1
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
2
|
Chen X, Chen J, Fu R, Rao P, Weller R, Bradshaw J, Liu S. Can the Cellular Internalization of Cargo Proteins Be Enhanced by Fusing a Tat Peptide in the Center of Proteins? A Fluorescence Study. J Pharm Sci 2018; 107:879-886. [DOI: 10.1016/j.xphs.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/27/2022]
|
3
|
Tan JKY, Sellers DL, Pham B, Pun SH, Horner PJ. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Front Mol Neurosci 2016; 9:108. [PMID: 27847462 PMCID: PMC5088201 DOI: 10.3389/fnmol.2016.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Binhan Pham
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Philip J Horner
- Center for Neuroregenerative Medicine, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
4
|
Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 2016; 232:103-12. [PMID: 27063424 DOI: 10.1016/j.jconrel.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 01/19/2023]
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors.
Collapse
|
5
|
Mastorakos P, Song E, Zhang C, Berry S, Park HW, Kim YE, Park JS, Lee S, Suk JS, Hanes J. Biodegradable DNA Nanoparticles that Provide Widespread Gene Delivery in the Brain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:678-85. [PMID: 26680637 PMCID: PMC4913277 DOI: 10.1002/smll.201502554] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Indexed: 05/26/2023]
Abstract
Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low-resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure-driven flow provided by convection-enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus-based or synthetic nonbiodegradable systems. Using a state-of-the-art biodegradable polymer, poly(β-amino ester), colloidally stable sub-100 nm DNA nanoparticles are engineered with a nonadhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain-penetrating nanoparticles are able to homogeneously distribute throughout the rodent striatum and mediate widespread and high-level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21297, USA
| | - Eric Song
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Clark Zhang
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Av., Baltimore, MD 21205, USA
| | - Sneha Berry
- Center for Nanomedicine, at the Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
- Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hee Won Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Young Eun Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Jong Sung Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N. Caroline St, Baltimore, MD 21287, USA
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N. Caroline St, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
6
|
Mastorakos P, Zhang C, Berry S, Oh Y, Lee S, Eberhart CG, Woodworth GF, Suk JS, Hanes J. Highly PEGylated DNA Nanoparticles Provide Uniform and Widespread Gene Transfer in the Brain. Adv Healthc Mater 2015; 4:1023-33. [PMID: 25761435 DOI: 10.1002/adhm.201400800] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Indexed: 12/13/2022]
Abstract
Gene delivery to the central nervous system (CNS) has potential as a means for treating numerous debilitating neurological diseases. Nonviral gene vector platforms are tailorable and can overcome key limitations intrinsic to virus-mediated delivery; however, lack of clinical efficacy with nonviral systems to date may be attributed to limited gene vector dispersion and transfection in vivo. It is shown that the brain extracellular matrix (ECM) strongly limits penetration of polymer-based gene vector nanoparticles (NP) through the brain parenchyma, even when they are very small (<60 nm) and coated with a polyethylene glycol (PEG) corona of typical density. Following convection enhanced delivery (CED), conventional gene vectors are confined to the injection site, presumably by adhesive interactions with the brain ECM and do not provide gene expression beyond the point of administration. In contrast, it is found that incorporating highly PEGylated polymers allows the production of compacted (≈43 nm) and colloidally stable DNA NP that avoid adhesive trapping within the brain parenchyma. When administered by CED into the rat striatum, highly PEGylated DNA NP distribute throughout and provide broad transgene expression without vector-induced toxicity. The use of these brain-penetrating gene vectors, in conjunction with CED, offers an avenue to improve gene therapy for CNS diseases.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Ophthalmology; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21297 USA
| | - Clark Zhang
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Biomedical Engineering; Johns Hopkins University School of Medicine; 720 Rutland Avenue Baltimore MD 21205 USA
| | - Sneha Berry
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Center for Biotechnology Education; Krieger School of Arts and Sciences; Johns Hopkins University; 3400 N. Charles Street Baltimore MD 21218 USA
| | - Yumin Oh
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Seulki Lee
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Charles G. Eberhart
- Department of Pathology; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21287 USA
| | - Graeme F. Woodworth
- Departments of Neurological Surgery Anatomy and Neurobiology; University of Maryland School of Medicine; 22 S. Greene Street Baltimore MD 21201 USA
| | - Jung Soo Suk
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Ophthalmology; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21297 USA
| | - Justin Hanes
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Ophthalmology; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21297 USA
- Department of Biomedical Engineering; Johns Hopkins University School of Medicine; 720 Rutland Avenue Baltimore MD 21205 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
7
|
Wehunt MP, Winschel CA, Khan AK, Guo TL, Abdrakhmanova GR, Sidorov V. Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes. J Liposome Res 2013; 23:37-46. [PMID: 23363303 DOI: 10.3109/08982104.2012.727423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
New pH-sensitive lipids were synthesized and utilized in formulations of liposomes suitable for controlled drug release. These liposomes contain various amounts of NaCl in the internal aqueous compartments. The release of the drug model is triggered by an application of HCl cotransporter and exogenous physiologically relevant NaCl solution. HCl cotransporter allows an uptake of HCl by liposomes to the extent of their being proportional to the transmembrane Cl(-) gradient. Therefore, each set of liposomes undergoes internal acidification, which, ultimately, leads to the hydrolysis of the pH-sensitive lipids and content release at the desired time. The developed system releases the drug model in a stepwise fashion, with the release stages separated by periods of low activity. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be nontoxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug-release model potentially suitable for in vivo applications.
