1
|
Brownstien M, Lazar M, Botvinnik A, Shevakh C, Blakolmer K, Lerer L, Lifschytz T, Lerer B. Striking long-term beneficial effects of single dose psilocybin and psychedelic mushroom extract in the SAPAP3 rodent model of OCD-like excessive self-grooming. Mol Psychiatry 2025; 30:1172-1183. [PMID: 39394457 PMCID: PMC11835722 DOI: 10.1038/s41380-024-02786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Obsessive compulsive disorder (OCD) is a highly prevalent disorder that causes serious disability. Available treatments leave 40% or more of people with OCD significantly symptomatic. There is an urgent need for novel therapeutic approaches. Mice that carry a homozygous deletion of the SAPAP3 gene (SAPAP3 KO) manifest a phenotype of excessive self-grooming, tic-like head-body twitches and anxiety. These behaviors closely resemble pathological self-grooming behaviors observed in humans in conditions that overlap with OCD. Following a preliminary report that the tryptaminergic psychedelic, psilocybin, may reduce symptoms in patients with OCD, we undertook a randomized controlled trial of psilocybin in 50 SAPAP3 KO mice (28 male, 22 female). Mice that fulfilled inclusion criteria were randomly assigned to a single intraperitoneal injection of psilocybin (4.4 mg/kg), psychedelic mushroom extract (encompassing the same psilocybin dose) or vehicle control and were evaluated after 2, 12, and 21 days by a rater blind to treatment allocation for grooming characteristics, head-body twitches, anxiety, and other behavioral features. Mice treated with vehicle (n = 18) manifested a 118.71 ± 95.96% increase in total self-grooming (the primary outcome measure) over the 21-day observation period. In contrast, total self-grooming decreased by 14.60 ± 17.90% in mice treated with psilocybin (n = 16) and by 19.20 ± 20.05% in mice treated with psychedelic mushroom extract (n = 16) (p = 0.001 for effect of time; p = 0.0001 for time × treatment interaction). Five mice were dropped from the vehicle group because they developed skin lesions; 4 from the psilocybin group and none from the psychedelic mushroom extract group. Secondary outcome measures such as head-body twitches and anxiety all showed a significant improvement over 21 days. Notably, in mice that responded to psilocybin (n = 12) and psychedelic mushroom extract (n = 13), the beneficial effect of a single treatment persisted up to 7 weeks. Mice initially treated with vehicle and non-responsive, showed a clear and lasting therapeutic response when treated with a single dose of psilocybin or psychedelic mushroom extract and followed for a further 3 weeks. While equivalent to psilocybin in overall effect on self-grooming, psychedelic mushroom extract showed superior effects in alleviating head-body twitches and anxiety. These findings strongly justify clinical trials of psilocybin in the treatment of OCD and further studies aimed at elucidating mechanisms that underlie the long-term effects to alleviate excessive self-grooming observed in this study. Prepared with BioRender ( https://www.biorender.com/ ).
Collapse
Affiliation(s)
- Michal Brownstien
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Michal Lazar
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Alexander Botvinnik
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Chloe Shevakh
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | | | - Leonard Lerer
- Parow Entheobiosciences (ParowBio), Chicago, IL, USA
- Back of the Yards Algae Sciences (BYAS), Chicago, IL, USA
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel.
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel.
