1
|
Chang CH, Hsia YD, Liu WC, Lee JH, Lin CH, Lane HY. Symptomatic and cognitive effects of D-amino acid oxidase inhibitors in patients with schizophrenia: a meta-analysis of double-blind randomized controlled trials. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:73. [PMID: 40328785 PMCID: PMC12056046 DOI: 10.1038/s41537-025-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/10/2025] [Indexed: 05/08/2025]
Abstract
D-amino acid oxidase inhibitors (DAOI) have demonstrated potential therapeutic benefits for schizophrenia and cognitive impairment; however, existing studies present conflicting results. This meta-analysis aimed to assess the symptomatic and cognitive effects of DAOI on the treatment of schizophrenia. An electronic search was conducted using PubMed, Cochrane Systematic Reviews, and the Cochrane Central Register of Controlled Clinical Trials for double-blinded, randomized controlled trials evaluating DAOI for the treatment of schizophrenia. Published trials up to November 2024 were included in the analysis. A random-effects model was employed to pool data for comparing the treatment effects of DAOI. Participants diagnosed with schizophrenia were recruited. Clinical and cognitive improvements were compared between baseline and post-DAOI treatment using standardized mean differences (SMDs) with 95% confidence intervals (CIs). Heterogeneity across the trials was assessed through funnel plots and the I² statistic. A total of five trials with 530 participants met the inclusion criteria. Four trials utilized sodium benzoate, while one trial employed luvadaxistat. The Positive and Negative Syndrome Scale (PANSS) was used in all studies to evaluate clinical symptoms, with four studies also assessed cognitive function. This analysis highlighted that DAOI surpassed the comparator in reducing the scores of PANSS total (SMD = -0.270, P = 0.035), PANSS positive (SMD = -0.399, P = 0.022), PANSS negative (SMD = -0.171, P = 0.026), and PANSS general psychopathology (SMD = -0.180, P = 0.019). Subgroup analyses identified significant effects in trials using sodium benzoate (SMD = 0.368, P = 0.021). Moreover, DAOI showed greater improvements in cognitive functions (SMD = 0.359, P = 0.017), with a better effect correlated with more female participants. The findings of this meta-analysis suggest that DAOI may be effective in improving clinical symptoms and cognitive function in patients with schizophrenia. Further studies with larger sample sizes are needed to confirm these results.
Collapse
Affiliation(s)
- Chun-Hung Chang
- An Nan Hospital, China Medical University, Tainan, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Der Hsia
- An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Wen-Chun Liu
- An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Jia-Hau Lee
- An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Zhang M, Chen X, Yao Y, Wang W, Zhong Y, Shi S, Zhang K. Smartphone video games effectively improve cognitive function in middle-aged and elderly patients with chronic schizophrenia: a randomized clinical trial. Transl Psychiatry 2025; 15:151. [PMID: 40251163 PMCID: PMC12008215 DOI: 10.1038/s41398-025-03364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/27/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Cognitive dysfunction in chronic schizophrenia has a serious impact on the quality of life of middle-aged and elderly patients. It is urgent to find an economical and effective treatment to improve cognitive function. The purpose of this study was to explore the effect of free video games on cognitive function and blood factors in middle-aged and elderly patients with chronic schizophrenia. The study began in July 2021 and ended in February 2022. The subjects suffered from chronic schizophrenia and were aged between 40-65 years old. Participants were randomly divided into control group (n = 15) and game group (n = 12). The control group watched TV for 1 h every day, and the game group played video games for 1 h every day. Both groups were five days a week for six weeks. This study found that compared with the control group, the cognitive function of the game group was significantly improved (P < 0.001). The level of GDNF in the game group was significantly increased, and the levels of Tau, MIP-1 and MIP-4 were decreased. Serum GDNF and MIP-1 were significantly correlated with cognitive function. In conclusion, smartphone free video games effectively improve the cognitive function of middle-aged and elderly patients with chronic schizophrenia. In addition, blood factors GDNF, Tau, MIP-1 and MIP-4 may be serum markers for predicting cognitive function. It provides a new idea for the clinical treatment of cognitive impairment. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2100044113.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Anhui Psychiatric Center, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xinyu Chen
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Anhui Psychiatric Center, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Wuxi Mental Health Center, Wuxi, China
| | - Yitan Yao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Anhui Psychiatric Center, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenhui Wang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Anhui Psychiatric Center, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yongjie Zhong
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Anhui Psychiatric Center, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Shengya Shi
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Anhui Psychiatric Center, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China.
- Anhui Psychiatric Center, Hefei, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
- Department of Psychiatry, The Fourth Affiliated Hospital of Anhui Medical University, Chaohu, Hefei, China.
| |
Collapse
|
3
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Vita A, Nibbio G, Barlati S. Conceptualization and characterization of "primary" and "secondary" cognitive impairment in schizophrenia. Psychiatry Res 2024; 340:116126. [PMID: 39128169 DOI: 10.1016/j.psychres.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Cognitive impairment represents one of the core features of schizophrenia, involves both neurocognition and social cognition domains, and has a significant negative impact on real-world functioning. The present review provides a framework for the conceptualization and characterization of "primary" and "secondary" cognitive impairment in schizophrenia. In this conceptualization, primary cognitive impairment can be defined as a consequence of the neurobiological alterations that underlie psychopathological manifestations of the disorder, while secondary cognitive impairment can be defined as the results of a source issue that has a negative impact on cognitive performance. Sources of secondary cognitive impairment are frequent in people with schizophrenia and include several different factors, such as positive and negative symptoms, depressive symptoms, autistic symptoms, pharmacotherapy, substance abuse, metabolic syndrome, social deprivation, and sleep disorders. It can be hypothesized that secondary cognitive impairment may be improved by effectively resolving the source issue, while primary cognitive impairment may benefit from dedicated treatment. Further research is required to confirm this hypothesis, to better characterize the distinction between primary and secondary cognitive impairment in a clinical and in a neurobiological perspective, and to evaluate the impact of systematically assessing and treating secondary cognitive impairment.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Vita A, Barlati S, Cavallaro R, Mucci A, Riva MA, Rocca P, Rossi A, Galderisi S. Definition, assessment and treatment of cognitive impairment associated with schizophrenia: expert opinion and practical recommendations. Front Psychiatry 2024; 15:1451832. [PMID: 39371908 PMCID: PMC11450451 DOI: 10.3389/fpsyt.2024.1451832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
A considerable proportion of patients with schizophrenia perform below population norms on standardized neuropsychological tests, and the performance of those performing within normal range is lower than predicted based on parental education. Cognitive impairment predates the onset of psychosis, is observed during symptom remission and in non-affected first-degree relatives of patients. At the present time, cognitive deficits are regarded as key features of schizophrenia, important determinants of poor psychosocial outcome and targets for both pharmacological and non-pharmacological treatment strategies. A group of eight key opinion leaders reviewed and discussed latest advances in scientific research and current good clinical practices on assessment, management, and treatment of CIAS. In the present paper they summarize the current evidence, identify main gaps between current knowledge and mental health services clinical practice, and provide practical recommendations to reduce the gap.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Armida Mucci
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L’Aquila, L’Aquila, Italy
| | - Silvana Galderisi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
7
|
Husain MO, Chaudhry IB, Khoso AB, Husain MI, Ansari MA, Mehmood N, Naqvi HA, Nizami AT, Talib U, Rajput AH, Bassett P, Foussias G, Deakin B, Husain N. Add-on Sodium Benzoate and N-Acetylcysteine in Patients With Early Schizophrenia Spectrum Disorder: A Multicenter, Double-Blind, Randomized Placebo-Controlled Feasibility Trial. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae004. [PMID: 39144112 PMCID: PMC11207662 DOI: 10.1093/schizbullopen/sgae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Oxidative stress pathways may play a role in schizophrenia through direct neuropathic actions, microglial activation, inflammation, and by interfering with NMDA neurotransmission. N-acetylcysteine (NAC) has been shown to improve negative symptoms of schizophrenia, however, results from trials of other compounds targeting NMDA neurotransmission have been mixed. This may reflect poor target engagement but also that risk mechanisms act in parallel. Sodium Benzoate (NaB) could have an additive with NAC to act on several pathophysiological mechanisms implicated in schizophrenia. Study Design A multicenter, 12 weeks, 2 × 2 factorial design, randomized double-blind placebo-controlled feasibility trial of NaB and NAC added to standard treatment in 68 adults with early schizophrenia. Primary feasibility outcomes included recruitment, retention, and completion of assessments as well as acceptability of the study interventions. Psychosis symptoms, functioning, and cognitive assessments were also assessed. Study Results We recruited our desired sample (n = 68) and retained 78% (n = 53) at 12 weeks, supporting the feasibility of recruitment and retention. There were no difficulties in completing clinical outcome schedules. Medications were well tolerated with no dropouts due to side effects. This study was not powered to detect clinical effect and as expected no main effects were found on the majority of clinical outcomes. Conclusions We demonstrated feasibility of conducting a clinical trial of NaB and NAC. Given the preliminary nature of this study, we cannot draw firm conclusions about the clinical efficacy of either agent, and a large-scale trial is needed to examine if significant differences between treatment groups emerge. Trial Registration ClinicalTrials.gov: NCT03510741.
