, and decrease DA release at higher doses, warrants further investigation but appears consistent with other known biphasic, hermetic dose-response effects of alcohol. Additionally, larger effect-sizes in the ventral striatum were observed among those studies which sampled more males than females (Z = -2.08, p = 0.04). While oral alcohol administration was associated with reduced [11C]-raclopride BPND in the caudate (Cohen's d = -0.39) and putamen (Cohen's d = -0.37), these findings in the dorsal striatum were more variable and less robust. Our analyses suggests that study design (i.e., counterbalanced versus fixed order) may moderate effect sizes observed in the putamen across studies (Z = -2.27, p = 0.02). By identifying gaps in the current literature and proposing directions for future research, this study hopes to inform the design of future PET studies aimed at quantifying alcohol-induced dopamine release in the striatum of humans.
Collapse
Affiliation(s)
- Amir Kania
- Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada
| | - Natasha Porco
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Yusupov N, Roeh S, Sotillos Elliott L, Chang S, Loganathan S, Urbina-Treviño L, Fröhlich AS, Sauer S, Ködel M, Matosin N, Czamara D, Deussing JM, Binder EB. DNA methylation patterns of FKBP5 regulatory regions in brain and blood of humanized mice and humans. Mol Psychiatry 2024; 29:1510-1520. [PMID: 38317011 PMCID: PMC11189813 DOI: 10.1038/s41380-024-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Collapse
Affiliation(s)
- Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Sotillos Elliott
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Srivaishnavi Loganathan
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Anna S Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
3
|
Söderpalm B, Ericson M. Alcohol and the dopamine system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:21-73. [PMID: 38555117 DOI: 10.1016/bs.irn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Zhang Y, Randesi M, Blendy JA, Kreek MJ, Butelman ER. Impact of OPRM1 (Mu-opioid Receptor Gene) A112G Polymorphism on Dual Oxycodone and Cocaine Self-administration Behavior in a Mouse Model. Neuroscience 2024; 539:76-85. [PMID: 38211933 DOI: 10.1016/j.neuroscience.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The use of mu-opioid receptor (MOP-r) agonists such as oxycodone together with cocaine is prevalent, and deaths attributed to using these combinations have increased. RATIONALE It is unknown if functional single nucleotide polymorphisms (SNPs), such as the OPRM1 (MOP-r gene) SNP A118G, can predispose individuals to more dual opioid and psychostimulant intake. The dual self-administration (SA) of MOP-r agonists and cocaine has not been thoroughly examined, especially with regard to neurobiological changes. OBJECTIVES We examined oxycodone SA and subsequent dual oxycodone and cocaine SA in male and female A112G (A/G and G/G, heterozygote and homozygote, respectively) mice, models of human A118G carriers, versus wild-type (A/A) mice. METHODS Adult male and female A/G, G/G and A/A mice self-administered oxycodone (0.25 mg/kg/infusion, 4hr/session, FR 1.) for 10 consecutive days (sessions 1-10). Mice then self-administered cocaine (2 hr) following oxycodone SA (4 hr, as above) in each session for a further 10 consecutive days (sessions 11-20). Message RNA transcripts of 24 reward-related genes were examined in the dorsal striatum. RESULTS Male and female A/G and G/G mice had greater oxycodone SA than A/A mice did in the initial 10 days and in the last 10 sessions. Further, A/G and G/G mice showed greater cocaine intake than A/A mice. Dorsal striatal mRNA levels of Pdyn, Fkbp5, Oprk1, and Oprm1 were altered following oxycodone and cocaine SA. CONCLUSIONS These studies demonstrated that this functional genetic variation in Oprm1 affected dual opioid and cocaine SA and altered specific gene expression in the striatum.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States.
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States; Neuropsychoimaging of Addictions and Related Conditions Research Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
5
|
Khikhmetova K, Semenova Y, Bjørklund G. The Roles of Endogenous D2R Dopamine and μ-opioid Receptors of the Brain in Alcohol use Disorder. Curr Med Chem 2024; 31:6393-6406. [PMID: 37921171 DOI: 10.2174/0109298673248999231013043249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide. It is characterized by a strong physiological and psychological craving to consume large amounts of alcohol despite adverse consequences. Alcohol use disorder carries a large health and economic burden on society. Despite its prevalence, AUD is still severely undertreated. The precise molecular mechanisms of how alcohol addiction forms are yet unknown. However, previous studies on animal models show that along with the μ-opioid receptors, the D2R dopamine receptors may also be involved in alcohol craving and reward pathways. Currently, there is a limited number of treatment strategies for alcohol use disorder, which include several medications and therapy. By understanding the limitations of current treatment options and exploring new potential targets, it could be possible to find more effective ways of treating AUD in the future.
Collapse
Affiliation(s)
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
6
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Suresh N, Kantipudi SJ, Ramu D, Muniratnam SK, Venkatesan V. Association between opioid and dopamine receptor gene polymorphisms OPRM1 rs1799971, DAT VNTR 9-10 repeat allele, DRD1 rs4532 and DRD2 rs1799732 and alcohol dependence: an ethnicity oriented meta-analysis. Pharmacogenet Genomics 2023; 33:139-152. [PMID: 37466123 DOI: 10.1097/fpc.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE We carried out a meta-analysis of four opioid and dopamine candidate gene polymorphisms having conflicting results in prior literature, namely OPRM1 rs1799971, DAT VNTR 9-10 repeat, DRD1 rs4532 and DRD2 rs1799732, to clarify their association with alcohol dependence and further stratified results by ethnicity to analyze possible ethnicity-mediated effects. METHODS Inclusion criteria: case-control studies assessing the association between OPRM1 rs1799971, DAT VNTR 9/10 repeat allele, DRD1 rs4532 and DRD2 rs1799732 with alcohol dependence, with sufficient data available to calculate the odds ratio (OR) within a 95% confidence interval. Exclusion criteria: studies of quantitative measures of alcohol consumption, response to medications or analyses of other markers in the candidate genes, studies without controls, animal studies and lack of genotyping data. Information sources were PubMed, Google Scholar and ScienceDirect databases, all of which were searched for articles published till 2021. Heterogeneity between studies and publication bias, subgroup analyses and sensitivity analyses were carried out. RESULTS A total of 41 published studies were included in the current meta-analysis. For the OPRM1 gene, there was a statistically significant association in the Asian population with a pooled OR of 1.707 (95% CI, 1.32-2.20 P < 0.0001) and 1.618 (95% CI, 1.16-2.26 P = 0.005) in the additive and dominant genetic models. For DAT VNTR 9/10 repeat, a statistically significant association of the risk vs. common allele was observed in AD with a pooled OR of 1.104 (95% CI, 1.00-1.21 P = 0.046) in the allele model and the additive genetic model in the Caucasian population with pooled OR of 1.152 (95% CI, 1.01-1.31 P = 0.034). CONCLUSION Results indicate that some of the effects may be ethnicity-specific. OTHER The meta-analysis has been registered in the CRD PROSPERO (CRD42023411576).
Collapse
Affiliation(s)
| | | | - Deepika Ramu
- Department of Human Genetics SRIHER, Porur, Chennai
| | | | | |
Collapse
|
8
|
Heilig M. Stress-related neuropeptide systems as targets for treatment of alcohol addiction: A clinical perspective. J Intern Med 2023; 293:559-573. [PMID: 37052145 DOI: 10.1111/joim.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Alcohol use is a major cause of disability and death globally. These negative consequences disproportionately affect people who develop alcohol addiction, a chronic relapsing condition characterized by increased motivation to use alcohol, choice of alcohol over healthy, natural rewards, and continued use despite negative consequences. Available pharmacotherapies for alcohol addiction are few, have effect sizes in need of improvement, and remain infrequently prescribed. Research aimed at developing novel therapeutics has in large part focused on attenuating pleasurable or "rewarding" properties of alcohol, but this targets processes that primarily play a role as initiation factors. As clinical alcohol addiction develops, long-term changes in brain function result in a shift of affective homeostasis, and rewarding alcohol effects become progressively reduced. Instead, increased stress sensitivity and negative affective states emerge in the absence of alcohol and create powerful incentives for relapse and continued use through negative reinforcement, or "relief." Based on research in animal models, several neuropeptide systems have been proposed to play an important role in this shift, suggesting that these systems could be targeted by novel medications. Two mechanisms in this category, antagonism at corticotropin-releasing factor type 1, and neurokinin 1/substance P receptors, have been subject to initial evaluation in humans. A third, kappa-opioid receptor antagonism, has been evaluated in nicotine addiction and could soon be tested for alcohol. This paper discusses findings with these mechanisms to date, and their prospects as future targets for novel medications.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
9
|
Spreer M, Grählert X, Klut IM, Al Hamdan F, Sommer WH, Plawecki MH, O'Connor S, Böttcher M, Sauer C, Smolka MN, Zimmermann US. Using naltrexone to validate a human laboratory test system to screen new medications for alcoholism (TESMA)- a randomized clinical trial. Transl Psychiatry 2023; 13:113. [PMID: 37019884 PMCID: PMC10076427 DOI: 10.1038/s41398-023-02404-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
This registered clinical trial sought to validate a laboratory test system devised to screen medications for alcoholism treatment (TESMA) under different contingencies of alcohol reinforcement. Forty-six nondependent, but at least medium-risk drinkers were given the opportunity to earn intravenous infusions of ethanol, or saline, as rewards for work in a progressive-ratio paradigm. Work demand pattern and alcohol exposure dynamics were devised to achieve a gradual shift from low-demand work for alcohol (WFA) permitting quickly increasing breath alcohol concentrations (BrAC) to high-demand WFA, which could only decelerate an inevitable decrease of the previously earned BrAC. Thereby, the reward contingency changed, modeling different drinking motivations. The experiment was repeated after at least 7 days of randomized, double-blinded treatment with naltrexone, escalated to 50 mg/d, or placebo. Subjects treated with naltrexone reduced their cumulative WFA (cWFA) slightly more than participants receiving placebo. This difference was not statistically significant in the preplanned analysis of the entire 150 min of self-administration, i.e., our primary endpoint (p = 0.471, Cohen's d = 0.215). Naltrexone serum levels correlated with change in cWFA (r = -0.53; p = 0.014). Separate exploratory analyses revealed that naltrexone significantly reduced WFA during the first, but not the second half of the experiment (Cohen's d = 0.643 and 0.14, respectively). Phase-dependent associations of WFA with changes in subjective stimulation, wellbeing and desire for alcohol suggested that the predominant reinforcement of WFA was positive during the first phase only, and might have been negative during the second. We conclude that the TESMA is a safe and practical method. It bears the potential to quickly and efficiently screen new drugs for their efficacy to attenuate positively reinforced alcohol consumption. It possibly also provides a condition of negative reinforcement, and for the first time provides experimental evidence suggesting that naltrexone's effect might depend on reward contingency.