| |
Collapse
|
2
|
Sweetat S, Shabat MB, Theotokis P, Suissa N, Karafoulidou E, Touloumi O, Abu-Fanne R, Abramsky O, Wolf G, Saada A, Lotan A, Grigoriadis N, Rosenmann H. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer's Disease/Vascular Dementia Features in Mice. Aging Dis 2024; 15:2284-2300. [PMID: 38913044 PMCID: PMC11346392 DOI: 10.14336/ad.2024.03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Sahar Sweetat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Moti Ben Shabat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Nir Suissa
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Eleni Karafoulidou
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Abramsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilly Wolf
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, School of Psychology and Social Sciences, Achva Academic College, Be'er Tuvia, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Lotan
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| |
Collapse
|
3
|
Brownstien M, Lazar M, Botvinnik A, Shevakh C, Blakolmer K, Lerer L, Lifschytz T, Lerer B. Striking Long Term Beneficial Effects of Single Dose Psilocybin and Psychedelic Mushroom Extract in the SAPAP3 Rodent Model of OCD-Like Excessive Self-Grooming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600634. [PMID: 38979304 PMCID: PMC11230258 DOI: 10.1101/2024.06.25.600634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Obsessive compulsive disorder (OCD) is a highly prevalent disorder that causes serious disability. Available treatments leave 40% or more of people with OCD significantly symptomatic. There is an urgent need for novel therapeutic approaches. Mice that carry a homozygous deletion of the SAPAP3 gene (SAPAP3 KO) manifest a phenotype of excessive self-grooming, tic-like head-body twitches and anxiety. These behaviors closely resemble pathological self-grooming behaviors observed in humans in conditions that overlap with OCD. Following a preliminary report that the tryptaminergic psychedelic, psilocybin, may reduce symptoms in patients with OCD, we undertook a randomized controlled trial of psilocybin in 50 SAPAP3 KO mice (28 male, 22 female). Mice that fulfilled inclusion criteria were randomly assigned to a single intraperitoneal injection of psilocybin (4.4 mg/kg), psychedelic mushroom extract (encompassing the same psilocybin dose) or vehicle control and were evaluated after 2, 4 and 21 days by a rater blind to treatment allocation for grooming characteristics, head-body twitches, anxiety and other behavioral features. Mice treated with vehicle (n=18) manifested a 118.71±95.96 % increase in total self-grooming (the primary outcome measure) over the 21-day observation period. In contrast, total self-grooming decreased by 14.60%±17.90% in mice treated with psilocybin (n=16) and by 19.20±20.05% in mice treated with psychedelic mushroom extract (n=16) (p=.001 for effect of time; p=.0001 for time × treatment interaction). 5 mice were dropped from the vehicle group because they developed skin lesions; 4 from the psilocybin group and none from the psychedelic mushroom extract group. Secondary outcome measures such as head-body twitches and anxiety all showed a significant improvement over 21 days. Notably, in mice that responded to psilocybin (n=12) and psychedelic mushroom extract (n=13), the beneficial effect of a single treatment persisted up to 7 weeks. Mice initially treated with vehicle and non-responsive, showed a clear and lasting therapeutic response when treated with a single dose of psilocybin or psychedelic mushroom extract and followed for a further 3 weeks. While equivalent to psilocybin in overall effect on self-grooming, psychedelic mushroom extract showed superior effects in alleviating head-body twitches and anxiety. These findings strongly justify clinical trials of psilocybin in the treatment of OCD and further studies aimed at elucidating mechanisms that underlie the long-term effects to alleviate excessive self-grooming observed in this study.
Collapse
Affiliation(s)
- Michal Brownstien
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Michal Lazar
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Alexander Botvinnik
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Chloe Shevakh
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | | | - Leonard Lerer
- Parow Entheobiosciences (ParowBio), Chicago, IL, USA
- Back of the Yards Algae Sciences (BYAS), Chicago, IL, USA
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hebrew University, Ein Karem, Jerusalem, Israel
| |
Collapse
|
4
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Affiliation(s)
- Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Macro- and Microscale Stress-Associated Alterations in Brain Structure: Translational Link With Depression. Biol Psychiatry 2021; 90:118-127. [PMID: 34001371 DOI: 10.1016/j.biopsych.2021.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is a stress-related disorder associated with many cytoarchitectural and neurochemical changes. However, the majority of these changes cannot be reliably detected in the living brain. The examination of animal stress models and postmortem human brain tissue has significantly contributed to our understanding of the pathophysiology of MDD. Ronald Duman's work in humans and in rodent models was critical to the investigation of the contribution of synaptic deficits to MDD and chronic stress pathology, their role in the development and expression of depressive-like behavior, and reversal by novel drugs. Here, we review evidence from magnetic resonance imaging in humans and animals that suggests that corticolimbic alterations are associated with depression symptomatology. We also discuss evidence of cytoarchitectural alterations affecting neurons, astroglia, and synapses in MDD and highlight how similar changes are described in rodent chronic stress models and are linked to the emotion-related behavioral deficits. Finally, we report on the latest approaches developed to measure the synaptic and astroglial alterations in vivo, using positron emission tomography, and how it can inform on the contribution of MDD-associated cytoarchitectural alterations to the symptomatology and the treatment of stress-related disorders.