Collapse
Affiliation(s)
- Muhammad Omair Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Imran Bashir Chaudhry
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Department of Psychiatry, Ziauddin University, Karachi, Pakistan
- Pakistan Institute of Living and Learning, Karachi, Pakistan
| | - Ameer B Khoso
- Pakistan Institute of Living and Learning, Karachi, Pakistan
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Moin Ahmed Ansari
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan
| | - Nasir Mehmood
- Karwan e Hayat, Institute for Mental Health Care, Karachi, Pakistan
| | - Haider A Naqvi
- Department of Psychiatry, Dow University Health Sciences, Karachi, Pakistan
| | - Asad Tamizuddin Nizami
- Institute of Psychiatry, WHO Collaborating Centre for Mental Health Research and Training, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Uroosa Talib
- Karwan e Hayat, Institute for Mental Health Care, Karachi, Pakistan
| | - Aatir H Rajput
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan
| | | | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bill Deakin
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Nusrat Husain
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Mersey Care NHS Foundation Trust, Prescott, UK
- Institute of Population and Mental Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Vita A, Nibbio G, Barlati S. Pharmacological Treatment of Cognitive Impairment Associated With Schizophrenia: State of the Art and Future Perspectives. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae013. [PMID: 39144119 PMCID: PMC11207676 DOI: 10.1093/schizbullopen/sgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cognitive Impairment Associated with Schizophrenia (CIAS) represents one of the core dimensions of Schizophrenia Spectrum Disorders (SSD), with an important negative impact on real-world functional outcomes of people living with SSD. Treatment of CIAS represents a therapeutic goal of considerable importance, and while cognition-oriented evidence-based psychosocial interventions are available, effective pharmacological treatment could represent a game-changer in the lives of people with SSD. The present critical review reports and discusses the evidence regarding the effects of several pharmacological agents that are available in clinical practice or are under study, commenting on both current and future perspectives of CIAS treatment. In particular, the effects on CIAS of antipsychotic medications, anticholinergic medications, benzodiazepines, which are currently commonly used in the treatment of SSD, and of iclepertin, d-serine, luvadaxistat, xanomeline-trospium, ulotaront, anti-inflammatory molecules, and oxytocin, which are undergoing regulatory trials or can be considered as experimental agents, will be reported and discussed. Currently, available pharmacological agents do not appear to provide substantial benefits on CIAS, but accurate management of antipsychotic medications and avoiding treatments that can further exacerbate CIAS represent important strategies. Some molecules that are currently being investigated in Phase 2 and Phase 3 trials have provided very promising preliminary results, but more information is currently required to assess their effectiveness in real-world contexts and to provide clear recommendations regarding their use in clinical practice. The results of ongoing and future studies will reveal whether any of these molecules represents the awaited pharmacological game-changer in the treatment of CIAS.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
9
|
McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry 2023; 28:1902-1918. [PMID: 36690793 PMCID: PMC10575791 DOI: 10.1038/s41380-023-01949-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK.
| | - Richard S E Keefe
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
10
|
Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry 2022; 12:500. [PMID: 36463316 PMCID: PMC9719533 DOI: 10.1038/s41398-022-02253-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with 1H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN1 subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast 1H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.
Collapse
Affiliation(s)
- Andreas O Kruse
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
11
|
Nasyrova RF, Khasanova AK, Altynbekov KS, Asadullin AR, Markina EA, Gayduk AJ, Shipulin GA, Petrova MM, Shnayder NA. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022; 14:5142. [PMID: 36501171 PMCID: PMC9736950 DOI: 10.3390/nu14235142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia (Sch) is a severe and widespread mental disorder. Antipsychotics (APs) of the first and new generations as the first-line treatment of Sch are not effective in about a third of cases and are also unable to treat negative symptoms and cognitive deficits of schizophrenics. This explains the search for new therapeutic strategies for a disease-modifying therapy for treatment-resistant Sch (TRS). Biological compounds are of great interest to researchers and clinicians, among which D-Serine (D-Ser) and D-Aspartate (D-Asp) are among the promising ones. The Sch glutamate theory suggests that neurotransmission dysfunction caused by glutamate N-methyl-D-aspartate receptors (NMDARs) may represent a primary deficiency in this mental disorder and play an important role in the development of TRS. D-Ser and D-Asp are direct NMDAR agonists and may be involved in modulating the functional activity of dopaminergic neurons. This narrative review demonstrates both the biological role of D-Ser and D-Asp in the normal functioning of the central nervous system (CNS) and in the pathogenesis of Sch and TRS. Particular attention is paid to D-Ser and D-Asp as promising components of a nutritive disease-modifying therapy for TRS.
Collapse
Affiliation(s)
- Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Aiperi K. Khasanova
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, The Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina A. Markina
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Arseny J. Gayduk
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
12
|
Chaumette B, Sengupta SM, Lepage M, Malla A, Iyer SN, Kebir O, Dion PA, Rouleau GA, Krebs MO, Shah JL, Joober R. A polymorphism in the glutamate metabotropic receptor 7 is associated with cognitive deficits in the early phases of psychosis. Schizophr Res 2022; 249:56-62. [PMID: 32624350 DOI: 10.1016/j.schres.2020.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
Schizophrenia is an illness characterized by positive symptoms, negative symptoms, and cognitive impairments. Cognitive impairments occur before the onset of psychosis and could reflect glutamatergic dysregulation. Thus, identifying associations between genetic variations in genes coding for glutamatergic receptors and cognitive impairment in schizophrenia may help in understanding the basis of these deficits and in identifying potential drug targets. In a discovery cohort of 144 first-episode of psychosis patients (FEP), we genotyped 58 candidate Single Nucleotide Polymorphisms (SNPs) located in NMDA and metabotropic glutamatergic receptors. These SNPs were selected according to the results from the Psychiatric Genomic Consortium and were tested for association with intellectual quotient (IQ) as assessed with the Wechsler Intelligence Scales. For replication, we used the ICAAR cohort including 121 ultra-high-risk patients (UHR) with the same cognitive assessment. A polymorphism located in GRM7, rs1396409, was significantly associated with performance IQ in the discovery cohort of FEP. This association was replicated in the UHR cohort. This polymorphism is also associated with total IQ and verbal IQ in the merged dataset, with a predominant effect on the arithmetic subtest. The rs1396409 polymorphism is significantly associated with cognitive impairment during the onset of psychosis. This genetic association highlights the possible impact of glutamatergic genes in cognitive deficits in the early phases of psychosis and enforces the interest for new therapeutic interventions targeting the glutamatergic pathway.
Collapse
Affiliation(s)
- Boris Chaumette
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, CNRS, GDR3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | - Sarojini M Sengupta
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Martin Lepage
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ashok Malla
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Srividya N Iyer
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Oussama Kebir
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, CNRS, GDR3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Patrick A Dion
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marie-Odile Krebs
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, CNRS, GDR3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Jai L Shah
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Mayeli A, Clancy KJ, Sonnenschein S, Sarpal DK, Ferrarelli F. A narrative review of treatment interventions to improve cognitive performance in schizophrenia, with an emphasis on at-risk and early course stages. Psychiatry Res 2022; 317:114926. [PMID: 36932470 PMCID: PMC10729941 DOI: 10.1016/j.psychres.2022.114926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 10/31/2022]
Abstract
Cognitive dysfunction is a core feature of schizophrenia (SCZ), which unfavorably affects SCZ patients' daily functioning and overall clinical outcome. An increasing body of evidence has shown that cognitive deficits are present not only at the beginning of the illness but also several years before the onset of psychosis. Nonetheless, the majority of treatment interventions targeting cognitive dysfunction in SCZ, using both pharmacological and nonpharmacological approaches, have focused on chronic patients rather than individuals at high risk or in the early stages of the disease. In this article, we provide a narrative review of cognitive interventions in SCZ patients, with a particular focus on pre-emptive interventions in at-risk/early course individuals when available. Furthermore, we discuss current challenges for these pre-emptive treatment interventions and provide some suggestions on how future work may ameliorate cognitive dysfunction in these individuals.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA 15213, USA
| | - Kevin J Clancy
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA 15213, USA
| | - Susan Sonnenschein
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA 15213, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA 15213, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Griffiths K, Egerton A, Millgate E, Anton A, Barker GJ, Deakin B, Drake R, Eliasson E, Gregory CJ, Howes OD, Kravariti E, Lawrie SM, Lewis S, Lythgoe DJ, Murphy A, McGuire P, Semple S, Stockton-Powdrell C, Walters JTR, Williams SR, MacCabe JH. Impaired verbal memory function is related to anterior cingulate glutamate levels in schizophrenia: findings from the STRATA study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:60. [PMID: 35853881 PMCID: PMC9279335 DOI: 10.1038/s41537-022-00265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Impaired cognition is associated with lower quality of life and poor outcomes in schizophrenia. Brain glutamate may contribute to both clinical outcomes and cognition, but these relationships are not well-understood. We studied a multicentre cohort of 85 participants with non-affective psychosis using proton magnetic resonance spectroscopy. Glutamate neurometabolites were measured in the anterior cingulate cortex (ACC). Cognition was assessed using the Brief Assessment for Cognition in Schizophrenia (BACS). Patients were categorised as antipsychotic responders or non-responders based on treatment history and current symptom severity. Inverted U-shaped associations between glutamate or Glx (glutamate + glutamine) with BACS subscale and total scores were examined with regression analyses. We then tested for an interaction effect of the antipsychotic response group on the relationship between glutamate and cognition. ACC glutamate and Glx had a positive linear association with verbal memory after adjusting for age, sex and chlorpromazine equivalent dose (glutamate, β = 3.73, 95% CI = 1.26-6.20, P = 0.004; Glx, β = 3.38, 95% CI = 0.84-5.91, P = 0.01). This association did not differ between good and poor antipsychotic response groups. ACC glutamate was also positively associated with total BACS score (β = 3.12, 95% CI = 0.01-6.23, P = 0.046), but this was not significant after controlling for antipsychotic dose. Lower glutamatergic metabolites in the ACC were associated with worse verbal memory, and this relationship was independent of antipsychotic response. Further research on relationships between glutamate and cognition in antipsychotic responsive and non-responsive illness could aid the stratification of patient groups for targeted treatment interventions.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, Medical School, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2JF, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Bill Deakin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Richard Drake
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Shôn Lewis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Scott Semple
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Charlotte Stockton-Powdrell
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
15
|
Lu C, Jin D, Palmer N, Fox K, Kohane IS, Smoller JW, Yu KH. Large-scale real-world data analysis identifies comorbidity patterns in schizophrenia. Transl Psychiatry 2022; 12:154. [PMID: 35410453 PMCID: PMC9001711 DOI: 10.1038/s41398-022-01916-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia affects >3.2 million people in the USA. However, its comorbidity patterns have not been systematically characterized in real-world populations. To address this gap, we conducted an observational study using a cohort of 86 million patients in a nationwide health insurance dataset. We identified participants with schizophrenia and those without schizophrenia matched by age, sex, and the first three digits of zip code. For each phenotype encoded in phecodes, we compared their prevalence in schizophrenia patients and the matched non-schizophrenic participants, and we performed subgroup analyses stratified by age and sex. Results show that anxiety, posttraumatic stress disorder, and substance abuse commonly occur in adolescents and young adults prior to schizophrenia diagnoses. Patients aged 60 and above are at higher risks of developing delirium, alcoholism, dementia, pelvic fracture, and osteomyelitis than their matched controls. Type 2 diabetes, sleep apnea, and eating disorders were more prevalent in women prior to schizophrenia diagnosis, whereas acute renal failure, rhabdomyolysis, and developmental delays were found at higher rates in men. Anxiety and obesity are more commonly seen in patients with schizoaffective disorders compared to patients with other types of schizophrenia. Leveraging a large-scale insurance claims dataset, this study identified less-known comorbidity patterns of schizophrenia and confirmed known ones. These comorbidity profiles can guide clinicians and researchers to take heed of early signs of co-occurring diseases.