Collapse
Affiliation(s)
- Maik Spreer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany.
| | - Xina Grählert
- Coordination Centre for Clinical Trials, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ina-Maria Klut
- Hospital-Pharmacy, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Feras Al Hamdan
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Bethanian Hospital for Psychiatry, Psychosomatics and Psychotherapy Greifswald, Greifswald, Germany
| | - Martin H Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sean O'Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Böttcher
- Department of Toxicology, MVZ Medizinische Labore Dessau Kassel GmbH, Dessau-Rosslau, Germany
| | - Cathrin Sauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Ulrich S Zimmermann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
- Department of Addiction Medicine and Psychotherapy, kbo Isar-Amper-Klinikum Region München, Munich, Germany
| |
Collapse
|
10
|
Cao DN, Li F, Wu N, Li J. Insights into the mechanisms underlying opioid use disorder and potential treatment strategies. Br J Pharmacol 2023; 180:862-878. [PMID: 34128238 DOI: 10.1111/bph.15592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Opioid use disorder is a worldwide societal problem and public health burden. Strategies for treating opioid use disorder can be divided into those that target the opioid receptor system and those that target non-opioid receptor systems, including the dopamine and glutamate receptor systems. Currently, the clinical drugs used to treat opioid use disorder include the opioid receptor agonists methadone and buprenorphine, which are limited by their abuse liability, and the opioid receptor antagonist naltrexone, which is limited by poor compliance. Therefore, the development of effective medications with lower abuse liability and better potential for compliance is urgently needed. Based on recent advances in the understanding of the neurobiological mechanisms underlying opioid use disorder, potential treatment strategies and targets have emerged. This review focuses on the progress made in identifying potential targets and developing medications to treat opioid use disorder, including progress made by our laboratory, and provides insights for future medication development. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
11
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
12
|
Beck A, Ebrahimi C, Rosenthal A, Charlet K, Heinz A. The Dopamine System in Mediating Alcohol Effects in Humans. Curr Top Behav Neurosci 2023. [PMID: 36705911 DOI: 10.1007/7854_2022_415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-imaging studies show that the development and maintenance of alcohol use disorder (AUD) is determined by a complex interaction of different neurotransmitter systems and multiple psychological factors. In this context, the dopaminergic reinforcement system appears to be of fundamental importance. We focus on the excitatory and depressant effects of acute versus chronic alcohol intake and its impact on dopaminergic neurotransmission. Furthermore, we describe alterations in dopaminergic neurotransmission as associated with symptoms of alcohol dependence. We specifically focus on neuroadaptations to chronic alcohol consumption and their effect on central processing of alcohol-associated and reward-related stimuli. Altered reward processing, complex conditioning processes, impaired reinforcement learning, and increased salience attribution to alcohol-associated stimuli enable alcohol cues to drive alcohol seeking and consumption. Finally, we will discuss how the neurobiological and neurochemical mechanisms of alcohol-associated alterations in reward processing and learning can interact with stress, cognition, and emotion processing.
Collapse
Affiliation(s)
- Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Katrin Charlet
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Bach P, de Timary P, Gründer G, Cumming P. Molecular Imaging Studies of Alcohol Use Disorder. Curr Top Behav Neurosci 2023. [PMID: 36639552 DOI: 10.1007/7854_2022_414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alcohol use disorder (AUD) is a serious public health problem in many countries, bringing a gamut of health risks and impairments to individuals and a great burden to society. Despite the prevalence of a disease model of AUD, the current pharmacopeia does not present reliable treatments for AUD; approved treatments are confined to a narrow spectrum of medications engaging inhibitory γ-aminobutyric acid (GABA) neurotransmission and possibly excitatory N-methyl-D-aspartate (NMDA) receptors, and opioid receptor antagonists. Molecular imaging with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can open a window into the living brain and has provided diverse insights into the pathology of AUD. In this narrative review, we summarize the state of molecular imaging findings on the pharmacological action of ethanol and the neuropathological changes associated with AUD. Laboratory and preclinical imaging results highlight the interactions between ethanol and GABA A-type receptors (GABAAR), but the interpretation of such results is complicated by subtype specificity. An abundance of studies with the glucose metabolism tracer fluorodeoxyglucose (FDG) concur in showing cerebral hypometabolism after ethanol challenge, but there is relatively little data on long-term changes in AUD. Alcohol toxicity evokes neuroinflammation, which can be tracked using PET with ligands for the microglial marker translocator protein (TSPO). Several PET studies show reversible increases in TSPO binding in AUD individuals, and preclinical results suggest that opioid-antagonists can rescue from these inflammatory responses. There are numerous PET/SPECT studies showing changes in dopaminergic markers, generally consistent with an impairment in dopamine synthesis and release among AUD patients, as seen in a number of other addictions; this may reflect the composite of an underlying deficiency in reward mechanisms that predisposes to AUD, in conjunction with acquired alterations in dopamine signaling. There is little evidence for altered serotonin markers in AUD, but studies with opioid receptor ligands suggest a specific up-regulation of the μ-opioid receptor subtype. Considerable heterogeneity in drinking patterns, gender differences, and the variable contributions of genetics and pre-existing vulnerability traits present great challenges for charting the landscape of molecular imaging in AUD.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc and Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerhard Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, Samara, Russia
| |
Collapse
|
14
|
MacKillop J, Agabio R, Feldstein Ewing SW, Heilig M, Kelly JF, Leggio L, Lingford-Hughes A, Palmer AA, Parry CD, Ray L, Rehm J. Hazardous drinking and alcohol use disorders. Nat Rev Dis Primers 2022; 8:80. [PMID: 36550121 PMCID: PMC10284465 DOI: 10.1038/s41572-022-00406-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Alcohol is one of the most widely consumed psychoactive drugs globally. Hazardous drinking, defined by quantity and frequency of consumption, is associated with acute and chronic morbidity. Alcohol use disorders (AUDs) are psychiatric syndromes characterized by impaired control over drinking and other symptoms. Contemporary aetiological perspectives on AUDs apply a biopsychosocial framework that emphasizes the interplay of genetics, neurobiology, psychology, and an individual's social and societal context. There is strong evidence that AUDs are genetically influenced, but with a complex polygenic architecture. Likewise, there is robust evidence for environmental influences, such as adverse childhood exposures and maladaptive developmental trajectories. Well-established biological and psychological determinants of AUDs include neuroadaptive changes following persistent use, differences in brain structure and function, and motivational determinants including overvaluation of alcohol reinforcement, acute effects of environmental triggers and stress, elevations in multiple facets of impulsivity, and lack of alternative reinforcers. Social factors include bidirectional roles of social networks and sociocultural influences, such as public health control strategies and social determinants of health. An array of evidence-based approaches for reducing alcohol harms are available, including screening, pharmacotherapies, psychological interventions and policy strategies, but are substantially underused. Priorities for the field include translating advances in basic biobehavioural research into novel clinical applications and, in turn, promoting widespread implementation of evidence-based clinical approaches in practice and health-care systems.
Collapse
Affiliation(s)
- James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Homewood Research Institute, Guelph, ON, Canada.