Collapse
|
7
|
Wang B, Xin N, Qian X, Zhai L, Miao Z, Yang Y, Li S, Sun M, Xu X, Li XJ. Ahi1 regulates the nuclear translocation of glucocorticoid receptor to modulate stress response. Transl Psychiatry 2021; 11:188. [PMID: 33782379 PMCID: PMC8007735 DOI: 10.1038/s41398-021-01305-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Stress activates the nuclear translocation of glucocorticoid receptors (GR) to trigger gene expression. Abnormal GR levels can alter the stress responses in animals and therapeutic effects of antidepressants. Here, we reported that stress-mediated nuclear translocation of GR reduced Ahi1 in the stressed cells and mouse brains. Ahi1 interacts with GR to stabilize each other in the cytoplasm. Importantly, Ahi1 deficiency promotes the degradation of GR in the cytoplasm and reduced the nuclear translocation of GR in response to stress. Genetic depletion of Ahi1 in mice caused hyposensitivity to antidepressants under the stress condition. These findings suggest that AHI1 is an important regulator of GR level and may serve as a therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Bin Wang
- grid.429222.d0000 0004 1798 0228Institute for Fetology, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Ning Xin
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China ,grid.413389.4Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu China
| | - Xuanchen Qian
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Lijing Zhai
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Zhigang Miao
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Yong Yang
- grid.263761.70000 0001 0198 0694Department of Psychiatry, The Affiliated Guangji Hospital of Soochow University, 215008 Suzhou, China
| | - Shihua Li
- grid.258164.c0000 0004 1790 3548Guangdong Key Laboratory of non-human primate models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, 215123, Suzhou, China. .,Department of Neurology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of non-human primate models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
8
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Effect of chronic unpredictable stress on mice with developmental under-expression of the Ahi1 gene: behavioral manifestations and neurobiological correlates. Transl Psychiatry 2018; 8:124. [PMID: 29967406 PMCID: PMC6028478 DOI: 10.1038/s41398-018-0171-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/25/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
The Abelson helper integration site 1 (Ahi1) gene plays a pivotal role in brain development and is associated with genetic susceptibility to schizophrenia, and other neuropsychiatric disorders. Translational research in genetically modified mice may reveal the neurobiological mechanisms of such associations. Previous studies of mice heterozygous for Ahi1 knockout (Ahi1+/-) revealed an attenuated anxiety response on various relevant paradigms, in the context of a normal glucocorticoid response to caffeine and pentylenetetrazole. Resting-state fMRI showed decreased amygdalar connectivity with various limbic brain regions and altered network topology. However, it was not clear from previous studies whether stress-hyporesponsiveness reflected resilience or, conversely, a cognitive-emotional deficit. The present studies were designed to investigate the response of Ahi1+/- mice to chronic unpredictable stress (CUS) applied over 9 weeks. Wild type (Ahi1+/+) mice were significantly affected by CUS, manifesting decreased sucrose preference (p < 0.05); reduced anxiety on the elevated plus maze and light dark box and decreased thigmotaxis in the open field (p < 0.01 0.05); decreased hyperthermic response to acute stress (p < 0.05); attenuated contextual fear conditioning (p < 0.01) and increased neurogenesis (p < 0.05). In contrast, Ahi1+/- mice were indifferent to the effects of CUS assessed with the same parameters. Our findings suggest that Ahi1 under-expression during neurodevelopment, as manifested by Ahi1+/- mice, renders these mice stress hyporesponsive. Ahi1 deficiency during development may attenuate the perception and/or integration of environmental stressors as a result of impaired corticolimbic connectivity or aberrant functional wiring. These neural mechanisms may provide initial clues as to the role Ahi1 in schizophrenia and other neuropsychiatric disorders.
Collapse
|
10
|
Social dominance predicts hippocampal glucocorticoid receptor recruitment and resilience to prenatal adversity. Sci Rep 2018; 8:9595. [PMID: 29941995 PMCID: PMC6018627 DOI: 10.1038/s41598-018-27988-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
The developing fetus is highly sensitive to prenatal stress, which may alter Hypothalamic-Pituitary-Adrenal (HPA) axis programming and increase the risk of behavioral disorders. There is high variability among the human population, wherein many offspring of stressed pregnancies display resilience to adversity, while the remainder displays vulnerability. In order to identify biological substrates mediating between resilience or vulnerability to prenatal adversity, we exposed stress-resistant Dominant (Dom) and stress-sensitive Submissive (Sub) mice to mild prenatal restraint stress (PRS, 45 min on gestational days (GD) 15, 16 and 17). We hypothesized that PRS would differentially alter prenatal programming of limbic regions regulating the HPA axis and affect among Dom and Sub offspring. Indeed, PRS increased Sub offspring’s serum corticosterone, and exaggerated their anxiety- and depressive-like behavior, while Dom offspring remained resilient to the hormonal and behavioral consequences of PRS. Moreover, PRS exposure markedly facilitated glucocorticoid receptor (GR) recruitment to the hippocampus among Dom mice in response to restraint stress, which may be responsible for their resilience to stressful challenge. These findings suggest proclivity to adaptive or maladaptive prenatal programming of hippocampal GR recruitment to be inheritable and predictable by social dominance or submissiveness.