Collapse
Affiliation(s)
- Chenyue Lu
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Di Jin
- grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Nathan Palmer
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Kathe Fox
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Isaac S. Kohane
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Jordan W. Smoller
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Kun-Hsing Yu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Vita A, Gaebel W, Mucci A, Sachs G, Barlati S, Giordano GM, Nibbio G, Nordentoft M, Wykes T, Galderisi S. European Psychiatric Association guidance on treatment of cognitive impairment in schizophrenia. Eur Psychiatry 2022; 65:e57. [PMID: 36059103 PMCID: PMC9532218 DOI: 10.1192/j.eurpsy.2022.2315] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Although cognitive impairment is a core symptom of schizophrenia related to poorer outcomes in different functional domains, it still remains a major therapeutic challenge. To date, no comprehensive treatment guidelines for cognitive impairment in schizophrenia are implemented. Methods The aim of the present guidance paper is to provide a comprehensive meta-review of the current available evidence-based treatments for cognitive impairment in schizophrenia. The guidance is structured into three sections: pharmacological treatment, psychosocial interventions, and somatic treatments. Results Based on the reviewed evidence, this European Psychiatric Association guidance recommends an appropriate pharmacological management as a fundamental starting point in the treatment of cognitive impairment in schizophrenia. In particular, second-generation antipsychotics are recommended for their favorable cognitive profile compared to first-generation antipsychotics, although no clear superiority of a single second-generation antipsychotic has currently been found. Anticholinergic and benzodiazepine burdens should be kept to a minimum, considering the negative impact on cognitive functioning. Among psychosocial interventions, cognitive remediation and physical exercise are recommended for the treatment of cognitive impairment in schizophrenia. Noninvasive brain stimulation techniques could be taken into account as add-on therapy. Conclusions Overall, there is definitive progress in the field, but further research is needed to develop specific treatments for cognitive impairment in schizophrenia. The dissemination of this guidance paper may promote the development of shared guidelines concerning the treatment of cognitive functions in schizophrenia, with the purpose to improve the quality of care and to achieve recovery in this population.
Collapse
|
17
|
Veselinović T, Neuner I. Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia. CNS Drugs 2022; 36:819-858. [PMID: 35831706 PMCID: PMC9345797 DOI: 10.1007/s40263-022-00935-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 12/11/2022]
Abstract
Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Aachen, Germany
| |
Collapse
|
18
|
Chang CH, Liu CY, Chen SJ, Tsai HC. Effect of N-methyl-D-aspartate receptor enhancing agents on cognition in dementia: an exploratory systematic review and meta-analysis of randomized controlled trials. Sci Rep 2021; 11:22996. [PMID: 34836972 PMCID: PMC8626464 DOI: 10.1038/s41598-021-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Multiple N-methyl-D-aspartate (NMDA) receptor enhancing agents have had promising effects on cognition among patients with dementia. However, the results remain inconsistent. This exploratory meta-analysis investigated the effectiveness of NMDA receptor enhancing agents for cognitive function. PubMed, the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews were searched for randomized controlled trials (RCTs). Controlled trials assessing add-on NMDA receptor enhancing agent treatment in patients with dementia and using cognition rating scales were eligible and pooled using a random-effect model for comparisons. The standardized mean difference (SMD) was calculated in each study from the effect size; positive values indicated that NMDA receptor enhancing agent treatment improved cognitive function. Funnel plots and the I2 statistic were evaluated for statistical heterogeneity. Moderators were evaluated using meta-regression. We identified 14 RCTs with 2224 participants meeting the inclusion criteria. Add-on NMDA receptor enhancing agents had small positive significant effects on overall cognitive function among patients with dementia (SMD = 0.1002, 95% CI 0.0105-0.1900, P = 0.02860). Subgroup meta-analysis showed patients with Alzheimer's Disease and trials using the Alzheimer Disease Assessment Scale-cognitive subscale as the primary outcome had small positive significant effects (SMD = 0.1042, 95% CI 0.0076-0.2007, P = 0.03451; SMD = 0.1267, 95% CI 0.0145-0.2388, P = 0.2686). This exploratory meta-analysis showed a very small, positive, and significant effect on overall cognition function in patients with dementia. Studies with larger samples are needed to evaluate different cognitive domains and phases of dementia.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan, ROC.,An Nan Hospital, China Medical University, Tainan, Taiwan, ROC
| | - Chieh-Yu Liu
- Biostatistics Consultant Lab, Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, ROC
| | - Shaw-Ji Chen
- Department of Psychiatry, Taitung MacKay Memorial Hospital, Taitung, Taiwan, ROC.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Hsin-Chi Tsai
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien City, Taiwan, ROC. .,Institute of Medical Science, Tzu-Chi University, No. 707, Sec. 3, Chung Yang Rd., Hualien 970, Taiwan, ROC.
| |
Collapse
|
19
|
Banks MI, Zahid Z, Jones NT, Sultan ZW, Wenthur CJ. Catalysts for change: the cellular neurobiology of psychedelics. Mol Biol Cell 2021; 32:1135-1144. [PMID: 34043427 PMCID: PMC8351556 DOI: 10.1091/mbc.e20-05-0340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
The resurgence of interest in the therapeutic potential of psychedelics for treating psychiatric disorders has rekindled efforts to elucidate their mechanism of action. In this Perspective, we focus on the ability of psychedelics to promote neural plasticity, postulated to be central to their therapeutic activity. We begin with a brief overview of the history and behavioral effects of the classical psychedelics. We then summarize our current understanding of the cellular and subcellular mechanisms underlying these drugs' behavioral effects, their effects on neural plasticity, and the roles of stress and inflammation in the acute and long-term effects of psychedelics. The signaling pathways activated by psychedelics couple to numerous potential mechanisms for producing long-term structural changes in the brain, a complexity that has barely begun to be disentangled. This complexity is mirrored by that of the neural mechanisms underlying psychiatric disorders and the transformations of consciousness, mood, and behavior that psychedelics promote in health and disease. Thus, beyond changes in the brain, psychedelics catalyze changes in our understanding of the neural basis of psychiatric disorders, as well as consciousness and human behavior.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Zarmeen Zahid
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Nathan T. Jones
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Cody J. Wenthur
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
20
|
Wu Q, Huang J, Wu R. Drugs Based on NMDAR Hypofunction Hypothesis in Schizophrenia. Front Neurosci 2021; 15:641047. [PMID: 33912003 PMCID: PMC8072017 DOI: 10.3389/fnins.2021.641047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Treatments for negative symptoms and cognitive dysfunction in schizophrenia remain issues that psychiatrists around the world are trying to solve. Their mechanisms may be associated with N-methyl-D-aspartate receptors (NMDARs). The NMDAR hypofunction hypothesis for schizophrenia was brought to the fore mainly based on the clinical effects of NMDAR antagonists and anti-NMDAR encephalitis pathology. Drugs targeted at augmenting NMDAR function in the brain seem to be promising in improving negative symptoms and cognitive dysfunction in patients with schizophrenia. In this review, we list NMDAR-targeted drugs and report on related clinical studies. We then summarize their effects on negative symptoms and cognitive dysfunction and analyze the unsatisfactory outcomes of these clinical studies according to the improved glutamate hypothesis that has been revealed in animal models. We aimed to provide perspectives for scientists who sought therapeutic strategies for negative symptoms and cognitive dysfunction in schizophrenia based on the NMDAR hypofunction hypothesis.