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council, Cagliari, Italy
| | - Sarah W Feldstein Ewing
- Department of Psychology, University of Rhode Island, Kingston, RI, USA
- Department of Psychology and Behavioural Sciences, Centre for Alcohol and Drug Research, Aarhus University, Aarhus, Denmark
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - John F Kelly
- Recovery Research Institute and Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Anne Lingford-Hughes
- Division of Psychiatry, Imperial College London, London, UK
- Central North West London NHS Foundation Trust, London, UK
| | - Abraham A Palmer
- Department of Psychiatry & Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Charles D Parry
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Lara Ray
- Departments of Psychology and Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jürgen Rehm
- Institute for Mental Health Policy Research, Campbell Family Mental Health Research Institute, PAHO/WHO Collaborating Centre, Centre for Addiction and Mental Health, Toronto, Canada
- Dalla Lana School of Public Health; Institute of Health Policy, Management and Evaluation; & Department of Psychiatry, University of Toronto (UofT), Toronto, Canada
- WHO European Region Collaborating Centre at Public Health Institute of Catalonia, Barcelona, Spain
- Technische Universität Dresden, Klinische Psychologie & Psychotherapie, Dresden, Germany
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Zentrum für Interdisziplinäre Suchtforschung der Universität Hamburg (ZIS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Parker CC, Philip VM, Gatti DM, Kasparek S, Kreuzman AM, Kuffler L, Mansky B, Masneuf S, Sharif K, Sluys E, Taterra D, Taylor WM, Thomas M, Polesskaya O, Palmer AA, Holmes A, Chesler EJ. Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcohol Clin Exp Res 2022; 46:941-960. [PMID: 35383961 DOI: 10.1111/acer.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Daniel M Gatti
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Steven Kasparek
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Andrew M Kreuzman
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lauren Kuffler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Benjamin Mansky
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Kayvon Sharif
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Erica Sluys
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Dominik Taterra
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Walter M Taylor
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
16
|
Liu Y, Zhang H. RNA m6A Modification Changes in Postmortem Nucleus Accumbens of Subjects with Alcohol Use Disorder: A Pilot Study. Genes (Basel) 2022; 13:958. [PMID: 35741720 PMCID: PMC9222907 DOI: 10.3390/genes13060958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is a key brain structure mediating the rewarding effect of alcohol and drug abuse. Chronic alcohol consumption may alter RNA methylome (or epitranscriptome) in the NAc, leading to altered gene expression and thus behavioral neuroadaptation to alcohol. METHODS This pilot study profiled the epitranscriptomes of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in postmortem NAc of three male Caucasian subjects with alcohol use disorder (AUD) and three matched male Caucasian control subjects using Arraystar's m6A-mRNA&lncRNA Epitranscriptomic Microarray assay. Differentially methylated (DM) RNAs and the function of DM RNAs were analyzed by biostatistics and bioinformatics programs. RESULTS 26 mRNAs were hypermethylated and three mRNAs were hypomethylated in the NAc of AUD subjects (≥2-fold changes and p ≤ 0.05). Most of these 29 DM mRNAs are involved in immune-related pathways (e.g., IL-17 signaling). Moreover, four lncRNAs were hypermethylated and one lncRNA was hypomethylated in the NAc of AUD subjects (≥2-fold changes and p ≤ 0.05). Additionally, three miRNAs were hypermethylated in the NAc of AUD subjects (≥2-fold changes and p ≤ 0.05). CONCLUSIONS This study revealed RNA methylomic changes in the NAc of AUD subjects, suggesting that chronic alcohol consumption may lead to AUD through epitranscriptomic RNA modifications. Our findings need to be replicated in a larger sample.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
17
|
Yang W, Singla R, Maheshwari O, Fontaine CJ, Gil-Mohapel J. Alcohol Use Disorder: Neurobiology and Therapeutics. Biomedicines 2022; 10:1192. [PMID: 35625928 PMCID: PMC9139063 DOI: 10.3390/biomedicines10051192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol use disorder (AUD) encompasses the dysregulation of multiple brain circuits involved in executive function leading to excessive consumption of alcohol, despite negative health and social consequences and feelings of withdrawal when access to alcohol is prevented. Ethanol exerts its toxicity through changes to multiple neurotransmitter systems, including serotonin, dopamine, gamma-aminobutyric acid, glutamate, acetylcholine, and opioid systems. These neurotransmitter imbalances result in dysregulation of brain circuits responsible for reward, motivation, decision making, affect, and the stress response. Despite serious health and psychosocial consequences, this disorder still remains one of the leading causes of death globally. Treatment options include both psychological and pharmacological interventions, which are aimed at reducing alcohol consumption and/or promoting abstinence while also addressing dysfunctional behaviours and impaired functioning. However, stigma and social barriers to accessing care continue to impact many individuals. AUD treatment should focus not only on restoring the physiological and neurological impairment directly caused by alcohol toxicity but also on addressing psychosocial factors associated with AUD that often prevent access to treatment. This review summarizes the impact of alcohol toxicity on brain neurocircuitry in the context of AUD and discusses pharmacological and non-pharmacological therapies currently available to treat this addiction disorder.
Collapse
Affiliation(s)
- Waisley Yang
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Rohit Singla
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Oshin Maheshwari
- Psychiatry Residency Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8W 3P5, Canada;
| | | | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
18
|
Exploring Pharmacological Functions of Alternatively Spliced Variants of the Mu Opioid Receptor Gene, Oprm1, via Gene-Targeted Animal Models. Int J Mol Sci 2022; 23:ijms23063010. [PMID: 35328429 PMCID: PMC8950057 DOI: 10.3390/ijms23063010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.
Collapse
|
19
|
Nieto SJ, Grodin EN, Ho D, Baskerville WA, Ray LA. Moderators of subjective response to alcohol in the human laboratory. Alcohol Clin Exp Res 2022; 46:468-476. [PMID: 35084054 PMCID: PMC9153269 DOI: 10.1111/acer.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Subjective response (SR) to alcohol represents a biobehavioral risk factor for heavy drinking and for developing alcohol use disorder (AUD). Identifying moderators of SR have been hindered by small sample sizes that are often used in alcohol administration studies. METHODS This study combined data from multiple alcohol administration trials to test whether sex, family history of alcohol problems, and impulsivity (via delay discounting) predict SR to alcohol, comprised of four domains: stimulation, sedation, negative affect, and craving. Non-treatment-seeking heavy drinkers (N = 250) completed a battery of self-report scales and behavioral measures of alcohol use and problems, mood, and impulsivity. All participants completed an intravenous alcohol administration session wherein SR domains were measured at baseline, 20, 40, and 60 mg%. RESULTS Analyses using multilevel modeling showed that male sex independently predicted higher alcohol-induced stimulation and alcohol craving, after controlling for other moderators. A family history of alcohol problems also independently predicted alcohol craving after controlling for other moderators. CONCLUSIONS Using a large sample and advanced data analytic methods, this study extends the literature on alcohol administration by identifying important moderators of SR in heavy drinkers: namely, male sex and family history of alcohol problems. These findings consolidate and extend a growing body of research aimed at differentiating individuals most likely to report the SR features that confer risk for AUD.
Collapse
Affiliation(s)
- Steven J. Nieto
- University of California Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Erica N. Grodin
- University of California Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Diana Ho
- University of California Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | | | - Lara A. Ray
- University of California Los Angeles, Department of Psychology, Los Angeles, CA, USA,University of California Los Angeles, Brain Research Institute, Los Angeles, CA, USA,University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA
| |
Collapse
|
20
|
Karlsson H, Persson E, Perini I, Yngve A, Heilig M, Tinghög G. Acute effects of alcohol on social and personal decision making. Neuropsychopharmacology 2022; 47:824-831. [PMID: 34750564 PMCID: PMC8573076 DOI: 10.1038/s41386-021-01218-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 11/09/2022]
Abstract
Social drinking is common, but it is unclear how moderate levels of alcohol influence decision making. Most prior studies have focused on adverse long-term effects on cognitive and executive function in people with alcohol use disorders (AUD). Some studies have investigated the acute effects of alcohol on decision making in healthy people, but have predominantly used small samples and focused on a narrow selection of tasks related to personal decision making, e.g., delay or probability discounting. Here, we conducted a large (n = 264), preregistered randomized placebo-controlled study (RCT) using a parallel group design, to systematically assess the acute effects of alcohol on measures of decision making in both personal and social domains. We found a robust effect of a 0.6 g/kg dose of alcohol on both moral judgment and altruistic behavior, but no effects on several measures of risk taking or waiting impulsivity. These findings suggest that alcohol at low to moderate doses selectively moderates decision making in the social domain, and promotes utilitarian decisions over those dictated by rule-based ethical principles (deontological). This is consistent with existing theory that emphasizes the dual roles of shortsighted information processing and salient social cues in shaping decisions made under the influence of alcohol. A better understanding of these effects is important to understand altered social functioning during alcohol intoxication.
Collapse
Affiliation(s)
- Hanna Karlsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Emil Persson
- Department of Management and Engineering, Division of Economics, Linköping University, 581 83, Linköping, Sweden
| | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Gustav Tinghög
- Department of Management and Engineering, Division of Economics, Linköping University, 581 83, Linköping, Sweden
- The National Center for Priority Setting in Health Care, Department of Medical and Health Sciences, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
21
|
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022; 209:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Excessive use of alcohol promotes the development of alcohol addiction, but the understanding of how alcohol-induced brain alterations lead to addiction remains limited. To further this understanding, we adopted an unbiased discovery strategy based on the principles of systems medicine. We used functional magnetic resonance imaging data from patients and animal models of alcohol addiction-like behaviors, and developed mathematical models of the 'relapse-prone' network states to identify brain sites and functional networks that can be selectively targeted by therapeutic interventions. Our systems level, non-local, and largely unbiased analyses converged on a few well-defined brain regions, with the insula emerging as one of the most consistent finding across studies. In proof-of-concept experiments we were able to demonstrate that it is possible to guide network dynamics towards increased resilience in animals but an initial translation into a clinical trial targeting the insula failed. Here, in a narrative review, we summarize the key experiments, methodological developments and knowledge gained from this completed round of a discovery cycle moving from identification of 'relapse-prone' network states in humans and animals to target validation and intervention trial. Future concerted efforts are necessary to gain a deeper understanding of insula function a in a state-dependent, circuit-specific and cell population perspective, and to develop the means for insula-directed interventions, before therapeutic targeting of this structure may become possible.
