1
|
Evidence of association of the DISC1 interactome gene set with schizophrenia from GWAS. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109729. [PMID: 31398428 DOI: 10.1016/j.pnpbp.2019.109729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
Abstract
DISC1 was discovered as a gene disrupted by a balanced translocation in a large pedigree that segregated with major mental disorders, including schizophrenia. Further attempts to find genetic association with schizophrenia were inconclusive. Most of the biology of DISC1 was inferred from the functionality of its protein partners. Recently, a gene set constituted by DISC1 and several of its partners has been associated with cognitive performance during development, a well-known schizophrenia endophenotype, by means of burden test of rare disruptive variants. Here, we performed a gene set analysis using common variants from the largest schizophrenia genome-wide association study of the Psychiatric Genomics Consortium to test if this gene set is associated with schizophrenia. The main test was based on the MAGMA software. Several additional tests were performed to analyze the robustness of the main findings. The DISC1 interactome gene set was associated with schizophrenia (P = .0056), confirmed by an additional method (INRICH). This association was robust to removal of the major histocompatibility complex region, different definitions of gene boundaries, or different statistical gene models. Conditional analysis revealed that the association was not solely explained by higher expression in brain. Three genes from the gene set, CLIC1, DST, and PDE4B, were associated with schizophrenia at the gene level. Consideration of other DISC1 interactome gene sets revealed the importance of gene set definition. Therefore, we present the first evidence from genome-wide association studies of the role of DISC1 and interacting partners in schizophrenia susceptibility, reconciling genetic and molecular biology data.
Collapse
|
2
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
3
|
Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front Mol Neurosci 2018; 11:255. [PMID: 30214393 PMCID: PMC6125665 DOI: 10.3389/fnmol.2018.00255] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Dopamine is a brain neurotransmitter involved in the pathology of schizophrenia. The dopamine hypothesis states that, in schizophrenia, dopaminergic signal transduction is hyperactive. The cAMP-response element binding protein (CREB) is an intracellular protein that regulates the expression of genes that are important in dopaminergic neurons. Dopamine affects the phosphorylation of CREB via G protein-coupled receptors. Neurotrophins, such as brain derived growth factor (BDNF), are critical regulators during neurodevelopment and synaptic plasticity. The CREB is one of the major regulators of neurotrophin responses since phosphorylated CREB binds to a specific sequence in the promoter of BDNF and regulates its transcription. Moreover, susceptibility genes associated with schizophrenia also target and stimulate the activity of CREB. Abnormalities of CREB expression is observed in the brain of individuals suffering from schizophrenia, and two variants (-933T to C and -413G to A) were found only in schizophrenic patients. The CREB was also involved in the therapy of animal models of schizophrenia. Collectively, these findings suggest a link between CREB and the pathophysiology of schizophrenia. This review provides an overview of CREB structure, expression, and biological functions in the brain and its interaction with dopamine signaling, neurotrophins, and susceptibility genes for schizophrenia. Animal models in which CREB function is modulated, by either overexpression of the protein or knocked down through gene deletion/mutation, implicating CREB in schizophrenia and antipsychotic drugs efficacy are also discussed. Targeting research and drug development on CREB could potentially accelerate the development of novel medications against schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Remi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| |
Collapse
|
4
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Suárez-Rama JJ, Arrojo M, Sobrino B, Amigo J, Brenlla J, Agra S, Paz E, Brión M, Carracedo Á, Páramo M, Costas J. Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility. J Psychiatr Res 2015; 66-67:38-44. [PMID: 25943950 DOI: 10.1016/j.jpsychires.2015.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/20/2022]
Abstract
A fraction of genetic risk to develop schizophrenia may be due to low-frequency variants. This multistep study attempted to find low-frequency variants of high effect at coding regions of eleven schizophrenia susceptibility genes supported by genome-wide association studies (GWAS) and nine genes for the DISC1 interactome, a susceptibility gene-set. During the discovery step, a total of 125 kb per sample were resequenced in 153 schizophrenia patients and 153 controls from Galicia (NW Spain), and the cumulative role of low-frequency variants at a gene or at the DISC1 gene-set were analyzed by burden and variance-based tests. Relevant results were meta-analyzed when appropriate data were available. In addition, case-only putative damaging variants were genotyped in a further 419 cases and 398 controls. The discovery step revealed a protective effect of rare missense variants at NRXN1, a result supported by meta-analysis (OR = 0.67, 95% CI: 0.47-0.94, P = 0.021, based on 3848 patients and 3896 controls from six studies). The follow-up step based on case-only putative damaging variants revealed a promising risk variant at AKAP9. This variant, K873R, reached nominal significance after inclusion of 240 additional Spanish controls from databases. The variant, located in an ADCY2 binding region, is absent from large public databases. Interestingly, GWAS revealed an association between common ADCY2 variants and bipolar disorder, a disorder with considerable genetic overlap with schizophrenia. These data suggest a role of rare missense variants at NRXN1 and AKAP9 in schizophrenia susceptibility, probably related to alteration of the excitatory/inhibitory synaptic balance, deserving further investigation.