Collapse
Affiliation(s)
- Qiongqiong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Marchi M, Galli G, Magarini FM, Mattei G, Galeazzi GM. Sarcosine as an add-on treatment to antipsychotic medication for people with schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Expert Opin Drug Metab Toxicol 2021; 17:483-493. [PMID: 33538213 DOI: 10.1080/17425255.2021.1885648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: N-methyl-glycine (sarcosine) may improve symptoms of schizophrenia via NMDA-receptor modulation. We undertook a systematic review and meta-analysis to determine the short- and long-term effectiveness of sarcosine for schizophrenia.Research design and methods: The databases Medline, Scopus, EMBASE, Cochrane Library, and PsycINFO were searched. We included six independent randomized controlled trials of sarcosine as add-on treatment to current antipsychotic medication, involving 234 adult participants with schizophrenia, and reporting data on symptom severity. Standardized mean differences (SMDs) were used to assess continuous outcomes.Results: In all of the trials, sarcosine was administered orally at 2 g/day. Treatment with sarcosine did not show a significant effect size at any of the pre-established time points (2, 4, 6, or >6 weeks), due to marked quantitative heterogeneity. However, sarcosine was associated with significant reductions of symptom severity in the subgroups of people with chronic schizophrenia and no treatment resistance (namely, without added-on clozapine) in relation to the SMD after 6 weeks treatment at -0.36 and -0.31, respectively.Conclusions: People with chronic and non-refractory schizophrenia may benefit from the use of sarcosine as an add-on treatment to antipsychotic medication. Due to the good tolerability of this compound, future trials with larger sample sizes appear worthwhile.
Collapse
Affiliation(s)
- Mattia Marchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Galli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Maria Magarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Mattei
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Labor, Development and Innovation, Marco Biagi Department of Economics & Marco Biagi Foundation, University of Modena and Reggio Emilia, Modena, Italy
| | - Gian Maria Galeazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Contributions of animal models of cognitive disorders to neuropsychopharmacology. Therapie 2021; 76:87-99. [PMID: 33589315 DOI: 10.1016/j.therap.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Cognitive disorders and symptoms are key features of many mental and neurological diseases, with a large spectrum of impaired domains. Because of their possible evolution and detrimental functioning impact, they are a major pharmacological target for both symptomatic and disease-modifier drugs, while few cognitive enhancers have been marketed with an insufficient efficiency. It explains the need to model these cognitive disorders beyond the modelization of mental or neurological diseases themselves. According to the experimental strategy used to induce cognitive impairment, three categories of models have been identified: neurotransmission-driven models; pathophysiology-driven models; environment-driven models. These three categories of models reflect different levels of integration of endogenous and exogenous mechanisms underlying cognitive disorders in humans. Their comprehensive knowledge and illustration of their pharmacological modulation could help to propose a renewing strategy of drug development in central nervous system (CNS) field at a time when the academic and industrial invest seems to be declining despite the medical and social burden of brain diseases.
Collapse
|
23
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
24
|
Biodistribution and radiation dosimetry of the positron emission tomography probe for AMPA receptor, [ 11C]K-2, in healthy human subjects. Sci Rep 2021; 11:1598. [PMID: 33452361 PMCID: PMC7810729 DOI: 10.1038/s41598-021-81002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
[11C]K-2, a radiotracer exhibiting high affinity and selectivity for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), is suitable for the quantification of AMPARs in living human brains and potentially useful in the identification of epileptogenic foci in patients. This study aimed to estimate the radiation doses of [11C]K-2 in various organs and calculate the effective dose after injection of [11C]K-2 in healthy human subjects. Twelve healthy male subjects were registered and divided into two groups (370 or 555 MBq of [11C]K-2), followed by 2 h whole-body scans. We estimated the radiation dose of each organ and then calculated the effective dose for each subject. The highest uptake of [11C]K-2 was observed in the liver, while the brain also showed relatively high uptake. The urinary bladder exhibited the highest radiation dose. The kidneys and liver also showed high radiation doses after [11C]K-2 injections. The effective dose of [11C]K-2 ranged from 5.0 to 5.2 μSv/MBq. Our findings suggest that [11C]K-2 is safe in terms of the radiation dose and adverse effects. The injection of 370–555 MBq (10 to 15 mCi) for PET studies using this radiotracer is applicable in healthy human subjects and enables serial PET scans in a single subject.
Collapse
|
25
|
Metabolite abnormalities in psychosis risk: A meta-analysis of proton magnetic resonance spectroscopy studies. Asian J Psychiatr 2020; 54:102220. [PMID: 32653847 DOI: 10.1016/j.ajp.2020.102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Accumulating evidence implicates that individuals at high-risk of psychosis have already exhibited pathophysiological changes in brain metabolites including glutamate, gamma-Aminobutyric Acid (GABA), N-Acetylaspartate (NAA), creatine (Cr), myo-inositol (MI) and choline (Cho). These changes may contribute to the development of schizophrenia and associate with psychotic genes. However, specific metabolic changes of brain sub-regions in individuals at risk have still been controversial. Thus, the current study aimed to investigate the brain metabolic changes including glutamate, Glx, GABA, GABA/Glx, NAA, Cr, MI and Cho levels in individuals at risk by conducting a case-control meta-analysis and meta-regression of proton magnetic resonance spectroscopy studies. Primary outcomes revealed that individuals at risk exhibited increased Cr levels at the rostral medial prefrontal cortex (rmPFC), decreased NAA and Cr levels at the thalamus, and increased MI levels at the dorsolateral prefrontal cortex. Sub-group analyses further indicated that individuals with clinical high-risk (CHR) exhibited increased Cr levels at the medial prefrontal cortex (mPFC) and decreased Glx levels at the thalamus, while individuals with genetic risk (siblings of psychiatric patients) exhibited significant increased Glx and MI levels at the mPFC. However, GABA, GABA/Glx and Cho levels showed no significant result. These findings suggest that the dysfunctional metabolites at the mPFC and the thalamus may be an essential neurobiological basis at the early stage of psychosis.