Collapse
Affiliation(s)
- Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Spain
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Torino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University and Dept. of Psychiatry, Linköping Univ. Hospital, S-581 85, Linköping, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
22
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
23
|
Graham DP, Harding MJ, Nielsen DA. Pharmacogenetics of Addiction Therapy. Methods Mol Biol 2022; 2547:437-490. [PMID: 36068473 DOI: 10.1007/978-1-0716-2573-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug addiction is a serious relapsing disease that has high costs to society and to the individual addicts. Treatment of these addictions is still in its nascency, with only a few examples of successful therapies. Therapeutic response depends upon genetic, biological, social, and environmental components. A role for genetic makeup in the response to treatment has been shown for several addiction pharmacotherapies with response to treatment based on individual genetic makeup. In this chapter, we will discuss the role of genetics in pharmacotherapies, specifically for cocaine, alcohol, and opioid dependences. The continued elucidation of the role of genetics should aid in the development of new treatments and increase the efficacy of existing treatments.
Collapse
Affiliation(s)
- David P Graham
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Harding
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David A Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Kawakami K, Miyasaka T, Nakamura Y, Metoki H, Miyata S, Sato M, Sora I, Yamauchi K, Kawakami K, Blendy JA, Kawano T, Shimokawa H, Takayanagi M, Ohno I, Takahashi T. The A118G single-nucleotide polymorphism in OPRM1 is a risk factor for asthma severity. Allergol Int 2022; 71:55-65. [PMID: 34688555 DOI: 10.1016/j.alit.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although population studies have implicated emotional burden in asthma severity, the underlying genetic risk factors are not completely understood. We aimed to evaluate the genetic influence of a functional single-nucleotide polymorphism (SNP) in the stress-related μ-opioid receptor gene (OPRM1; A118G SNP, rs1799971) on asthma severity. METHODS We initially assessed disease severity in asthmatic outpatients carrying A118G. Using an ovalbumin-induced experimental asthma rodent model harboring the functionally equivalent SNP, we investigated the mechanism by which this SNP influences the allergic immune response. RESULTS Among 292 outpatients, 168 underwent airway hyperresponsiveness (AHR) to methacholine testing. Compared with patients carrying the AA and AG genotypes, those carrying the GG genotype exhibited enhanced AHR. The stress levels were presumed to be moderate among patients and were comparable among genotypes. Compared with Oprm1 AA mice, GG mice demonstrated aggravated asthma-related features and increased pulmonary interleukin-4+CD4+ effector and effector memory T cells under everyday life stress conditions. Intraperitoneal naloxone methiodide injection reduced effector CD4+ T cell elevation associated with increased eosinophil numbers in bronchoalveolar lavage fluid of GG mice to the levels in AA mice, suggesting that elevated Th2 cell generation in the bronchial lymph node (BLN) of GG mice induces enhanced eosinophilic inflammation. CONCLUSIONS Without forced stress exposure, patients with asthma carrying the OPRM1 GG genotype exhibit enhanced AHR, attributable to enhanced Th2 cell differentiation in the regional lymph node. Further research is necessary to elucidate the role of the OPRM1 A118G genotype in the Th2 cell differentiation pathway in the BLN.
Collapse
Affiliation(s)
- Kaori Kawakami
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Yutaka Nakamura
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hirohito Metoki
- Division of Public Health, Hygiene and Epidemiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Satoshi Miyata
- Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Miki Sato
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohei Yamauchi
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
25
|
Meinhardt MW, Giannone F, Hirth N, Bartsch D, Spampinato SM, Kelsch W, Spanagel R, Sommer WH, Hansson AC. Disrupted circadian expression of beta-arrestin 2 affects reward-related µ-opioid receptor function in alcohol dependence. J Neurochem 2021; 160:454-468. [PMID: 34919270 DOI: 10.1111/jnc.15559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
There is increasing evidence for a daily rhythm of μ-opioid receptor (MOR) efficacy and the development of alcohol dependence. Previous studies show that beta-Arrestin 2 (bArr2) has an impact on alcohol intake, at least partially mediated via modulation of MOR signaling, which in turn mediates the alcohol rewarding effects. Considering the interplay of circadian rhythms on MOR and alcohol dependence, we aimed to investigate bArr2 in alcohol dependence at different time-points of the day/light cycle on the level of bArr2 mRNA (in situ hybridization), MOR availability (receptor autoradiography) and MOR signaling (Damgo-stimulated G-protein coupling) in the nucleus accumbens of alcohol-dependent and non-dependent Wistar rats. Using a microarray data set we found that bArr2, but not bArr1, shows a diurnal transcription pattern in the accumbens of naïve rats with higher expression levels during the active cycle. In three-week abstinent rats, bArr2 is upregulated in the accumbens at the beginning of the active cycle (ZT15), whereas no differences were found at the beginning of the inactive cycle (ZT3), compared to controls. This effect was accompanied with a specific downregulation of MOR binding in the active cycle. Additionally, we detect a higher receptor coupling during the inactive cycle compared to the active cycle in alcohol-dependent animals. Together, we report a daily rhythmicity for bArr2 expression linked to an inverse pattern of MOR, suggesting an involvement for bArr2 on circadian regulation of G-protein coupled receptors in alcohol dependence. The presented data may have implications for the development of novel bArr2-related treatment targets for alcoholism.
Collapse
Affiliation(s)
- Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany.,Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Nathalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| |
Collapse
|
26
|
Brown SDM. Advances in mouse genetics for the study of human disease. Hum Mol Genet 2021; 30:R274-R284. [PMID: 34089057 PMCID: PMC8490014 DOI: 10.1093/hmg/ddab153] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023] Open
Abstract
The mouse is the pre-eminent model organism for studies of mammalian gene function and has provided an extraordinarily rich range of insights into basic genetic mechanisms and biological systems. Over several decades, the characterization of mouse mutants has illuminated the relationship between gene and phenotype, providing transformational insights into the genetic bases of disease. However, if we are to deliver the promise of genomic and precision medicine, we must develop a comprehensive catalogue of mammalian gene function that uncovers the dark genome and elucidates pleiotropy. Advances in large-scale mouse mutagenesis programmes allied to high-throughput mouse phenomics are now addressing this challenge and systematically revealing novel gene function and multi-morbidities. Alongside the development of these pan-genomic mutational resources, mouse genetics is employing a range of diversity resources to delineate gene-gene and gene-environment interactions and to explore genetic context. Critically, mouse genetics is a powerful tool for assessing the functional impact of human genetic variation and determining the causal relationship between variant and disease. Together these approaches provide unique opportunities to dissect in vivo mechanisms and systems to understand pathophysiology and disease. Moreover, the provision and utility of mouse models of disease has flourished and engages cumulatively at numerous points across the translational spectrum from basic mechanistic studies to pre-clinical studies, target discovery and therapeutic development.
Collapse
|
27
|
Danielsson K, Stomberg R, Adermark L, Ericson M, Söderpalm B. Differential dopamine release by psychosis-generating and non-psychosis-generating addictive substances in the nucleus accumbens and dorsomedial striatum. Transl Psychiatry 2021; 11:472. [PMID: 34518523 PMCID: PMC8438030 DOI: 10.1038/s41398-021-01589-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is associated with three main categories of symptoms; positive, negative and cognitive. Of these, only the positive symptoms respond well to treatment with antipsychotics. Due to the lack of effect of antipsychotics on negative symptoms, it has been suggested that while the positive symptoms are related to a hyperdopaminergic state in associative striatum, the negative symptoms may be a result of a reduced dopamine (DA) activity in the nucleus accumbens (nAc). Drug abuse is common in schizophrenia, supposedly alleviating negative symptomatology. Some, but not all, drugs aggravate psychosis, tentatively due to differential effects on DA activity in striatal regions. Here this hypothesis was tested in rats by using a double-probe microdialysis technique to simultaneously assess DA release in the nAc and associative striatum (dorsomedial striatum; DMS) following administration of the psychosis-generating substances amphetamine (0.5 mg/kg), cocaine (15 mg/kg) and Δ9-tetrahydrocannabinol (THC, 3 mg/kg), and the generally non-psychosis-generating substances ethanol (2.5 g/kg), nicotine (0.36 mg/kg) and morphine (5 mg/kg). The data show that amphetamine and cocaine produce identical DA elevations both in the nAc and DMS, whereas nicotine increases DA in nAc only. Ethanol and morphine both increased DMS DA, but weaker and in a qualitatively different way than in nAc, suggesting that the manner in which DA is increased might be important to the triggering of psychosis. THC elevated DA in neither region, indicating that the pro-psychotic effects of THC are not related to DA release. We conclude that psychosis-generating substances affect striatal DA release differently than non-psychosis-generating substances.