Collapse
|
11
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
12
|
Johnson FK, Delpech JC, Thompson GJ, Wei L, Hao J, Herman P, Hyder F, Kaffman A. Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Transl Psychiatry 2018; 8:49. [PMID: 29463821 PMCID: PMC5820270 DOI: 10.1038/s41398-018-0092-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023] Open
Abstract
Childhood maltreatment is associated with a wide range of psychopathologies including anxiety that emerge in childhood and in many cases persist in adulthood. Increased amygdala activation in response to threat and abnormal amygdala connectivity with frontolimbic brain regions, such as the hippocampus and the prefrontal cortex, are some of the most consistent findings seen in individuals exposed to childhood maltreatment. The underlying mechanisms responsible for these changes are difficult to study in humans but can be elucidated using animal models of early-life stress. Such studies are especially powerful in the mouse where precise control of the genetic background and the stress paradigm can be coupled with resting-state fMRI (rsfMRI) to map abnormal connectivity in circuits that regulate anxiety. To address this issue we first compared the effects of two models of early-life stress, limited bedding (LB) and unpredictable postnatal stress (UPS), on anxiety-like behavior in juvenile and adult mice. We found that UPS, but not LB, causes a robust increase in anxiety in juvenile and adult male mice. Next, we used rsfMRI to compare frontolimbic connectivity in control and UPS adult male mice. We found increased amygdala-prefrontal cortex and amygdala-hippocampus connectivity in UPS. The strength of the amygdala-hippocampal and amygdala-prefrontal cortex connectivity was highly correlated with anxiety-like behavior in the open-field test and elevated plus maze. These findings are the first to link hyperconnectivity in frontolimbic circuits and increased anxiety in a mouse model of early-life stress, allowing for more mechanistic understanding of parallel findings in humans.
Collapse
Affiliation(s)
- Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Jean-Christophe Delpech
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Department of Newborn Medicine, Boston Children's Hospital, Harvard medical school, Boston, MA, 02115, USA
| | - Garth J Thompson
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Ren Building, Room B204, Zhangjiang, Pudong, Shanghai, 201210, China
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Jin Hao
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Peter Herman
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06519, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
| |
Collapse
|
13
|
Functional networks and network perturbations in rodents. Neuroimage 2017; 163:419-436. [DOI: 10.1016/j.neuroimage.2017.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
|
14
|
Alterations in the expression of a neurodevelopmental gene exert long-lasting effects on cognitive-emotional phenotypes and functional brain networks: translational evidence from the stress-resilient Ahi1 knockout mouse. Mol Psychiatry 2017; 22:884-899. [PMID: 27021817 PMCID: PMC5444025 DOI: 10.1038/mp.2016.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
Many psychiatric disorders are highly heritable and may represent the clinical outcome of early aberrations in the formation of neural networks. The placement of brain connectivity as an 'intermediate phenotype' renders it an attractive target for exploring its interaction with genomics and behavior. Given the complexity of genetic make up and phenotypic heterogeneity in humans, translational studies are indicated. Recently, we demonstrated that a mouse model with heterozygous knockout of the key neurodevelopmental gene Ahi1 displays a consistent stress-resilient phenotype. Extending these data, the current research describes our multi-faceted effort to link early variations in Ahi1 expression with long-term consequences for functional brain networks and cognitive-emotional phenotypes. By combining behavioral paradigms with graph-based analysis of whole-brain functional networks, and then cross-validating the data with robust neuroinformatic data sets, our research suggests that physiological variation in gene expression during neurodevelopment is eventually translated into a continuum of global network metrics that serve as intermediate phenotypes. Within this framework, we suggest that organization of functional brain networks may result, in part, from an adaptive trade-off between efficiency and resilience, ultimately culminating in a phenotypic diversity that encompasses dimensions such as emotional regulation and cognitive function.