Collapse
|
26
|
Chang CH, Lin CH, Liu CY, Chen SJ, Lane HY. Efficacy and cognitive effect of sarcosine (N-methylglycine) in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. J Psychopharmacol 2020; 34:495-505. [PMID: 32122256 DOI: 10.1177/0269881120908016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sarcosine (N-methylglycine), a type 1 glycine transporter inhibitor (GlyT1), has shown therapeutic potential for treating schizophrenia; however, studies have reported conflicting results. This meta-analysis aimed to explore the efficacy and cognitive effect of sarcosine for schizophrenia. METHODS In this study, PubMed, Cochrane Systematic Reviews, and Cochrane Collaboration Central Register of Controlled Clinical Trials were searched electronically for double-blinded randomised controlled trials that used sarcosine for treating schizophrenia. We used the published trials up to November 2019 to investigate the efficacy of sarcosine in schizophrenia. We pooled studies by using a random-effect model for comparing sarcosine treatment effects. Patients who were diagnosed with schizophrenia according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition were recruited. Clinical improvement and cognitive function scores between baseline and after sarcosine use were compared using the standardised mean difference (SMD) with 95% confidence intervals (CIs). The heterogeneity of the included trials was evaluated through visual inspection of funnel plots and through the I2 statistic. RESULTS We identified seven trials with 326 participants with schizophrenia meeting the inclusion criteria. All these studies evaluated the overall clinical symptoms, and four of them evaluated overall cognitive functions. Sarcosine use achieved more significant effects than the use of its comparators in relieving overall clinical symptoms (SMD = 0.51, CI = 0.26-0.76, p < 0.01). Moreover, studies with the low Positive and Negative Syndrome Scale range of 70-79 showed significant effect size (ES)s of 0.67 (95% CI: 0.03-1.31, p = 0.04). In addition, trials enrolling patients with stable clinical symptoms had significant ESs: 0.53 (95% CI: 0.21-0.85, p < 0.01). Add-on sarcosine combined with first- and second-generation antipsychotics, except clozapine, had a positive effect. For overall cognitive functions, sarcosine showed a positive but insignificant effect compared with its comparators (SMD = 0.27, CI = -0.06 to 0.60, p = 0.10). The effects were correlated with increased female proportions and decreased illness duration, albeit nonsignificantly. CONCLUSIONS The meta-analysis suggests that sarcosine may be associated with treatment effect on overall clinical symptoms in patients with schizophrenia but not cognitive functions.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung
- An Nan Hospital, China Medical University, Tainan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
- Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
| | - Chieh-Yu Liu
- Department of Speech Language Pathology and Audiology, Biostatistical Consulting Lab, National Taipei University of Nursing and Health Sciences, Taipei
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung
- Department of Medicine, Mackay Medical College, New Taipei
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung
| |
Collapse
|
27
|
Matrov D, Imbeault S, Kanarik M, Shkolnaya M, Schikorra P, Miljan E, Shimmo R, Harro J. Comprehensive mapping of cytochrome c oxidase activity in the rat brain after sub-chronic ketamine administration. Acta Histochem 2020; 122:151531. [PMID: 32131979 DOI: 10.1016/j.acthis.2020.151531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Ketamine is a noncompetitive antagonist of glutamatergic N-methyl-d-aspartate receptors. Its acute effects on healthy volunteers and schizophrenia patients mimic some acute psychotic, but also cognitive and negative symptoms of schizophrenia, and subchronic treatment with ketamine has been used as an animal model of psychotic disorders. Glutamatergic neurotransmission is tightly coupled to oxidative metabolism in the brain. Quantitative histochemical mapping of cytochrome c oxidase (COX) activity, which reflect long-term energy metabolism, was carried out in rats that received a daily subanaesthetic dose (30 mg/kg) of ketamine for 10 days. In total, COX activity was measured in 190 brain regions to map out metabolic adaptations to the subchronic administration of ketamine. Ketamine treatment was associated with elevated COX activity in nine brain sub-regions in sensory thalamus, basal ganglia, cortical areas, hippocampus and superior colliculi. Changes in pairwise correlations between brain regions were studied with differential correlation analysis. Ketamine treatment was associated with the reduction of positive association between brain regions in 66 % of the significant comparisons. Different layers of the superior colliculi showed the strongest effects. Changes in other visual and auditory brain centres were also of note. The locus coeruleus showed opposite pattern of increased coupling to mainly limbic brain regions in ketamine-treated rats. Our study replicated commonly observed activating effects of ketamine in the hippocampus, cingulate cortex, and basal ganglia. The current study is the first to extensively map the oxidative metabolism in the CNS in the ketamine model of schizophrenia. It shows that ketamine treatment leads to the re-organization of activity in sensory and memory-related brain circuits.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Sophie Imbeault
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Marianna Shkolnaya
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Patricia Schikorra
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ergo Miljan
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ruth Shimmo
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
28
|
Factors associated with successful antipsychotic dose reduction in schizophrenia: a systematic review of prospective clinical trials and meta-analysis of randomized controlled trials. Neuropsychopharmacology 2020; 45:887-901. [PMID: 31770770 PMCID: PMC7075912 DOI: 10.1038/s41386-019-0573-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/19/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
This systematic review and meta-analysis examined predictors of successful antipsychotic dose reduction in schizophrenia. Prospective clinical trials and randomized controlled trials (RCTs) investigating antipsychotic dose reduction in schizophrenia were selected for systematic review and meta-analysis, respectively. In total, 37 trials were identified. Only 8 studies focused on second-generation antipsychotics (SGAs); no studies investigated long-acting injectable SGAs. Of 24 studies evaluating relapse or symptom changes, 20 (83.3%) met the criteria for successful dose reduction. Factors associated with successful dose reduction were study duration < 1 year, age > 40 years, duration of illness > 10 years, and post-reduction chlorpromazine equivalent (CPZE) dose > 200 mg/day. Clinical deterioration was mostly re-stabilized by increasing the dose to the baseline level (N = 7/8, 87.5%). A meta-analysis of 18 RCTs revealed that relapse rate was significantly higher in the reduction group than the maintenance group (risk ratio [RR] = 1.96; 95% confidence interval [CI], 1.23-3.12), whereas neurocognition was significantly improved (standardized mean difference = 0.69; 95% CI, 0.25-1.12). A subgroup analysis indicated that only a post-reduction CPZE dose ≤ 200 mg/day was associated with an increased risk of relapse (RR = 2.79; 95% CI, 1.29-6.03). Thus, when reducing antipsychotic doses, clinicians should consider the long-term risk of relapse in younger patients with a relatively short illness duration and keep the final doses higher than CPZE 200 mg/day. Further studies, particularly those involving SGAs, are warranted to determine the optimal strategies for successful antipsychotic dose reduction in schizophrenia.
Collapse
|
29
|
Harvey PD, Bowie CR, McDonald S, Podhorna J. Evaluation of the Efficacy of BI 425809 Pharmacotherapy in Patients with Schizophrenia Receiving Computerized Cognitive Training: Methodology for a Double-blind, Randomized, Parallel-group Trial. Clin Drug Investig 2020; 40:377-385. [PMID: 32036587 PMCID: PMC7105423 DOI: 10.1007/s40261-020-00893-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE: Cognitive impairments associated with schizophrenia (CIAS) predict poor functional outcomes, but there are currently no approved pharmacological treatments for patients with CIAS. Additional cognitive stimulation may be required for pro-cognitive medications to improve efficacy, and computerized cognitive training (CCT) can be used to increase cognitive activity. A trial evaluating the effects of the novel glycine transporter inhibitor BI 425809 compared with placebo, on a background of regularly self-administered CCT in clinically stable patients with schizophrenia has commenced and its methodology is described here. METHODS This Phase II, multinational, randomized, double-blind, placebo-controlled, parallel-group trial will randomize 200 clinically stable outpatients, aged 18-50 years with established schizophrenia and no other major psychiatric disorder, 1:1 to BI 425809 or placebo once daily for 12 weeks. Following screening, which included a 2-week CCT run-in period, patients sufficiently compliant with CCT (target: ≥ 2 h of CCT per week during CCT run-in) will be randomized. During the 12-week treatment period, all patients should complete a total of approximately 30 h of CCT. The primary endpoint is change from baseline in neurocognitive function as measured by the neurocognitive composite score of the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB), after 12 weeks of treatment. Secondary endpoints include change from baseline in overall MCCB score, Schizophrenia Cognition Rating Scale, Positive and Negative Syndrome Scale, and safety (adverse events [AEs]) and serious AEs. Primary and secondary endpoints will be analyzed using the Restricted Maximum Likelihood-based mixed model for repeated measures. Novel endpoints include the Balloon Effort Task to evaluate patients' motivation and the Virtual Reality Functional Capacity Assessment Tool to assess skills for daily functioning. DISCUSSION This is one of the largest and longest trials to date to combine pharmacological therapy with CCT in patients with schizophrenia and will determine the benefit of combining BI 425809 pharmacotherapy with cognitive stimulation through self-administered CCT. This trial will further evaluate whether improvements in neurocognition translate into improved everyday functioning, whether self-administered CCT can be effectively implemented in a large multinational trial, and the role of motivation in neurocognitive and functional improvements. TRIAL REGISTRATION Registered on Clinicaltrials.gov on March 1, 2019 (NCT03859973).
Collapse
Affiliation(s)
- Philip D Harvey
- University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | - Sean McDonald
- Boehringer Ingelheim (Canada) Ltd, Burlington, ON, Canada
| | - Jana Podhorna
- Boehringer Ingelheim International GmbH, Ingelheim-am-Rhein, Germany
| |
Collapse
|
30
|
Régio Brambilla C, Veselinović T, Rajkumar R, Mauler J, Orth L, Ruch A, Ramkiran S, Heekeren K, Kawohl W, Wyss C, Kops ER, Scheins J, Tellmann L, Boers F, Neumaier B, Ermert J, Herzog H, Langen K, Jon Shah N, Lerche C, Neuner I. mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Hum Brain Mapp 2020; 41:2762-2781. [PMID: 32150317 PMCID: PMC7294054 DOI: 10.1002/hbm.24976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission—in particularly mGluR5—as a possible connection to a shared vulnerability.
Collapse
Affiliation(s)
- Cláudia Régio Brambilla
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Ravichandran Rajkumar
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| | - Jörg Mauler
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Linda Orth
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Andrej Ruch
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Shukti Ramkiran
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Christine Wyss
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Elena Rota Kops
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Jürgen Scheins
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Lutz Tellmann
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Frank Boers
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Bernd Neumaier
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Johannes Ermert
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Hans Herzog
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Karl‐Josef Langen
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- Department of Nuclear MedicineRWTH Aachen UniversityAachenGermany
| | - N. Jon Shah
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- INM‐11, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Christoph Lerche
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Irene Neuner
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| |
Collapse
|
31
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
32
|
Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management. Mol Neurobiol 2020; 57:2144-2166. [PMID: 31960362 PMCID: PMC7170834 DOI: 10.1007/s12035-020-01875-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200 mg/kg) and ORG24598 (0.63–5 mg/kg), the agonists, glycine (40–800 mg/kg), and D-serine (10–160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5–40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10 μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.
Collapse
|
33
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
34
|
Yao L, Wang Z, Deng D, Yan R, Ju J, Zhou Q. The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model. BMC Psychiatry 2019; 19:314. [PMID: 31653237 PMCID: PMC6814999 DOI: 10.1186/s12888-019-2306-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. METHODS By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. RESULTS In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. CONCLUSIONS We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice.