Collapse
Affiliation(s)
- Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Rosita Stomberg
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
28
|
Bach P, Weil G, Pompili E, Hoffmann S, Hermann D, Vollstädt-Klein S, Kiefer F, Mann K, Sommer WH. FMRI-based prediction of naltrexone response in alcohol use disorder: a replication study. Eur Arch Psychiatry Clin Neurosci 2021; 271:915-927. [PMID: 33884495 PMCID: PMC8236024 DOI: 10.1007/s00406-021-01259-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
Pharmacological treatment in alcohol use disorder suffers from modest effect sizes. Efforts have been undertaken to identify patient characteristics that help to select individuals that benefit from pharmacological treatment. Previous studies indicated that neural alcohol cue-reactivity (CR) might provide a marker that identifies patients, which benefit from naltrexone treatment.We investigated the reproducibility of the association between ventral striatum (VS) activation and naltrexone (NTX) treatment response by analyzing data from a recent longitudinal clinical trial in N = 44 abstinent treatment-seeking alcohol-dependent patients. A follow-up was conducted over 3 months. We computed the percentage of significant voxels in VS and tested main effects and interactions with NTX treatment on relapse risk using Cox Regression models.We found a significant interaction effect between pre-treatment cue reactivity in the VS and NTX treatment on time to first heavy relapse (Hazard Ratio = 7.406, 95% CI 1.17-46.56, p = 0.033), such that the patient group with high VS activation (defined by a mean split) showed a significant medication effect (Hazard Ratio = 0.140, 95% CI 0.02-0.75, p = 0.022) with a number needed to treat of 3.4 [95% CI 2.413.5], while there was no significant effect in the group with low VS activation (Hazard Ratio = 0.726, p = 0.454).Thus, using an independent sample we replicated the previously described positive association between VS activation and NTX efficacy. Although our results should be considered cautiously in light of the small sample size, our results support the potential of neural alcohol CR as a tool for precision medicine approaches in alcohol dependence.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany.
- Feuerlein Center On Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany.
| | - Georg Weil
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
| | - Enrico Pompili
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
- Feuerlein Center On Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
- Feuerlein Center On Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
- Feuerlein Center On Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Square J5, 68159, Mannheim, Germany
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Bethanien Hospital for Psychiatry, Greifswald, Germany
| |
Collapse
|
29
|
Nosova O, Bazov I, Karpyak V, Hallberg M, Bakalkin G. Epigenetic and Transcriptional Control of the Opioid Prodynorphine Gene: In-Depth Analysis in the Human Brain. Molecules 2021; 26:molecules26113458. [PMID: 34200173 PMCID: PMC8201134 DOI: 10.3390/molecules26113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.
Collapse
Affiliation(s)
- Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | | | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| |
Collapse
|
30
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
31
|
Morphine produces potent antinociception, sedation, and hypothermia in humanized mice expressing human mu-opioid receptor splice variants. Pain 2021; 161:1177-1190. [PMID: 32040076 DOI: 10.1097/j.pain.0000000000001823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Morphine is a strong painkiller acting through mu-opioid receptor (MOR). Full-length 7-transmembrane (TM) variants of MOR share similar amino acid sequences of TM domains in rodents and humans; however, interspecies differences in N- and C-terminal amino acid sequences of MOR splice variants dramatically affect the downstream signaling. Thus, it is essential to develop a mouse model that expresses human MOR splice variants for opioid pharmacological studies. We generated 2 lines of fully humanized MOR mice (hMOR; mMOR mice), line #1 and #2. The novel murine model having human OPRM1 genes and human-specific variants was examined by reverse-transcription polymerase chain reaction and the MinION nanopore sequencing. The differences in the regional distribution of MOR between wild-type and humanized MOR mice brains were detected by RNAscope and radioligand binding assay. hMOR; mMOR mice were characterized in vivo using a tail-flick, charcoal meal, open field, tail suspension, naloxone precipitation tests, and rectal temperature measurement. The data indicated that wild-type and humanized MOR mice exhibited different pharmacology of morphine, including antinociception, tolerance, sedation, and withdrawal syndromes, suggesting the presence of species difference between mouse and human MORs. Therefore, hMOR; mMOR mice could serve as a novel mouse model for pharmacogenetic studies of opioids.
Collapse
|
32
|
Sebold M, Garbusow M, Cerci D, Chen K, Sommer C, Huys QJM, Nebe S, Rapp M, Veer IM, Zimmermann US, Smolka MN, Walter H, Heinz A, Friedel E. Association of the OPRM1 A118G polymorphism and Pavlovian-to-instrumental transfer: Clinical relevance for alcohol dependence. J Psychopharmacol 2021; 35:566-578. [PMID: 33726538 PMCID: PMC8155738 DOI: 10.1177/0269881121991992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pavlovian-to-instrumental transfer (PIT) quantifies the extent to which a stimulus that has been associated with reward or punishment alters operant behaviour. In alcohol dependence (AD), the PIT effect serves as a paradigmatic model of cue-induced relapse. Preclinical studies have suggested a critical role of the opioid system in modulating Pavlovian-instrumental interactions. The A118G polymorphism of the OPRM1 gene affects opioid receptor availability and function. Furthermore, this polymorphism interacts with cue-induced approach behaviour and is a potential biomarker for pharmacological treatment response in AD. In this study, we tested whether the OPRM1 polymorphism is associated with the PIT effect and relapse in AD. METHODS Using a PIT task, we examined three independent samples: young healthy subjects (N = 161), detoxified alcohol-dependent patients (N = 186) and age-matched healthy controls (N = 105). We used data from a larger study designed to assess the role of learning mechanisms in the development and maintenance of AD. Subjects were genotyped for the A118G (rs1799971) polymorphism of the OPRM1 gene. Relapse was assessed after three months. RESULTS In all three samples, participants with the minor OPRM1 G-Allele (G+ carriers) showed increased expression of the PIT effect in the absence of learning differences. Relapse was not associated with the OPRM1 polymorphism. Instead, G+ carriers displaying increased PIT effects were particularly prone to relapse. CONCLUSION These results support a role for the opioid system in incentive salience motivation. Furthermore, they inform a mechanistic model of aberrant salience processing and are in line with the pharmacological potential of opioid receptor targets in the treatment of AD.
Collapse
Affiliation(s)
- Miriam Sebold
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
- Department for Social and Preventive
Medicine, University of Potsdam, Potsdam, Germany
| | - Maria Garbusow
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
| | - Deniz Cerci
- Klinik für Forensische Psychiatrie,
Universitätsmedizin Rostock, Rostock, Germany
| | - Ke Chen
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
| | | | - Quentin JM Huys
- Division of Psychiatry, University
College London, London, UK
- Max Planck UCL Centre for Computational
Psychiatry and Ageing Research, University College London, London, UK
| | - Stephan Nebe
- Department of Economics, University of
Zurich, Zurich, Switzerland
| | - Michael Rapp
- Department for Social and Preventive
Medicine, University of Potsdam, Potsdam, Germany
| | - Ilya M Veer
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
| | - Ulrich S Zimmermann
- Technical University of Dresden,
Dresden, Germany
- Department of Addiction Medicine and
Psychotherapy, kbo Isar-Amper-Klinikum, Munich, Germany
| | | | - Henrik Walter
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
| | - Eva Friedel
- Department of Psychiatry and
Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
Berlin, Germany
| |
Collapse
|
33
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Demery-Poulos C, Chambers JM. Genetic variation in alcoholism and opioid addiction susceptibility and treatment: a pharmacogenomic approach. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Alcohol and opioid abuse have pervasive and detrimental consequences from the individual to societal level. The extent of genetic contribution to alcoholism has been studied for decades, yielding speculative and often inconsistent results since the previous discovery of two pharmacokinetic variants strongly protective against alcoholism. The neurobiology of addiction involves innumerate genes with combinatorial and epistatic interactions, creating a difficult landscape for concrete conclusions. In contrast, pharmacogenomic variation in the treatment of alcoholism yields more immediate clinical utility, while also emphasizing pathways crucial to the progression of addiction. An improved understanding of genetic predisposition to alcohol abuse has inherent significance for opioid addiction and treatment, as the two drugs induce the same reward pathway. This review outlines current knowledge, treatments, and research regarding genetic predisposition to alcoholism, focusing on pharmacodynamic variation within the dopaminergic system and shared implications for opioid abuse. Multifaceted and highly polygenic, the phenotype of addiction seems to grow more complex as new research extends the scope of its impact on the brain, body, and progeny.</p>
</abstract>
Collapse
|
35
|
Neural activation during anticipation of monetary gain or loss does not associate with positive subjective response to alcohol in binge drinkers. Drug Alcohol Depend 2021; 218:108432. [PMID: 33250380 PMCID: PMC7750248 DOI: 10.1016/j.drugalcdep.2020.108432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) remains an unresolved source of morbidity and mortality. Psychopharmacological challenge studies and neuroimaging experiments are two methods used to identify risk of problematic substance use. The present study combined these two approaches by examining associations between self-reported stimulation, sedation, liking or wanting more after a dose of alcohol and neural-based responses to anticipation of monetary gain and loss. METHODS Young adult binge drinkers (N = 56) aged 21-29, with no history of Substance Use Disorder completed five experimental sessions. These included four laboratory sessions in which they rated their subjective responses to alcohol (0.8 g/kg for men, 0.68 g/kg for women) or placebo, and a single functional magnetic resonance imaging session in which they completed a monetary incentive delay task. During the scan, we recorded neural signal related to anticipation of winning $5 or $1.50 compared to winning no money (WinMoney-WinZero), losing $5 or $1.50 compared to losing no money (LoseMoney-LoseZero), and winning $5 or $1.50 compared to losing $5 or $1.50 (WinMoney-LoseMoney), in reward related regions. RESULTS There were no significant associations between subjective ratings of "Feel Drug Effect", "Like Drug Effect", "Want More", stimulation or sedation following the acute alcohol challenge and neural activation in reward related regions during anticipation of monetary gain or loss. CONCLUSIONS These results suggest that sensitivity of neural reward circuits is not directly related to rewarding subjective experiences from alcohol. Taken together with previous studies, the present findings indicate that the association between the subjective effects of drugs and reward-related brain activity depends on the drugs, tasks or subject samples under study.