Collapse
|
15
|
The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun 2017; 61:184-196. [PMID: 27890560 DOI: 10.1016/j.bbi.2016.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Clinical studies suggest that key genetic factors involved in stress resilience are related to the innate immune system. In the brain, this system includes microglia cells, which play a major role in stress responsiveness. Consistently, mice with deletion of the CX3CR1 gene (CX3CR1-/- mice), which in the brain is expressed exclusively by microglia, exhibit resilience to chronic stress. Here, we compared the emotional, cognitive, neurogenic and microglial responses to chronic unpredictable stress (CUS) between CX3CR1-/- and wild type (WT) mice. This was followed by hippocampal whole transcriptome (RNA-seq) analysis. We found that following CUS exposure, WT mice displayed reduced sucrose preference, impaired novel object recognition memory, and reduced neurogenesis, whereas CX3CR1-/- mice were completely resistant to these effects of CUS. CX3CR1-/- mice were also resilient to the memory-suppressive effect of a short period of unpredictable stress. Microglial somas were larger in CX3CR1-/- than in WT, but in both genotypes CUS induced a similar decline in hippocampal microglial density and processes length. RNA sequencing and pathway analysis revealed basal strain differences, particularly reduced expression of interferon (IFN)-regulated and MHC class I gene transcripts in CX3CR1-/- mice. Furthermore, while CUS exposure similarly altered neuronal gene transcripts (e.g. Arc, Npas4) in both strains, transcripts downstream of hippocampal estrogen receptor signaling (particularly Igf2 and Igfbp2) were altered only in CX3CR1-/- mice. These findings indicate that emotional and cognitive stress resilience involves CX3CR1-dependent basal and stress-induced alterations in hippocampal transcription, implicating inhibition of CX3CR1 signaling as a novel approach for promoting stress resilience.
Collapse
|
16
|
Ren Z, Qiu A, Zhang A, Huang L, Rao S. A cis-eQTL in AHI1 confers risk to schizophrenia in European populations. Neurosci Lett 2016; 632:130-5. [PMID: 27585752 DOI: 10.1016/j.neulet.2016.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/21/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a devastating mental disorder, with heritability as high as 80%. Although genome-wide association studies have identified multiple promising risk variants of schizophrenia, they could only explain a small portion of the disease heritability, and other variants with low to moderate effect remain to be identified. Abelson helper integration site 1 (AHI1) is highly expressed in mammals throughout the developing brain, with lower expression continuing into adulthood. Besides, previous evidence suggested that AHI1 expression was changed in schizophrenia patients. Furthermore, association signal between AHI1 variants and schizophrenia has been reported in several European samples. In the present study, we first analyzed two expression quantitative trait loci (eQTL) datasets in healthy individuals and investigated the associations of eQTL of AHI1 with schizophrenia in independent European samples. We observed that a cis-eQTL of AHI1, rs11154801, showed significant association with AHI1 expression in both datasets (P<5E-05). Genetic evidence exhibited that rs11154801 was significantly associated with schizophrenia risk in both the discovery sample (9394 cases and 12462 controls, P=0.046, OR=0.958, 95% CI=0.918-0.999) and the replication sample (3240 cases and 14786 controls, P=0.024, OR=0.949, 95% CI=0.870-0.990). When the discovery and replication samples were pooled together, this association was further strengthened (P=0.004, OR=0.949, 95% CI=0.916-0.983). These results suggested that AHI1 is likely a risk gene for schizophrenia, at least in European populations.