Collapse
Affiliation(s)
- Mark P Wehunt
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tagalakis AD, Kenny GD, Bienemann AS, McCarthy D, Munye MM, Taylor H, Wyatt MJ, Lythgoe MF, White EA, Hart SL. PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. J Control Release 2013; 174:177-87. [PMID: 24269968 DOI: 10.1016/j.jconrel.2013.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023]
Abstract
Non-viral vector formulations comprise typically complexes of nucleic acids with cationic polymers or lipids. However, for in vivo applications cationic formulations suffer from problems of poor tissue penetration, non-specific binding to cells, interaction with serum proteins and cell adhesion molecules and can lead to inflammatory responses. Anionic formulations may provide a solution to these problems but they have not been developed to the same extent as cationic formulations due to difficulties of nucleic acid packaging and poor transfection efficiency. We have developed novel PEGylated, anionic nanocomplexes containing cationic targeting peptides that act as a bridge between PEGylated anionic liposomes and plasmid DNA. At optimized ratios, the components self-assemble into anionic nanocomplexes with a high packaging efficiency of plasmid DNA. Anionic PEGylated nanocomplexes were resistant to aggregation in serum and transfected cells with a far higher degree of receptor-targeted specificity than their homologous non-PEGylated anionic and cationic counterparts. Gadolinium-labeled, anionic nanoparticles, administered directly to the brain by convection-enhanced delivery displayed improved tissue penetration and dispersal as well as more widespread cellular transfection than cationic formulations. Anionic PEGylated nanocomplexes have widespread potential for in vivo gene therapy due to their targeted transfection efficiency and ability to penetrate tissues.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | - Gavin D Kenny
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Alison S Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - David McCarthy
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mustafa M Munye
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Hannah Taylor
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Marcella J Wyatt
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biological Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Stephen L Hart
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
9
|
Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2013; 15:69-80. [PMID: 24145298 DOI: 10.4161/cbt.26609] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multidrug resistance (MDR) is a hallmark of cancer cells and a crucial factor in chemotherapy failure, cancer reappearance, and patient deterioration. We have previously described the physicochemical characteristics and the in vitro anticancer properties of a multifunctional doxorubicin-loaded liposomal formulation. Lipodox(®), a commercially available PEGylated liposomal doxorubicin, was made multifunctional by surface-decorating with a cell-penetrating peptide, TATp, conjugated to PEG 1000-PE, to enhance liposomal cell uptake. A pH-sensitive polymer, PEG 2000-Hz-PE, with a pH-sensitive hydrazone (Hz) bond to shield the peptide in the body and expose it only at the acidic tumor cell surface, was used as well. In addition, an anti-nucleosome monoclonal antibody 2C5 attached to a long-chain polymer to target nucleosomes overexpressed on the tumor cell surface was also present. Here, we report the in vitro cell uptake and cytotoxicity of the modified multifunctional immunoliposomes as well as the in vivo studies on tumor xenografts developed subcutaneously in nude mice with MDR and drug-sensitive human ovarian cancer cells (SKOV-3). Our results show the ability of multifunctional immunoliposomes to overcome MDR by enhancing cytotoxicity in drug-resistant cells, compared with non-modified liposomes. Furthermore, in comparison with the non-modified liposomes, upon intravenous injection of these multifunctional immunoliposomes into mice with tumor xenografts, a significant reduction in tumor growth and enhanced therapeutic efficacy of the drug in both drug-resistant and drug-sensitive mice was obtained. The use of "smart" multifunctional delivery systems may provide the basis for an effective strategy to develop, improve, and overcome MDR cancers in the future.