Collapse
Affiliation(s)
- José Javier Suárez-Rama
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Beatriz Sobrino
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Jorge Amigo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Julio Brenlla
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Santiago Agra
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Eduardo Paz
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - María Brión
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Mario Páramo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain.
| |
Collapse
|
6
|
|
7
|
Kato T. Whole genome/exome sequencing in mood and psychotic disorders. Psychiatry Clin Neurosci 2015; 69:65-76. [PMID: 25319632 DOI: 10.1111/pcn.12247] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 02/06/2023]
Abstract
Recent developments in DNA sequencing technologies have allowed for genetic studies using whole genome or exome analysis, and these have been applied in the study of mood and psychotic disorders, including bipolar disorder, depression, schizophrenia, and schizoaffective disorder. In this review, the current situation, recent findings, methodological problems, and future directions of whole genome/exome analysis studies of these disorders are summarized. Whole genome/exome studies of bipolar disorder have included pedigree analysis and case-control studies, demonstrating the role of previously implicated pathways, such as calcium signaling, cyclic adenosine monophosphate response element binding protein (CREB) signaling, and potassium channels. Extensive analysis of trio families and case-control studies showed that de novo mutations play a role in the genetic architecture of schizophrenia and indicated that mutations in several molecular pathways, including chromatin regulation, activity-regulated cytoskeleton, post-synaptic density, N-methyl-D-aspartate receptor, and targets of fragile X mental retardation protein, are associated with this disorder. Depression is a heterogeneous group of diseases and studies using exome analysis have been conducted to identify rare mutations causing Mendelian diseases that accompany depression. In the near future, clarification of the genetic architecture of bipolar disorder and schizophrenia is expected. Identification of causative mutations using these new technologies will facilitate neurobiological studies of these disorders.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| |
Collapse
|
8
|
Pocklington AJ, O'Donovan M, Owen MJ. The synapse in schizophrenia. Eur J Neurosci 2014; 39:1059-67. [PMID: 24712986 DOI: 10.1111/ejn.12489] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023]
Abstract
It has been several decades since synaptic dysfunction was first suggested to play a role in schizophrenia, but only in the last few years has convincing evidence been obtained as progress has been made in elucidating the genetic underpinnings of the disorder. In the intervening years much has been learned concerning the complex macromolecular structure of the synapse itself, and genetic studies are now beginning to draw upon these advances. Here we outline our current understanding of the genetic architecture of schizophrenia and examine the evidence for synaptic involvement. A strong case can now be made that disruption of glutamatergic signalling pathways regulating synaptic plasticity contributes to the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | | | | |
Collapse
|
9
|
Hu X, Zhang B, Liu W, Paciga S, He W, Lanz TA, Kleiman R, Dougherty B, Hall SK, McIntosh AM, Lawrie SM, Power A, John SL, Blackwood D, St Clair D, Brandon NJ. A survey of rare coding variants in candidate genes in schizophrenia by deep sequencing. Mol Psychiatry 2014; 19:857-8. [PMID: 24126932 PMCID: PMC4113932 DOI: 10.1038/mp.2013.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- X Hu
- PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA
| | - B Zhang
- Research CoE, Groton, Pfizer Inc., Groton, CT, USA
| | - W Liu
- Research Statistics, Neuroscience, Pfizer Inc., Groton, CT, USA
| | - S Paciga
- PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA
| | - W He
- Research CoE, Groton, Pfizer Inc., Groton, CT, USA
| | - T A Lanz
- Neuroscience Research Unit, Pfizer Inc., Groton, CT, USA
| | - R Kleiman
- Neuroscience Research Unit, Pfizer Inc., Groton, CT, USA
| | - B Dougherty
- PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA
| | - S K Hall
- PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - A Power
- PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA
| | - S L John
- PharmaTherapeutics Precision Medicine, Pfizer Inc., Groton, CT, USA,E-mail:
| | - D Blackwood
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - D St Clair
- Department of applied medicine, University of Aberdeen, Aberdeen, UK
| | - N J Brandon
- Neuroscience Research Unit, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
10
|
Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L, Cass S, Ghiban E, Hennah W, Evans KL, Rebolini D, Millar JK, Harris SE, Starr JM, MacIntyre DJ, Generation Scotland 7, McIntosh AM, Watson JD, Deary IJ, Visscher PM, Blackwood DH, McCombie WR, Porteous DJ. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014; 19:668-75. [PMID: 23732877 PMCID: PMC4031635 DOI: 10.1038/mp.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Collapse
Affiliation(s)
- P A Thomson
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J S Parla
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - A F McRae
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - K Ramakrishnan
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J Yao
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D C Soares
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S W Morris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - L Cardone
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Cass
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - E Ghiban
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - W Hennah
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - K L Evans
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D Rebolini
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J K Millar
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S E Harris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Generation Scotland7
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J D Watson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - P M Visscher
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D J Porteous
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| |
Collapse
|
11
|
Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, O’Dushlaine C, Chambert K, Bergen SE, Kähler A, Duncan L, Stahl E, Genovese G, Fernández E, Collins MO, Komiyama NH, Choudhary JS, Magnusson PKE, Banks E, Shakir K, Garimella K, Fennell T, de Pristo M, Grant SG, Haggarty S, Gabriel S, Scolnick EM, Lander ES, Hultman C, Sullivan PF, McCarroll SA, Sklar P. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506:185-90. [PMID: 24463508 PMCID: PMC4136494 DOI: 10.1038/nature12975] [Citation(s) in RCA: 1041] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/24/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.