Collapse
Affiliation(s)
- Zhimin Ren
- Pediatrics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Anli Qiu
- Department of respiration, Harbin Children's Hospital, Harbin, 150086, China
| | - Aiqi Zhang
- Pediatrics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lijun Huang
- Pharmacy Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
17
|
Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S, De Ronchi D, Serretti A. The influence of AHI1 variants on the diagnosis and treatment outcome in schizophrenia. Int J Mol Sci 2015; 16:2517-29. [PMID: 25622261 PMCID: PMC4346849 DOI: 10.3390/ijms16022517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to explore whether four single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with schizophrenia (SCZ) and whether they could predict the clinical outcomes in SCZ patients treated with antipsychotics. Four hundred twenty-six (426) in-patients with SCZ and 345 controls were genotyped for four AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and clinical measures for SCZ patients were assessed through the Positive and Negative Syndrome Scale (PANSS). Allelic and genotypic frequencies in SCZ subjects were compared with those of controls using the χ2 statistics. The repeated-measure ANOVA was used for the assessment of treatment outcomes measured by PANSS changes. The case-control analysis did not show any difference in the genotypic distribution of the SNPs, while in the allelic analysis, a weak association was found between the rs9647635 A allele and SCZ. Furthermore, in the haplotype analysis, three haplotypes resulted in being associated with SCZ. On the other hand, two SNPs (rs7750586 and rs9647635) were associated with clinical improvement of negative symptoms in the allelic analysis, although in the genotypic analysis, only trends of association were found for the same SNPs. Our findings suggest a possible influence of AHI1 variants on SCZ susceptibility and antipsychotic response, particularly concerning negative symptomatology. Subsequent well-designed studies would be mandatory to confirm our results due to the methodological shortcomings of the present study.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Chi-Un Pae
- Department of Psychiatry, the Catholic University of Korea College of Medicine, Seoul 137701, Korea.
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul 136701, Korea.
| | - Soo-Jung Lee
- Department of Psychiatry, the Catholic University of Korea College of Medicine, Seoul 137701, Korea.
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | - Beatrice Balzarro
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Siegfried Alberti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Diana De Ronchi
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Alessandro Serretti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| |
Collapse
|
18
|
Park HJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor. Arch Pharm Res 2015; 38:1204-12. [DOI: 10.1007/s12272-015-0548-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/01/2015] [Indexed: 01/05/2023]
|
19
|
Maximizing negative correlations in resting-state functional connectivity MRI by time-lag. PLoS One 2014; 9:e111554. [PMID: 25396416 PMCID: PMC4232255 DOI: 10.1371/journal.pone.0111554] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/12/2014] [Indexed: 01/07/2023] Open
Abstract
This paper aims to better understand the physiological meaning of negative correlations in resting state functional connectivity MRI (r-fcMRI). The correlations between anatomy-based brain regions of 18 healthy humans were calculated and analyzed with and without a correction for global signal and with and without spatial smoothing. In addition, correlations between anatomy-based brain regions of 18 naïve anesthetized rats were calculated and compared to the human data. T-statistics were used to differentiate between positive and negative connections. The application of spatial smoothing and global signal correction increased the number of significant positive connections but their effect on negative connections was complex. Positive connections were mainly observed between cortical structures while most negative connections were observed between cortical and non-cortical structures with almost no negative connections between non-cortical structures. In both human and rats, negative connections were never observed between bilateral homologous regions. The main difference between positive and negative connections in both the human and rat data was that positive connections became less significant with time-lags, while negative connections became more significant with time-lag. This effect was evident in all four types of analyses (with and without global signal correction and spatial smoothing) but was most significant in the analysis with no correction for the global signal. We hypothesize that the valence of r-fcMRI connectivity reflects the relative contributions of cerebral blood volume (CBV) and flow (CBF) to the BOLD signal and that these relative contributions are location-specific. If cerebral circulation is primarily regulated by CBF in one region and by CBV in another, a functional connection between these regions can manifest as an r-fcMRI negative and time-delayed correlation. Similarly, negative correlations could result from spatially inhomogeneous responses of rCBV or rCBF alone. Consequently, neuronal regulation of brain circulation may be deduced from the valence of r-fcMRI connectivity.