Collapse
|
36
|
Radoman M, Crane NA, Gorka SM, Weafer J, Langenecker SA, de Wit H, Phan KL. Striatal activation to monetary reward is associated with alcohol reward sensitivity. Neuropsychopharmacology 2021; 46:343-350. [PMID: 32505126 PMCID: PMC7852684 DOI: 10.1038/s41386-020-0728-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
One well-known phenotypic risk factor for the development of alcohol use disorder is sensitivity to the rewarding effects of alcohol. In the present study, we examined whether individuals who are sensitive to alcohol reward are also sensitive to nondrug rewards, thereby reflecting a broader individual difference risk factor. Specifically, we tested the hypothesis that subjective response to acute rewarding effects of alcohol would be related to neural activation during monetary reward receipt relative to loss (in the absence of alcohol). Community-recruited healthy young social drinkers (N = 58) completed four laboratory sessions in which they received alcohol (0.8 g/kg) and placebo in alternating order under double-blind conditions, providing self-report measures of subjective response to alcohol at regular intervals. At a separate visit 1-3 weeks later, they completed a reward-guessing game, the 'Doors' task, during fMRI in a drug-free state. Participants who reported greater motivation (i.e., wanting) to consume more alcohol after a single moderate dose of alcohol also exhibited greater neural activation in the bilateral ventral caudate and the nucleus accumbens during reward receipt relative to loss. Striatal activation was not related to other subjective ratings including alcohol-induced sedation, stimulation, or pleasure (i.e., feeling, liking). Our study is the first to show that measures of alcohol reward are related to neural indices of monetary reward in humans. These results support growing evidence that individual differences in responses to drug and nondrug reward are linked and together form a risk profile for drug use or abuse, particularly in young adults.
Collapse
Affiliation(s)
- Milena Radoman
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL, 60612, USA.
| | - Natania A. Crane
- grid.185648.60000 0001 2175 0319Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL 60612 USA
| | - Stephanie M. Gorka
- grid.261331.40000 0001 2285 7943Department of Psychiatry and Behavioral Health, Ohio State University, 1670 Upham Drive, Columbus, OH 43205 USA
| | - Jessica Weafer
- grid.266539.d0000 0004 1936 8438Department of Psychology, University of Kentucky, 171 Funkhouser Drive, Lexington, KY 40506 USA
| | - Scott A. Langenecker
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah, 50N Medical Drive, Salt Lake City, UT 84132 USA
| | - Harriet de Wit
- grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841S Maryland Avenue, Chicago, IL 60637 USA
| | - K. Luan Phan
- grid.261331.40000 0001 2285 7943Department of Psychiatry and Behavioral Health, Ohio State University, 1670 Upham Drive, Columbus, OH 43205 USA
| |
Collapse
|
37
|
Rusheen AE, Gee TA, Jang DP, Blaha CD, Bennet KE, Lee KH, Heien ML, Oh Y. Evaluation of electrochemical methods for tonic dopamine detection in vivo. Trends Analyt Chem 2020; 132:116049. [PMID: 33597790 PMCID: PMC7885180 DOI: 10.1016/j.trac.2020.116049] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysfunction in dopaminergic neuronal systems underlie a number of neurologic and psychiatric disorders such as Parkinson's disease, drug addiction, and schizophrenia. Dopamine systems communicate via two mechanisms, a fast "phasic" release (sub-second to second) that is related to salient stimuli and a slower "tonic" release (minutes to hours) that regulates receptor tone. Alterations in tonic levels are thought to be more critically important in enabling normal motor, cognitive, and motivational functions, and dysregulation in tonic dopamine levels are associated with neuropsychiatric disorders. Therefore, development of neurochemical recording techniques that enable rapid, selective, and quantitative measurements of changes in tonic extracellular levels are essential in determining the role of dopamine in both normal and disease states. Here, we review state-of-the-art advanced analytical techniques for in vivo detection of tonic levels, with special focus on electrochemical techniques for detection in humans.
Collapse
Affiliation(s)
- Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, United States
| | - Taylor A. Gee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Dong P. Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Michael L. Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| |
Collapse
|
38
|
Parker CC, Lusk R, Saba LM. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci 2020; 10:E725. [PMID: 33066036 PMCID: PMC7600833 DOI: 10.3390/brainsci10100725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.
Collapse
Affiliation(s)
- Clarissa C. Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Ryan Lusk
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
39
|
Vena A, Howe M, Fridberg D, Cao D, King AC. The Feasibility, Tolerability, and Safety of Administering a Very High Alcohol Dose to Drinkers with Alcohol Use Disorder. Alcohol Clin Exp Res 2020; 44:2588-2597. [PMID: 33038271 DOI: 10.1111/acer.14478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION There remains a paucity of research quantifying alcohol's effects in drinkers with alcohol use disorder (AUD), particularly responses to very high alcohol doses (≥0.8 g/kg). As drinkers with AUD frequently engage in very heavy drinking (8 to 10 drinks/occasion), doses of ≤0.8 g/kg may lack ecological validity. The present study examined the feasibility, tolerability, and safety of administering a very high alcohol dose (1.2 g/kg) to non-treatment-seeking AUD participants. METHODS Sixty-one young adult AUD drinkers enrolled in the Chicago Social Drinking Project and completed 3 laboratory sessions at which they consumed a beverage with 1.2, 0.8, and 0.0 g/kg alcohol. Physiological responses (vital signs, nausea and vomiting, breath alcohol concentrations [BrAC]) were monitored throughout the sessions. After each session, participants completed a next-day survey of substance use, engagement in risky behaviors, and related consequences. RESULTS Overall, the sample demonstrated good compliance with study procedures; 93% of participants adhered to presession alcohol abstinence requirements (indicated by BrAC < 0.003 g/dl), with no participants exhibiting serious alcohol withdrawal symptoms at arrival to study visits. The 1.2 g/kg alcohol dose achieved an expected mean peak BrAC of 0.13 g/dl at 60 minutes after drinking, which was well tolerated; the majority of the sample did not experience nausea (70%) or vomiting (93%), and dose effects on vital signs were not clinically significant. Finally, we demonstrated that the 1.2 g/kg alcohol dose is safe and not associated with postsession consequences, including reduced sleep time, atypical substance use, accidents or injuries, and severe hangovers. CONCLUSION Results support the feasibility, tolerability, and safety of administering a very high alcohol dose to young adult drinkers with AUD within the context of a well-validated laboratory alcohol challenge paradigm. Utilizing an alcohol dose more consistent with naturalistic drinking patterns may foster greater ecological validity of laboratory paradigms for persons with moderate to severe AUD.
Collapse
Affiliation(s)
- Ashley Vena
- From the, Department of Psychiatry and Behavioral Neuroscience, (AV, MH, DF, ACK), University of Chicago, Chicago, Illinois
| | - Meghan Howe
- From the, Department of Psychiatry and Behavioral Neuroscience, (AV, MH, DF, ACK), University of Chicago, Chicago, Illinois
| | - Daniel Fridberg
- From the, Department of Psychiatry and Behavioral Neuroscience, (AV, MH, DF, ACK), University of Chicago, Chicago, Illinois
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, (DC), University of Illinois at Chicago, Chicago, Illinois
| | - Andrea C King
- From the, Department of Psychiatry and Behavioral Neuroscience, (AV, MH, DF, ACK), University of Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Anton RF, Voronin KE, Book SW, Latham PK, Randall PK, Glen WB, Hoffman M, Schacht JP. Opioid and Dopamine Genes Interact to Predict Naltrexone Response in a Randomized Alcohol Use Disorder Clinical Trial. Alcohol Clin Exp Res 2020; 44:2084-2096. [PMID: 32772383 PMCID: PMC8080431 DOI: 10.1111/acer.14431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND While the opiate antagonist, naltrexone, is approved for treating alcohol use disorder (AUD), not everyone who receives the medication benefits from it. This study evaluated whether the OPRM1 SNP rs1799971 interacts with the dopamine transporter gene DAT1/SLC6A3 VNTR rs28363170 or the catechol-O-methyltransferase (COMT) gene SNP rs4680 in predicting naltrexone response. METHODS Individuals who met DSM-IV alcohol dependence were randomly assigned to naltrexone (50 mg/d) or placebo based on their OPRM1 genotype (75 G-allele carriers and 77 A-allele homozygotes) and also genotyped for DAT1 VNTR (9 vs. 10 repeats) or COMT SNP (val/val vs. met carriers). Heavy drinking days (%HDD) were evaluated over 16 weeks and at the end of treatment. Effect sizes (d) for naltrexone response were calculated based on genotypes. RESULTS Naltrexone, relative to placebo, significantly reduced %HDD among OPRM1 G carriers who also had DAT1 10/10 (p = 0.021, d = 0.72) or COMT val/val genotypes (p = 0.05, d = 0.80), and to a lesser degree in those OPRM1 A homozygotes who were also DAT1 9-repeat carriers (p = 0.09, d = 0.70) or COMT met carriers (p = 0.03, d = 0.63). All other genotype combinations showed no differential response to naltrexone. Diarrhea/abdominal pain was more prominent in OPRM1 A homozygotes who were also DAT 9 or COMT met carriers. CONCLUSIONS These results suggest that individuals with AUD with a more opioid-responsive genotype (OPRM1 G carriers) respond better to naltrexone if they have genotypes indicating normal/less dopamine tone (DAT1 10,10 or COMT val,val), while those with a less responsive opioid-responsive genotype (OPRM1 A homozygotes) respond better to naltrexone if they have genotypes indicating greater dopamine tone (DAT1 9-repeat or COMT met carriers). These results could lead to more personalized AUD treatments.