Collapse
Affiliation(s)
- Shaun M. Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
- Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Jennifer L. Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Menachem Fromer
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
- Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Douglas Ruderfer
- Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadia Solovieff
- Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Panos Roussos
- Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Sarah E. Bergen
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
- Department of Medical Epidemiology and Biostatisics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anna Kähler
- Department of Medical Epidemiology and Biostatisics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Laramie Duncan
- Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eli Stahl
- Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Esperanza Fernández
- Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium; VIB Center for Biology of Disease, 3000 Leuven, Belgium
| | - Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Noboru H. Komiyama
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S. Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatisics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Eric Banks
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Khalid Shakir
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kiran Garimella
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Tim Fennell
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Mark de Pristo
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Seth G.N. Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences and Centre for Neuroregeneration, The University of Edinburgh, Edinburgh, UK
| | - Stephen Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Stacey Gabriel
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Edward M. Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Eric S. Lander
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatisics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599-7264, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
- Medical & Population Genetics Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela Sklar
- Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
12
|
DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan. Mol Psychiatry 2014; 19:141-3. [PMID: 24457522 PMCID: PMC4238281 DOI: 10.1038/mp.2013.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
MESH Headings
- Causality
- Chromosome Breakpoints
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Conduct Disorder/genetics
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Lod Score
- Mental Disorders/genetics
- Mood Disorders/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Pedigree
- Phenotype
- RNA, Long Noncoding/genetics
- Risk Factors
- Schizophrenia/genetics
- Terminology as Topic
- Translocation, Genetic
Collapse
Affiliation(s)
- P F Sullivan
- Departments of Genetics and Psychiatry, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neurosci Biobehav Rev 2013; 37:2424-37. [PMID: 23628741 DOI: 10.1016/j.neubiorev.2013.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/17/2013] [Indexed: 01/12/2023]
Abstract
Genetic research targeting schizophrenia has undergone tremendous development during recent years. Supported by recently developed high-throughput genotyping technologies, both rare and common genetic variants have been identified that show consistent association with schizophrenia. These results have been replicated by independent studies and refined in meta-analyses. The genetic variation uncovered consists of common alleles, i.e. single nucleotide polymorphisms (SNPs) conveying small effects (odds ratios below 1.1) on disease risk. The source of rare variants is copy number variations (CNVs), only detectable in a small proportion of patients (3-5% for all known CNVs) with schizophrenia, furthermore extremely rare de novo mutations captured by next generation sequencing, the most recent technological advancement in the field. Despite these findings, the search for the genetic architecture underlying schizophrenia continues since these variants explain only a small proportion of the overall phenotypic variance. Gene-environment interactions provide a compelling model for resolving this paradox and interpreting the risk factors of schizophrenia. Epidemiologically proven risk factors, such as prenatal infection, obstetric complications, urbanicity, cannabis, and trauma have been demonstrated to interact with genetic risk, giving rise to higher prevalence rates or more severe symptomatology in individuals with direct or indirect genetic predisposition for schizophrenia. Further research will have to explain how the different forms of genetic variation interact and how environmental factors modulate their effects. Moreover, the challenging question lying ahead of us is how genetic and environmental factors translate to molecular disease pathways. New approaches, including animal studies and in vitro disease modeling, as well as innovative real-world environment assessment methods, will help to understand the complex etiology of schizophrenia.
Collapse
|
15
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|