Collapse
|
20
|
Lotan A, Fenckova M, Bralten J, Alttoa A, Dixson L, Williams RW, van der Voet M. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 2014; 8:331. [PMID: 25414627 PMCID: PMC4222236 DOI: 10.3389/fnins.2014.00331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022] Open
Abstract
Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders-attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10(-5)). 22% of genes overlapped two or more disorders. The most widely shared subset of genes-common to five of six disorders-included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20-30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Amit Lotan
- Department of Adult Psychiatry and the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Janita Bralten
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Aet Alttoa
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Neurobiology Program, University of Würzburg Würzburg, Germany
| | - Luanna Dixson
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg Mannheim, Germany
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Monique van der Voet
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
21
|
Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S, De Ronchi D, Serretti A. Abelson helper integration site-1 gene variants on major depressive disorder and bipolar disorder. Psychiatry Investig 2014; 11:481-6. [PMID: 25395981 PMCID: PMC4225214 DOI: 10.4306/pi.2014.11.4.481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present study aimed to explore whether 4 single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with major depressive disorder (MD) and bipolar disorder (BD), and whether they could predict clinical outcomes in mood disorders. METHODS One hundred and eighty-four (184) patients with MD, 170 patients with BD and 170 healthy controls were genotyped for 4 AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and final clinical measures for MD patients were assessed through the Hamilton Rating Scale for Depression (HAM-D). Allelic and genotypic frequencies in MD and BD subjects were compared with those of each disorder and healthy group using the χ(2) statistics. Repeated measures ANOVA was used to test possible influences of SNPs on treatment efficacy. RESULTS The rs9647635 A/A was more represented in subjects with BD as compared with MD and healthy subjects together. The rs9647635 A/A was also more presented in patients with MD than in healthy subjects. With regard to the allelic analysis, rs9647635 A allele was more represented in subjects with BD compared with healthy subjects, while it was not observed between patients with MD and healthy subjects. CONCLUSION Our findings provide potential evidence of an association between some variants of AHI1 and mood disorders susceptibility but not with clinical outcomes. However, we will need to do more adequately-powered and advanced association studies to draw any conclusion due to clear limitations.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A. Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Beatrice Balzarro
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Siegfried Alberti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Lin M, Zhao D, Hrabovsky A, Pedrosa E, Zheng D, Lachman HM. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One 2014; 9:e94968. [PMID: 24736721 PMCID: PMC3988108 DOI: 10.1371/journal.pone.0094968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/21/2014] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs), although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| |
Collapse
|
23
|
Ozdemir V, Endrenyi L, Aynacıoğlu S, Bragazzi NL, Dandara C, Dove ES, Ferguson LR, Geraci CJ, Hafen E, Kesim BE, Kolker E, Lee EJD, Llerena A, Nacak M, Shimoda K, Someya T, Srivastava S, Tomlinson B, Vayena E, Warnich L, Yaşar U. Bernard Lerer: recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine (Pacific Rim Association for Clinical Pharmacogenetics). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:211-21. [PMID: 24649998 DOI: 10.1089/omi.2014.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article announces the recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine by the Pacific Rim Association for Clinical Pharmacogenetics (PRACP): Bernard Lerer, professor of psychiatry and director of the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. The Werner Kalow Responsible Innovation Prize is given to an exceptional interdisciplinary scholar who has made highly innovative and enduring contributions to global omics science and personalized medicine, with both vertical and horizontal (transdisciplinary) impacts. The prize is established in memory of a beloved colleague, mentor, and friend, the late Professor Werner Kalow, who cultivated the idea and practice of pharmacogenetics in modern therapeutics commencing in the 1950s. PRACP, the prize's sponsor, is one of the longest standing learned societies in the Asia-Pacific region, and was founded by Kalow and colleagues more than two decades ago in the then-emerging field of pharmacogenetics. In announcing this inaugural prize and its winner, we seek to highlight the works of prize winner, Professor Lerer. Additionally, we contextualize the significance of the prize by recalling the life and works of Professor Kalow and providing a brief socio-technical history of the rise of pharmacogenetics and personalized medicine as a veritable form of 21(st) century scientific practice. The article also fills a void in previous social science analyses of pharmacogenetics, by bringing to the fore the works of Kalow from 1995 to 2008, when he presciently noted the rise of yet another field of postgenomics inquiry--pharmacoepigenetics--that railed against genetic determinism and underscored the temporal and spatial plasticity of genetic components of drug response, with invention of the repeated drug administration (RDA) method that estimates the dynamic heritabilities of drug response. The prize goes a long way to cultivate transgenerational capacity and broader cognizance of the concept and practice of responsible innovation as an important criterion of 21(st) century omics science and personalized medicine. A new call is presently in place for the 2016 PRACP Werner Kalow prize. Nominations can be made in support of an exceptional individual interdisciplinary scholar, or alternatively, an entire research team, from any region in the world with a record of highly innovative contributions to global omics science and/or personalized medicine, in the spirit of responsible innovation. The application process is straightforward, requiring a signed, 1500-word nomination letter (by the applicant or sponsor) submitted not later than May 31, 2015.
Collapse
Affiliation(s)
- Vural Ozdemir
- 1 Pacific Rim Association for Clinical Pharmacogenetics, Associate Member Society of the International Union of Basic and Clinical Pharmacology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|