Collapse
Affiliation(s)
- Raymond F Anton
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Konstantin E Voronin
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sarah W Book
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Patricia K Latham
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Patrick K Randall
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Willam Bailey Glen
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michaela Hoffman
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joseph P Schacht
- From the, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
41
|
Scarnati MS, Boreland AJ, Joel M, Hart RP, Pang ZP. Differential sensitivity of human neurons carrying μ opioid receptor (MOR) N40D variants in response to ethanol. Alcohol 2020; 87:97-109. [PMID: 32561311 PMCID: PMC7958146 DOI: 10.1016/j.alcohol.2020.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
The acute and chronic effects of alcohol on the brain and behavior are linked to alterations in inhibitory synaptic transmission. Alcohol's most consistent effect at the synaptic level is probably a facilitation of γ-aminobutyric acid (GABA) release, as seen from several rodent studies. The impact of alcohol on GABAergic neurotransmission in human neurons is unknown, due to a lack of a suitable experimental model. Human neurons can also be used to model effects of genetic variants linked with alcohol use disorders (AUDs). The A118G single nucleotide polymorphism (SNP rs1799971) of the OPRM1 gene encoding the N40D (D40 minor allele) mu-opioid receptor (MOR) variant has been linked with individuals who have an AUD. However, while N40D is clearly associated with other drugs of abuse, involvement with AUDs is controversial. In this study, we employed Ascl1-and Dlx2-induced inhibitory neuronal cells (AD-iNs) generated from human iPS cell lines carrying N40D variants, and investigated the impact of ethanol acutely and chronically on GABAergic synaptic transmission. We found that N40 AD-iNs display a stronger facilitation (versus D40) of spontaneous and miniature inhibitory postsynaptic current frequency in response to acute ethanol application. Quantitative immunocytochemistry of Synapsin 1+ synaptic puncta revealed a similar synapse number between N40 and D40 iNs, suggesting an ethanol modulation of presynaptic GABA release without affecting synapse density. Interestingly, D40 iNs exposed to chronic intermittent ethanol application caused a significant increase in mIPSC frequency, with only a modest enhancement observed in N40 iNs. These data suggest that the MOR genotype may confer differential sensitivity to synaptic output, which depends on ethanol exposure time and concentration for AD-iNs and may help explain alcohol dependence in individuals who carry the MOR D40 SNPs. Furthermore, this study supports the use of human neuronal cells carrying risk-associated genetic variants linked to disease, as in vitro models to assay the synaptic actions of alcohol on human neuronal cells.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andrew J Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Marisa Joel
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
42
|
Vallöf D, Kalafateli AL, Jerlhag E. Long-term treatment with a glucagon-like peptide-1 receptor agonist reduces ethanol intake in male and female rats. Transl Psychiatry 2020; 10:238. [PMID: 32678077 PMCID: PMC7367312 DOI: 10.1038/s41398-020-00923-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 01/29/2023] Open
Abstract
Given the limited efficacy of available pharmacotherapies for treatment of alcohol use disorder (AUD), the need for new medications is substantial. Preclinical studies have shown that acute administration of glucagon-like peptide-1 receptor (GLP-1R) agonists inhibits various ethanol-related behaviours, indicating this system as a potential target for AUD. However, the effects of long-term systemic treatment of GLP-1R agonists on ethanol intake in male and female rodents are to date unknown. Therefore, we investigated the effects of 9 or 5 weeks of once weekly administration of dulaglutide, a long-acting GLP-1R agonist, on ethanol intake in male and female rats. The ethanol intake during treatment discontinuation was also monitored. In an initial attempt to identify preliminary underlying mechanisms, the effects of 9 weeks of once weekly dulaglutide treatment on monoaminergic signalling in reward-related areas were explored in both sexes. We found that 9 or 5 weeks of once weekly dulaglutide treatment reduced ethanol intake and preference in male and female rats. Following discontinuation of dulaglutide treatment, the decrease in ethanol consumption was prolonged in males, but not females. We demonstrated that 9 weeks of dulaglutide treatment differentially influenced monoaminergic signalling in reward-related areas of male and female rats. Collectively, these data imply that the GLP-1R attracts interest as a potential molecular target in the medical treatment of AUD in humans: more specifically, dulaglutide should be evaluated as a potential medication for treatment thereof.
Collapse
Affiliation(s)
- Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aimilia Lydia Kalafateli
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
43
|
Collins D, Zhang Y, Blendy J, Kreek MJ. Murine model of OPRM1 A118G alters oxycodone self-administration and locomotor activation, but not conditioned place preference. Neuropharmacology 2020; 167:107864. [DOI: 10.1016/j.neuropharm.2019.107864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/03/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022]
|
44
|
Voon V, Grodin E, Mandali A, Morris L, Doñamayor N, Weidacker K, Kwako L, Goldman D, Koob GF, Momenan R. Addictions NeuroImaging Assessment (ANIA): Towards an integrative framework for alcohol use disorder. Neurosci Biobehav Rev 2020; 113:492-506. [PMID: 32298710 DOI: 10.1016/j.neubiorev.2020.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
Alcohol misuse and addiction are major international public health issues. Addiction can be characterized as a disorder of aberrant neurocircuitry interacting with environmental, genetic and social factors. Neuroimaging in alcohol misuse can thus provide a critical window into underlying neural mechanisms, highlighting possible treatment targets and acting as clinical biomarkers for predicting risk and treatment outcomes. This neuroimaging review on alcohol misuse in humans follows the Addictions Neuroclinical Assessment (ANA) that proposes incorporating three functional neuroscience domains integral to the neurocircuitry of addiction: incentive salience and habits, negative emotional states, and executive function within the context of the addiction cycle. Here we review and integrate multiple imaging modalities focusing on underlying cognitive processes such as reward anticipation, negative emotionality, cue reactivity, impulsivity, compulsivity and executive function. We highlight limitations in the literature and propose a model forward in the use of neuroimaging as a tool to understanding underlying mechanisms and potential clinical applicability for phenotyping of heterogeneity and predicting risk and treatment outcomes.
Collapse
Affiliation(s)
- Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Behavioural and Clinical Neurosciences Institute, Cambridge, UK; Cambridgeshire and Peterborough NHS Trust, Cambridge, UK.
| | - Erica Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - Alekhya Mandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Laurel Morris
- Behavioural and Clinical Neurosciences Institute, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Nuria Doñamayor
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Laura Kwako
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| |
Collapse
|
45
|
Fede SJ, Abrahao KP, Cortes CR, Grodin EN, Schwandt ML, George DT, Diazgranados N, Ramchandani VA, Lovinger DM, Momenan R. Alcohol effects on globus pallidus connectivity: Role of impulsivity and binge drinking. PLoS One 2020; 15:e0224906. [PMID: 32214339 PMCID: PMC7098584 DOI: 10.1371/journal.pone.0224906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the harm caused by binge drinking, the neural mechanisms leading to risky and disinhibited intoxication-related behaviors are not well understood. Evidence suggests that the globus pallidus externus (GPe), a substructure within the basal ganglia, participates in inhibitory control processes, as examined in stop-signaling tasks. In fact, studies in rodents have revealed that alcohol can change GPe activity by decreasing neuronal firing rates, suggesting that the GPe may have a central role in explaining impulsive behaviors and failures of inhibition that occur during binge drinking. In this study, twenty-five healthy volunteers underwent intravenous alcohol infusion to achieve a blood alcohol level of 0.08 g/dl, which is equivalent to a binge drinking episode. A resting state functional magnetic resonance imaging scan was collected prior to the infusion and at binge-level exposure. Functional connectivity analysis was used to investigate the association between alcohol-induced changes in GPe connectivity, drinking behaviors, and impulsivity traits. We found that individuals with greater number of drinks or heavy drinking days in the recent past had greater alcohol-induced deficits in GPe connectivity, particularly to the striatum. Our data also indicated an association between impulsivity and alcohol-induced deficits in GPe-frontal/precentral connectivity. Moreover, alcohol induced changes in GPe-amygdala circuitry suggested greater vulnerabilities to stress-related drinking in some individuals. Taken together, these findings suggest that alcohol may interact with impulsive personality traits and drinking patterns to drive alterations in GPe circuitry associated with behavioral inhibition, possibly indicating a neural mechanism by which binge drinking could lead to impulsive behaviors.