Collapse
Affiliation(s)
- Lulu Yao
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Zongliang Wang
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Di Deng
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Rongzhen Yan
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Jun Ju
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Wada M, Kurose S, Miyazaki T, Nakajima S, Masuda F, Mimura Y, Nishida H, Ogyu K, Tsugawa S, Mashima Y, Plitman E, Chakravarty MM, Mimura M, Noda Y. The P300 event-related potential in bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2019; 256:234-249. [PMID: 31200163 DOI: 10.1016/j.jad.2019.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neurophysiology including P300, that is a typical index of event-related potential, may be potential biomarkers for bipolar disorder (BD) and it can be useful towards elucidating the pathophysiology of BD. However, previous findings from P300 studies were inconsistent due to the heterogeneity of research methods, which make it difficult to understand the neurobiological significance of them. The aim of this study is to conduct a meta-analysis on P300 in patients with BD. METHOD A literature search was conducted using PubMed to identify studies that compared P300 event-related potential between patients with BD and healthy controls (HCs). We analyzed P300 indices such as amplitude and latency of P3a and P3b in auditory or visual paradigms. Further, moderator analyses were conducted to investigate the influence of patient characteristics (i.e. history of psychosis, diagnostic subcategories [BD-I/BD-II], and phase of illness [euthymic, manic, or depressive]) on P300 indices. RESULT Out of 124 initial records, we included 30 articles (BD: N = 1331; HCs: N = 1818). Patients with BD showed reduced P3a and P3b amplitude in both paradigms and delayed P3b latency in auditory paradigms compared to HCs. There was no influence on the history of psychosis, diagnostic subcategories, or phase of illness on P300 indices. LIMITATION The difference in medication use was difficult to control and it may affect the results. CONCLUSION This meta-analysis provides evidence for P300 abnormalities in patients with BD compared to HCs. Our results suggest that P300 may be trait markers rather than state markers in this illness.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hana Nishida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yuuki Mashima
- Center Hospital of the National Center for Global Health and Medicine, Japan
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University Biological and Biomedical Engineering, McGill University, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
36
|
Using proton magnetic resonance spectroscopic imaging to study glutamatergic alterations in patients with schizophrenia: A systematic review. Schizophr Res 2019; 210:13-20. [PMID: 31272905 DOI: 10.1016/j.schres.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
The glutamate hypothesis of schizophrenia posits aberrant glutamatergic activity in patients with schizophrenia. Levels of glutamate and glutamine can be detected and quantified in vivo by proton magnetic resonance spectroscopy. A related technique, proton magnetic resonance spectroscopic imaging (1H-MRSI), is particularly useful as it simultaneously collects multiple spectra, across multiple voxels, from a single acquisition. The primary aim of this study was to review and discuss the use of 1H-MRSI to measure levels of glutamate and glutamine in patients with schizophrenia. Additionally, the advantages and disadvantages of using 1H-MRSI to examine schizophrenia pathophysiology are discussed. A literature search was conducted through Ovid. English language studies utilizing 1H-MRSI to measure glutamate and glutamine in patients with schizophrenia were identified. Six studies met the inclusion criteria. The included studies provide inconclusive support for glutamatergic elevations within frontal brain regions in patients with schizophrenia. The key benefit of employing 1H-MRSI to examine schizophrenia pathophysiology appears to be its broader spatial coverage. Future 1H-MRSI studies utilizing large sample sizes and longitudinal study designs are necessitated to further our understanding of glutamatergic alterations in patients with schizophrenia.
Collapse
|
37
|
Shah P, Iwata Y, Caravaggio F, Plitman E, Brown EE, Kim J, Chan N, Hahn M, Remington G, Gerretsen P, Graff-Guerrero A. Alterations in body mass index and waist-to-hip ratio in never and minimally treated patients with psychosis: A systematic review and meta-analysis. Schizophr Res 2019; 208:420-429. [PMID: 30685395 DOI: 10.1016/j.schres.2019.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Obesity is up to 4 times higher in patients with schizophrenia than in the general population. However, the link between obesity and schizophrenia in the absence of antipsychotic use is unclear. Therefore, we aimed to examine differences in obesity measures (body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR)) in antipsychotic-naive and minimally treated (up to 2 weeks of lifetime antipsychotic exposure) patients with psychosis compared to healthy controls (HCs). METHODS A systematic search was conducted using Ovid Medline®, PsycINFO, and Embase. Standardized mean differences (SMDs) in obesity measures between groups were calculated. Separate sensitivity analyses were performed to examine the effects of age, sex, and ethnicity; antipsychotic exposure; and schizophrenia-related psychosis on SMDs. RESULTS A total of 23 studies were included in the meta-analysis (BMI = 23, WC = 9, WHR = 5). BMI was lower (SMD = -0.19, 95% CI = -0.34 to -0.05, P = 0.009) and WHR was elevated (SMD = 0.34, 95% CI = 0.14 to 0.55, P = 0.001) in patients. These differences remained after analyses were restricted to patients matched with HCs for age, sex, and ethnicity; to antipsychotic-naive patients; and to patients with schizophrenia-related diagnoses. CONCLUSIONS Differences in BMI and WHR were observed in never and minimally treated patients with psychosis compared to HCs. Future research is warranted to understand these alterations in the context of body fat biomarkers and neuropathology of psychiatric disorders, independent of the effects of antipsychotics.
Collapse
Affiliation(s)
- Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eric E Brown
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Chan
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 2019; 73:204-215. [PMID: 30666759 DOI: 10.1111/pcn.12823] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a chronic and severe psychiatric disorder that has profound impact on an individual's life and on society. Thus, developing more effective therapeutic interventions is essential. Over the past quarter-century, an abundance of evidence from pharmacologic challenges, post-mortem studies, brain imaging, and genetic studies supports the role of glutamatergic dysregulation in the pathophysiology of schizophrenia, and the results of recent randomized clinical trials based on this evidence have yielded promising results. In this article, we review the evidence that alterations in glutamatergic neurotransmission, especially focusing on the N-methyl-d-aspartate receptor (NMDAR) function, may be a critical causative feature of schizophrenia, how this contributes to pathologic circuit function in the brain, and how these insights are revealing whole new avenues for treatment development that could reduce treatment-resistant symptoms, which account for persistent disability.
Collapse
Affiliation(s)
- Yota Uno
- Department of Psychiatry, Harvard Medical School, Boston, USA.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, USA.,Department of Psychology, University of Bath, Bath, UK
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, USA.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, USA
| |
Collapse
|
39
|
Vita A, Minelli A, Barlati S, Deste G, Giacopuzzi E, Valsecchi P, Turrina C, Gennarelli M. Treatment-Resistant Schizophrenia: Genetic and Neuroimaging Correlates. Front Pharmacol 2019; 10:402. [PMID: 31040787 PMCID: PMC6476957 DOI: 10.3389/fphar.2019.00402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder that affects approximately 0.5–1% of the population. Response to antipsychotic therapy is highly variable, and it is not currently possible to predict those patients who will or will not respond to antipsychotic medication. Furthermore, a high percentage of patients, approximately 30%, are classified as treatment-resistant (treatment-resistant schizophrenia; TRS). TRS is defined as a non-response to at least two trials of antipsychotic medication of adequate dose and duration. These patients are usually treated with clozapine, the only evidence-based pharmacotherapy for TRS. However, clozapine is associated with severe adverse events. For these reasons, there is an increasing interest to identify better targets for drug development of new compounds and to establish better biomarkers for existing medications. The ability of antipsychotics to improve psychotic symptoms is dependent on their antagonist and reverse agonist activities at different neuroreceptors, and some genetic association studies of TRS have focused on different pharmacodynamic factors. Some genetic studies have shown an association between antipsychotic response or TRS and neurodevelopment candidate genes, antipsychotic mechanisms of action (such as dopaminergic, serotonergic, GABAergic, and glutamatergic) or pharmacokinetic factors (i.e., differences in the cytochrome families). Moreover, there is a growing body of literature on the structural and functional neuroimaging research into TRS. Neuroimaging studies can help to uncover the underlying neurobiological reasons for such resistance and identify resistant patients earlier. Studies examining the neuropharmacological mechanisms of antipsychotics, including clozapine, can help to improve our knowledge of their action on the central nervous system, with further implications for the discovery of biomarkers and the development of new treatments. The identification of the underlying mechanisms of TRS is a major challenge for developing personalized medicine in the psychiatric field for schizophrenia treatment. The main goal of precision medicine is to use genetic and brain-imaging information to improve the safety, effectiveness, and health outcomes of patients via more efficiently targeted risk stratification, prevention, and tailored medication and treatment management approaches. The aim of this review is to summarize the state of art of pharmacogenetic, pharmacogenomic and neuroimaging studies in TRS.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy
| | - Edoardo Giacopuzzi
- Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paolo Valsecchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Cesare Turrina
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
40
|
Chang CH, Lane HY, Tseng PT, Chen SJ, Liu CY, Lin CH. Effect of N-methyl-D-aspartate-receptor-enhancing agents on cognition in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. J Psychopharmacol 2019; 33:436-448. [PMID: 30730250 DOI: 10.1177/0269881118822157] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple N-methyl-d-aspartate (NMDA)-receptor-enhancing agents have demonstrated promising effects for cognition in schizophrenia. However, the results of studies have been conflicting. This updated meta-analysis explored the effect of NMDA-receptor-enhancing agents on cognitive function. METHODS We searched PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials and Cochrane Systematic Reviews for studies on the effect of NMDA-receptor-enhancing agents on cognitive function in patients with schizophrenia up to September 2018. Double-blind randomised placebo trials with cognition rating scales were included. We pooled studies by using a random-effect model for comparisons with add-on NMDA-receptor-enhancing agents. Cognitive function scores were compared between baseline and subsequent levels, and NMDA-receptor-positive modulators were assessed using the standardised mean difference (SMD) with 95% confidence intervals (CIs). We evaluated statistical heterogeneity through visual inspection of funnel plots and by using the I2 statistic. RESULTS We identified 25 trials with 1951 participants meeting the inclusion criteria. NMDA-receptor-enhancing agents had a small but nonsignificant effect compared with the placebo on overall cognitive function (SMD = 0.068, CI = -0.056 to 0.193, P = 0.283). We identified trials enrolling patients aged between 30 and 39 years old, which reported significant positive effects (SMD: 0.163, 95% CI: 0.016-0.310, P = 0.030). Men were associated with a smaller effect of NMDA-receptor-positive modulators on overall cognitive function. Moreover, subgroup meta-analysis of cognitive domains revealed that N-acetyl cysteine (NAC) had a significant effect on working memory ( P-value for interaction = 0.038; SMD = 0.679, CI = 0.397-0.961, P < 0.001). CONCLUSIONS Our meta-analysis revealed no significant effect of NMDA-enhancing agents on overall cognition. However, subgroup analysis suggested that NMDAR-enhancing agents may benefit young patients with schizophrenia, and NAC may have an effect on working memory. Additional trials with larger samples are suggested to evaluate these cognitive domains and ascertain the possible mechanisms.