Collapse
Affiliation(s)
- Samantha J. Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karina P. Abrahao
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erica N. Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David T. George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vijay A. Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Cyders MA, Plawecki MH, Corbin W, King A, McCarthy DM, Ramchandani VA, Weafer J, O'Connor SJ. To Infuse or Ingest in Human Laboratory Alcohol Research. Alcohol Clin Exp Res 2020; 44:764-776. [PMID: 32056250 DOI: 10.1111/acer.14305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Human alcohol laboratory studies use two routes of alcohol administration: ingestion and infusion. The goal of this paper was to compare and contrast these alcohol administration methods. The work summarized in this report was the basis of a 2019 Research Society on Alcoholism Roundtable, "To Ingest or Infuse: A Comparison of Oral and Intravenous Alcohol Administration Methods for Human Alcohol Laboratory Designs." We review the methodological approaches of each and highlight strengths and weaknesses pertaining to different research questions. We summarize methodological considerations to aid researchers in choosing the most appropriate method for their inquiry, considering exposure variability, alcohol expectancy effects, safety, bandwidth, technical skills, documentation of alcohol exposure, experimental variety, ecological validity, and cost. Ingestion of alcohol remains a common and often a preferable, methodological practice in alcohol research. Nonetheless, the main problem with ingestion is that even the most careful calculation of dose and control of dosing procedures yields substantial and uncontrollable variability in the participants' brain exposures to alcohol. Infusion methodologies provide precise exposure control but are technically complex and may be limited in ecological validity. We suggest that alcohol ingestion research may not be the same thing as alcohol exposure research; investigators should be aware of the advantages and disadvantages that the choice between ingestion and infusion of alcohol invokes.
Collapse
Affiliation(s)
- Melissa A Cyders
- Department of Psychology, Indiana University Purdue University - Indianapolis, Indianapolis, Indiana, United States
| | - Martin H Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - William Corbin
- Department of Psychology, Arizona State University, Tempe, Arizona, United States
| | - Andrea King
- Department of Psychiatry, University of Chicago School of Medicine, Chicago, Illinois, United States
| | - Denis M McCarthy
- Department of Psychological Sciences, Universtiy of Missouri - Columbia, Columbia, Missouri, United States
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States
| | - Jessica Weafer
- Department of Psychology, University of Kentucky, Lexington, Kentucky, United States
| | - Sean J O'Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
47
|
Sloan ME, Gowin JL, Janakiraman R, Ester CD, Stoddard J, Stangl B, Ramchandani VA. High-risk social drinkers and heavy drinkers display similar rates of alcohol consumption. Addict Biol 2020; 25:e12734. [PMID: 30821409 PMCID: PMC6717699 DOI: 10.1111/adb.12734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022]
Abstract
Alcohol consumption is often assessed over weeks to months, but few attempts have been made to characterize alcohol consumption rates at the level of an individual drinking session. Here, we aimed to compare the rate of alcohol consumption in social drinkers at high risk for alcohol use disorder (AUD) and heavy drinkers. One hundred and sixty social drinkers and 48 heavy drinkers participated in an alcohol self-administration study. Social drinkers were classified as low risk or high risk for AUD based on sex, impulsivity, and family history of alcoholism. Participants received a priming dose of intravenous alcohol to assess alcohol-induced craving and completed a 125-minute intravenous alcohol self-administration session to assess rate of achieving a binge-level exposure (blood alcohol concentration greater than or equal to 80 mg%). There were no differences between rates of binging in high-risk and heavy drinkers (hazard ratio = 0.87; 95% CI, 0.48-1.56). Heavy drinkers reported higher levels of craving than high-risk and low-risk drinkers at baseline. However, following a priming dose of alcohol, there were no longer differences in craving between high-risk and heavy drinkers. These results indicate that high-risk social drinkers demonstrate binging behavior that is similar to heavy drinkers, which may be driven by alcohol-induced craving. Prospective studies are needed to elucidate whether these patterns of craving and consumption in high-risk social drinkers are predictive of future AUD.
Collapse
Affiliation(s)
- Matthew E Sloan
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Joshua L Gowin
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Roshni Janakiraman
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Corbin D Ester
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Joel Stoddard
- Department of Psychiatry, School of Medicine, University of Colorado, Denver, Colorado, USA
| | - Bethany Stangl
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Hendershot CS, Dermody SS, Wardell JD, Zaso MJ, Kennedy JL, Stoner SA. OPRM1 Moderates Daily Associations of Naltrexone Adherence With Alcohol Consumption: Preliminary Evidence From a Mobile Health Trial. Alcohol Clin Exp Res 2020; 44:983-991. [PMID: 32020635 DOI: 10.1111/acer.14300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/25/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Initial evidence that OPRM1 genotype moderates the clinical response to naltrexone has not been replicated in prospective clinical trials. However, the use of traditional statistical analyses and clinical endpoints might limit sensitivity for studying pharmacogenetic associations, whereas the use of intensive daily assessments and person-centered analytic methods might increase sensitivity. This study leveraged person-centered analyses and daily measures of alcohol use, craving, and medication adherence to investigate OPRM1 as a moderator of changes in clinical outcomes during naltrexone treatment. METHODS Treatment-seeking participants with alcohol use disorder (n = 58; Mage = 38 years; 71% male) provided daily cell phone reports of craving and consumption while taking naltrexone as part of a mobile health trial. Daily medication adherence was measured remotely using electronic pill cap recordings. Multilevel modeling and multilevel structural equation modeling analyses evaluated the hypotheses that OPRM1 genotype would moderate prospective reductions in daily alcohol use and craving, and would also moderate within-person associations of daily adherence with same-day craving and consumption. RESULTS OPRM1 genotype moderated the association of daily adherence with reduced same-day consumption (p = 0.007) and craving (p = 0.06), with these associations being stronger for participants with the 118G variant. OPRM1 genotype did not moderate changes in craving and consumption over time. CONCLUSIONS These findings suggest that high-density assessments and person-centered analytic approaches, including modeling within-person variation in medication adherence, could be advantageous for pharmacogenetic studies.
Collapse
Affiliation(s)
- Christian S Hendershot
- From the, Campbell Family Mental Health Research Institute, (CSH, JDW, JLK), Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute for Mental Health Policy Research, (CSH, JDW), Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, (CSH, JDW, JLK), University of Toronto, Toronto, ON, Canada.,Department of Psychology, (CSH), University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, (CSH), University of Toronto, Toronto, ON, Canada
| | - Sarah S Dermody
- School of Psychological Science, (SSD), Oregon State University, Corvallis, Oregon
| | - Jeffrey D Wardell
- From the, Campbell Family Mental Health Research Institute, (CSH, JDW, JLK), Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute for Mental Health Policy Research, (CSH, JDW), Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, (CSH, JDW, JLK), University of Toronto, Toronto, ON, Canada
| | - Michelle J Zaso
- Clinical and Research Institute on Addictions, (MJZ), University at Buffalo, Buffalo, New York
| | - James L Kennedy
- From the, Campbell Family Mental Health Research Institute, (CSH, JDW, JLK), Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, (CSH, JDW, JLK), University of Toronto, Toronto, ON, Canada
| | - Susan A Stoner
- Alcohol and Drug Abuse Institute, (SAS), University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Bach P, Weil G, Pompili E, Hoffmann S, Hermann D, Vollstädt‐Klein S, Mann K, Perez‐Ramirez U, Moratal D, Canals S, Dursun SM, Greenshaw AJ, Kirsch P, Kiefer F, Sommer WH. Incubation of neural alcohol cue reactivity after withdrawal and its blockade by naltrexone. Addict Biol 2020; 25:e12717. [PMID: 30748046 DOI: 10.1111/adb.12717] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
During the first weeks of abstinence, alcohol craving in patients may increase or "incubate." We hypothesize that Naltrexone (NTX) blocks this incubation effect. Here, we compared NTX effects on neural alcohol cue reactivity (CR) over the first weeks of abstinence and on long-term clinical outcomes to standard treatment. Male alcohol-dependent patients (n = 55) and healthy controls (n = 35) were enrolled. Participants underwent baseline psychometric testing and functional magnetic resonance imaging (fMRI) assessment of mesolimbic alcohol CR. Patients participated in a standard treatment program with the option of adjuvant NTX. They received another scan after 2 weeks of treatment. We found higher CR in several brain regions in patients versus healthy controls. CR significantly increased over 2 weeks in the standard treatment group (n = 13) but not in the NTX group (n = 22). NTX significantly attenuated CR in the left putamen and reduced relapse risk to heavy drinking within 3 months of treatment. Additionally, increased CR in the left putamen and its course over time predicted both NTX response and relapse risk. Carrier status for the functional OPRM1 variant rs1799971:A > G was considered but had no effect on NTX efficacy. In conclusion, NTX was most effective in patients with high CR in the left putamen. While the results from our naturalistic study await further confirmation from prospective randomized trials, they support a potential role of neural CR as a biomarker in the development of precision medicine approaches with NTX.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS)University of Heidelberg Heidelberg Germany
| | - Georg Weil
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
| | - Enrico Pompili
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS)University of Heidelberg Heidelberg Germany
| | - Derik Hermann
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS)University of Heidelberg Heidelberg Germany
| | - Sabine Vollstädt‐Klein
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
| | - Ursula Perez‐Ramirez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València Valencia Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València Valencia Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández San Juan de Alicante Spain
| | | | | | - Peter Kirsch
- Department for Clinical PsychologyCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS)University of Heidelberg Heidelberg Germany
| | - Wolfgang H. Sommer
- Department of Addictive Behavior and Addiction MedicineCentral Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim Mannheim Germany
- Institute of Psychopharmacology, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty Mannheim Mannheim Germany
| |
Collapse
|
50
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|