Collapse
Affiliation(s)
- Chun-Hung Chang
- 1 Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,2 Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- 1 Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,2 Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Ping-Tao Tseng
- 5 Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung, Taiwan.,6 WinShine Clinics in Specialty of Psychiatry, Kaohsiung, Taiwan
| | - Shaw-Ji Chen
- 7 Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung, Taiwan.,8 Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chieh-Yu Liu
- 9 Biostatistical Consulting Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chieh-Hsin Lin
- 1 Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,10 Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Xu C, Yang X, Sun L, Yang T, Cai C, Wang P, Jiang J, Qing Y, Hu X, Wang D, Wang P, Cui G, Zhang J, Li Y, Ji F, Liu C, Wan C. An investigation of calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in schizophrenia. Psychiatry Res 2019; 273:782-787. [PMID: 31207866 DOI: 10.1016/j.psychres.2019.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
Abstract
Evidence indicates that abnormal phospholipase A2 (PLA2) levels and niacin insensitivity are present in individuals with schizophrenia. This study was designed to determine whether differences in plasma calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) exist between those with schizophrenia and healthy controls, and to explore the correlation between PLA2s and the niacin skin reaction in schizophrenic patients. We performed ELISA experiments to measure the concentrations of plasma iPLA2 and cPLA2 and we conducted a series of niacin skin tests on schizophrenic patients from the Chinese Han population. In addition, a meta-analysis of the relationship between PLA2 and schizophrenia was conducted. The plasma concentration of iPLA2 in patients with schizophrenia was significantly higher than that in healthy controls while the plasma concentration of cPLA2 did not differ. The meta-analysis also revealed that the activity level of iPLA2 in individuals with schizophrenia was higher than that in healthy controls, whereas that of cPLA2 was not. Furthermore, a significant positive correlation was found between the concentration of iPLA2 and the score for the skin flushing response within 20 min. The abnormal plasma iPLA2 concentration and its relationship with the niacin skin test in schizophrenic patients has contributed to a deeper understanding of the pathology of schizophrenia, which may in turn provide new insights into the clinical diagnoses and treatment of schizophrenia.
Collapse
Affiliation(s)
- Chuangye Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqi Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Changqun Cai
- The Fourth People's Hospital of Wuhu, Wuhu 241002, China
| | - Peng Wang
- The Fourth People's Hospital of Wuhu, Wuhu 241002, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pengkun Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Genetics and Development, Shanghai, China.
| |
Collapse
|
42
|
Lin CH, Lane HY. Early Identification and Intervention of Schizophrenia: Insight From Hypotheses of Glutamate Dysfunction and Oxidative Stress. Front Psychiatry 2019; 10:93. [PMID: 30873052 PMCID: PMC6400883 DOI: 10.3389/fpsyt.2019.00093] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a severe mental disorder which leads to functional deterioration. Early detection and intervention are vital for better prognosis. However, the diagnosis of schizophrenia still depends on clinical observation to date. Without reliable biomarkers, schizophrenia is difficult to detect in its early phase. Further, there is no approved medication for prodromal schizophrenia because current antipsychotics fail to show satisfactory efficacy and safety. Therefore, to develop an effective early diagnostic and therapeutic approach for schizophrenia, especially in its prodromal phase, is crucial. Glutamate signaling dysfunction and dysregulation of oxidative stress have been considered to play important roles in schizophrenic prodrome. The N-methyl-D-aspartate receptor (NMDAR) is one of three types of ionotropic glutamate receptors. In this article, we reviewed literature regarding NMDAR hypofunction, oxidative stress, and the linkage between both in prodromal schizophrenia. The efficacy of NMDAR enhancers such as D-amino acid oxidase inhibitor was addressed. Finally, we highlighted potential biomarkers related to NMDAR and oxidative stress regulation, and therefore suggested the strategies of early detection and intervention of prodromal schizophrenia. Future larger-scale studies combining biomarkers and novel drug development for early psychosis are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
43
|
Lago SG, Bahn S. Clinical Trials and Therapeutic Rationale for Drug Repurposing in Schizophrenia. ACS Chem Neurosci 2019; 10:58-78. [PMID: 29944339 DOI: 10.1021/acschemneuro.8b00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a paucity of efficacious novel drugs to address high rates of treatment resistance and refractory symptoms in schizophrenia. The identification of novel therapeutic indications for approved drugs-drug repurposing-has the potential to expedite clinical trials and reduce the costly risk of failure which currently limits central nervous system drug discovery efforts. In the present Review we discuss the historical role of drug repurposing in schizophrenia drug discovery and review the main classes of repurposing candidates currently in clinical trials for schizophrenia in terms of their therapeutic rationale, mechanisms of action, and preliminary results from clinical trials. Subsequently we outline the challenges and limitations which face the clinical repurposing pipeline and how novel technologies might serve to address these.
Collapse
Affiliation(s)
- Santiago G. Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
44
|
MacKay MAB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front Psychiatry 2019; 10:25. [PMID: 30787885 PMCID: PMC6372501 DOI: 10.3389/fpsyt.2019.00025] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
D-Serine is a potent co-agonist at the NMDA glutamate receptor and has been the object of many preclinical studies to ascertain the nature of its metabolism, its regional and cellular distribution in the brain, its physiological functions and its possible clinical relevance. The enzymes involved in its formation and catabolism are serine racemase (SR) and D-amino acid oxidase (DAAO), respectively, and manipulations of the activity of those enzymes have been useful in developing animal models of schizophrenia and in providing clues to the development of potential new antipsychotic strategies. Clinical studies have been conducted in schizophrenia patients to evaluate body fluid levels of D-serine and/or to use D-serine alone or in combination with antipsychotics to determine its effectiveness as a therapeutic agent. D-serine has also been used in combination with DAAO inhibitors in preclinical investigations, and interesting results have been obtained. Genetic studies and postmortem brain studies have also been conducted on D-serine and the enzymes involved in its metabolism. It is also of considerable interest that in recent years clinical and preclinical investigations have suggested that D-serine may also have antidepressant properties. Clinical studies have also shown that D-serine may be a biomarker for antidepressant response to ketamine. Relevant to both schizophrenia and depression, preclinical and clinical studies with D-serine indicate that it may be effective in reducing cognitive dysfunction.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Maryana Kravtsenyuk
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rejish Thomas
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nicholas D Mitchell
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
46
|
Koshiyama D, Fukunaga M, Okada N, Morita K, Nemoto K, Yamashita F, Yamamori H, Yasuda Y, Fujimoto M, Kelly S, Jahanshad N, Kudo N, Azechi H, Watanabe Y, Donohoe G, Thompson PM, Kasai K, Hashimoto R. Role of frontal white matter and corpus callosum on social function in schizophrenia. Schizophr Res 2018; 202:180-187. [PMID: 30005932 DOI: 10.1016/j.schres.2018.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/10/2018] [Accepted: 07/01/2018] [Indexed: 12/11/2022]
Abstract
Patients with schizophrenia show severe impairment in social function and have difficulty in their daily social life. Although a recent large-scale multicenter study revealed alterations in white matter microstructures, the association between these anatomical changes and social dysfunction in schizophrenia remains unknown. Therefore, we investigated the association between the white matter integrity of regions of interest and social function in schizophrenia. A total of 149 patients with schizophrenia and 602 healthy comparison subjects (HCS) underwent DTI and completed the Picture Arrangement subtest of the Wechsler Adult Intelligence Scale-Third Edition and the Finance subscale of the University of California, San Diego, Performance-Based Skills Assessment Brief, as social indices of interest. The fractional anisotropy (FA) in the anterior corona radiata and corpus callosum was significantly lower in patients than in HCS, and the radial diffusivity (RD) in the anterior corona radiata and corpus callosum was significantly higher in patients. The Picture Arrangement and Finance scores were both significantly impaired in patients. The effect of the FA of the right anterior corona radiata on the Finance score and the Picture Arrangement score, of the RD of the right anterior corona radiata on the Picture Arrangement score, and of the RD of the corpus callosum on the Picture Arrangement score were significant. In conclusion, our results confirmed the association between structural connectivity in the right frontal white matter and corpus callosum and social function in schizophrenia. These findings may provide a foundation for developing an intervention for functional recovery in schizophrenia.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sinead Kelly
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States of America
| | - Noriko Kudo
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Hirotsugu Azechi
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yoshiyuki Watanabe
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gary Donohoe
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States of America
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.
| |
Collapse
|
47
|
Efficacy of different types of cognitive enhancers for patients with schizophrenia: a meta-analysis. NPJ SCHIZOPHRENIA 2018; 4:22. [PMID: 30361502 PMCID: PMC6202388 DOI: 10.1038/s41537-018-0064-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Cognitive impairment is a core feature of schizophrenia, which is predictive for functional outcomes and is, therefore, a treatment target in itself. Yet, literature on efficacy of different pharmaco-therapeutic options is inconsistent. This quantitative review provides an overview of studies that investigated potential cognitive enhancers in schizophrenia. We included pharmacological agents, which target different neurotransmitter systems and evaluated their efficacy on overall cognitive functioning and seven separate cognitive domains. In total, 93 studies with 5630 patients were included. Cognitive enhancers, when combined across all different neurotransmitter systems, which act on a large number of different mechanisms, showed a significant (yet small) positive effect size of 0.10 (k = 51, p = 0.023; 95% CI = 0.01 to 0.18) on overall cognition. Cognitive enhancers were not superior to placebo for separate cognitive domains. When analyzing each neurotransmitter system separately, agents acting predominantly on the glutamatergic system showed a small significant effect on overall cognition (k = 29, Hedges’ g = 0.19, p = 0.01), as well as on working memory (k = 20, Hedges’ g = 0.13, p = 0.04). A sub-analysis of cholinesterase inhibitors (ChEI) showed a small effect on working memory (k = 6, Hedges’ g = 0.26, p = 0.03). Other sub-analyses were positively nonsignificant, which may partly be due to the low number of studies we could include per neurotransmitter system. Overall, this meta-analysis showed few favorable effects of cognitive enhancers for patients with schizophrenia, partly due to lack of power. There is a lack of studies involving agents acting on other than glutamatergic and cholinergic systems, especially of those targeting the dopaminergic system.
Collapse
|
48
|
Physiological signature of a novel potentiator of AMPA receptor signalling. Mol Cell Neurosci 2018; 92:82-92. [PMID: 30044951 PMCID: PMC6525152 DOI: 10.1016/j.mcn.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 12/02/2022] Open
Abstract
We have synthesized a novel small molecule based on the pyrrolidinone–containing core structure of clausenamide, which is a candidate anti–dementia drug. The synthetic route yielded multi–gram quantities of an isomeric racemate mixture in a short number of steps. When tested in hippocampal slices from young adult rats the compound enhanced AMPA receptor–mediated signalling at mossy fibre synapses, and potentiated inward currents evoked by local application of l–glutamate onto CA3 pyramidal neurons. It facilitated the induction of mossy fibre LTP, but the magnitude of potentiation was smaller than that observed in untreated slices. The racemic mixture was separated and it was shown that only the (−) enantiomer was active. Toxicity analysis indicated that cell lines tolerated the compound at concentrations well above those enhancing synaptic transmission. Our results unveil a small molecule whose physiological signature resembles that of a potent nootropic drug. A small molecule was developed using a novel approach towards the synthesis of clausenamide, which is thought to have anti–dementia properties. When tested in hippocampal slices the compound enhanced AMPA receptor signalling as well as glutamate–evoked currents in CA3 pyramidal neurons. It facilitated the induction of mossy fibre LTP. Cytotoxicity experiments revealed no deleterious effect to cells at sub–millimolar concentrations.
Collapse
|
49
|
Mehta MA, Schmechtig A, Kotoula V, McColm J, Jackson K, Brittain C, Tauscher-Wisniewski S, Kinon BJ, Morrison PD, Pollak T, Mant T, Williams SCR, Schwarz AJ. Group II metabotropic glutamate receptor agonist prodrugs LY2979165 and LY2140023 attenuate the functional imaging response to ketamine in healthy subjects. Psychopharmacology (Berl) 2018; 235:1875-1886. [PMID: 29564482 DOI: 10.1007/s00213-018-4877-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aberrant glutamate neurotransmission, and in particular dysfunction of the N-methyl-D-aspartate receptor (NMDAR), has been implicated in psychiatric disorders and represents a novel therapeutic target. Low-dose administration of the NMDA antagonist ketamine in healthy volunteers elicits a strong blood oxygenation level dependent (BOLD) imaging signal that can be attenuated by pretreatment with single, therapeutically effective doses of marketed medicines interacting with the glutamate system. OBJECTIVE To test the attenuation of the ketamine-induced BOLD signal by pretreatment with either a metabotropic glutamate receptor (mGluR) 2/3 or a mGluR2 agonist in healthy volunteers METHODS: We used a ketamine challenge pharmacological magnetic resonance imaging (phMRI) paradigm to assess the modulatory effects of single acute doses of LY2140023 (pomaglumetad methionil), the methionine prodrug of the mGluR2/3 agonist LY404039 (10, 40, and 160 mg; N = 16 subjects) and of LY2979165, and the alanine prodrug of the selective orthosteric mGluR2 agonist 2812223 (20 and 60 mg; N = 16 subjects). RESULTS A reduction in the ketamine-evoked BOLD phMRI signal relative to placebo was observed at the highest doses tested of both LY2140023 and LY2979165. A relationship was observed between reduction of the BOLD signal and increasing plasma levels of 2812223 in the LY2979165 cohort. CONCLUSIONS These results identify pharmacologically active doses of the group II mGluR agonist prodrugs LY2140023 and LY2979165 in humans. They also extend the classes of compounds that have been experimentally shown to reverse the ketamine-evoked phMRI signal in humans, further supporting the use of this method as a neuroimaging biomarker for assessing functional effects.
Collapse
Affiliation(s)
- Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | - Anne Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Juliet McColm
- Eli Lilly and Company, Sunninghill Road, Windlesham, Surrey, UK
| | | | - Claire Brittain
- Eli Lilly and Company, Sunninghill Road, Windlesham, Surrey, UK
| | | | | | - Paul D Morrison
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Pollak
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | |
Collapse
|
50
|
Kishi T, Ikuta T, Oya K, Matsunaga S, Matsuda Y, Iwata N. Anti-Dementia Drugs for Psychopathology and Cognitive Impairment in Schizophrenia: A Systematic Review and Meta-Analysis. Int J Neuropsychopharmacol 2018; 21:748-757. [PMID: 29762677 PMCID: PMC6070030 DOI: 10.1093/ijnp/pyy045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/23/2018] [Accepted: 05/12/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis of double-blind, randomized, placebo-controlled trials of anti-dementia drugs plus antipsychotics for schizophrenia. METHODS Primary outcomes of efficacy and safety included improving overall symptoms (Positive and Negative Syndrome Scale and Brief Psychiatric Rating Scale scores) and all-cause discontinuation, respectively. Other outcomes included psychopathology subscales (positive, negative, general, and anxiety/depressive symptoms), cognitive function (attention/vigilance, reasoning/problem solving, social cognition, speed of processing, verbal learning, visual learning, working memory, and cognitive control/executive function), Mini-Mental State Examination scores, treatment discontinuation due to adverse events and inefficacy, and individual adverse events. We evaluated the effect size using a random effects model. RESULTS We identified 37 studies (n=1574): 14 donepezil-based (n=568), 10 galantamine-based (n=371), 4 rivastigmine-based (n=146), and 9 memantine-based (n=489) studies. Pooled anti-dementia drugs plus antipsychotics treatments were superior to placebo plus antipsychotics in improving the overall symptoms (24 studies, 1069 patients: standardized mean difference=-0.34, 95% CI=-0.61 to -0.08, P=.01), negative symptoms (24 studies, 1077 patients: standardized mean difference =-0.62, 95% CI=-0.92 to -0.32, Pcorrected=.00018), and Mini-Mental State Examination scores (7 studies, 225 patients: standardized mean difference=-0.79, 95% CI=-1.23 to -0.34, P=.0006). No significant differences were found between anti-dementia drugs plus antipsychotics and placebo plus antipsychotics regarding other outcomes. CONCLUSIONS Although the results suggest that anti-dementia drugs plus antipsychotics treatment improves negative symptoms and Mini-Mental State Examination scores in schizophrenia patients, they possibly were influenced by a small-study effect and some bias. However, it was not superior to placebo plus antipsychotics in improving composite cognitive test score, which more systematically evaluates cognitive impairment than the Mini-Mental State Examination score. Overall, the anti-dementia drugs plus antipsychotics treatment was well tolerated.
Collapse
Affiliation(s)
- Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan,Correspondence: Taro Kishi, MD, PhD, Department of Psychiatry, Fujita Health University School of Medicine, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan ()
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, MS USA
| | - Kazuto Oya
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Shinji Matsunaga
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan,Department of Department of Geriatrics and Cognitive Disorders, Fujita Health University School of Medicine, Aichi, Japan
| | - Yuki Matsuda
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|