Collapse
Affiliation(s)
- Anjali Apte
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Erez Koren
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Alexander Koshkaryev
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| |
Collapse
|
10
|
Barua NU, Gill SS, Love S. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol 2013; 24:117-27. [PMID: 23944716 DOI: 10.1111/bpa.12082] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/08/2013] [Indexed: 12/16/2022] Open
Abstract
Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Neil U Barua
- Department of Neurosurgery, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Frenchay Hospital, Bristol, UK
| | | | | |
Collapse
|
11
|
Chen X, Sa'adedin F, Deme B, Rao P, Bradshaw J. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1982-8. [DOI: 10.1016/j.bbamem.2013.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 01/07/2023]
|
12
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
13
|
Weng KC, Hashizume R, Noble CO, Serwer LP, Drummond DC, Kirpotin DB, Kuwabara AM, Chao LX, Chen FF, James CD, Park JW. Convection-enhanced delivery of targeted quantum dot-immunoliposome hybrid nanoparticles to intracranial brain tumor models. Nanomedicine (Lond) 2013; 8:1913-25. [PMID: 23631502 DOI: 10.2217/nnm.12.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim of this work is to evaluate combining targeting strategy and convection-enhanced delivery in brain tumor models by imaging quantum dot-immunoliposome hybrid nanoparticles. MATERIALS & METHODS An EGF receptor-targeted, quantum dot-immunoliposome hybrid nanoparticle (QD-IL) was synthesized. In vitro uptake was measured by flow cytometry and intracellular localization was imaged by confocal microscopy. In the in vivo study, QD-ILs were delivered to intracranial xenografts via convection-enhanced delivery and fluorescence was monitored noninvasively in real-time. RESULTS QD-ILs exhibited specific and efficient uptake in vitro and exhibited approximately 1.3- to 5.0-fold higher total fluorescence compared with nontargeted counterpart in intracranial brain tumor xenografts in vivo. CONCLUSION QD-ILs serve as an effective imaging agent in vitro and in vivo, and the data suggest that ligand-directed liposomal nanoparticles in conjunction with convection-enhanced delivery may offer therapeutic benefits for glioblastoma treatment as a result of specific and efficient uptake by malignant cells.
Collapse
Affiliation(s)
- Kevin C Weng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shin J, Shum P, Grey J, Fujiwara SI, Malhotra GS, González-Bonet A, Hyun SH, Moase E, Allen TM, Thompson DH. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics. Mol Pharm 2012; 9:3266-76. [PMID: 23030381 DOI: 10.1021/mp300326z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles.
Collapse
Affiliation(s)
- Junhwa Shin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-1393, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Writer MJ, Kyrtatos PG, Bienemann AS, Pugh JA, Lowe AS, Villegas-Llerena C, Kenny GD, White EA, Gill SS, McLeod CW, Lythgoe MF, Hart SL. Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. J Control Release 2012; 162:340-8. [PMID: 22800579 PMCID: PMC3657147 DOI: 10.1016/j.jconrel.2012.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency. MRI conspicuity peaked at 4h after incubation of the nanocomplexes with cells, suggesting enhancement by cellular uptake and trafficking. This was supported by time course confocal microscopy analysis of transfections with fluorescently-labelled LPD nanocomplexes. Gd-LPD nanocomplexes delivered to rat brains by convection-enhanced delivery were visible by MRI at 6 h, 24 h and 48 h after administration. Histological brain sections analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) confirmed that the MRI signal was associated with the distribution of Gd(3+) moieties and differentiated MRI signals due to haemorrhage. The transfected brain cells near the injection site appeared to be mostly microglial. This study shows the potential of Gd-LPD nanocomplexes for simultaneous delivery of contrast agents and genes for real-time monitoring of gene therapy in the brain.
Collapse
Affiliation(s)
- Michele J. Writer
- Molecular Immunology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Panagiotis G. Kyrtatos
- Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Alison S. Bienemann
- The Functional Neurosurgery Research Group, Bristol University, Institute of Clinical Neurosciences, Southmead Hospital, Bristol BS16 1LE, UK
| | - John A. Pugh
- Centre For Analytical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew S. Lowe
- Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, London WC1E 6DD, UK
| | | | - Gavin D. Kenny
- Molecular Immunology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Edward A. White
- The Functional Neurosurgery Research Group, Bristol University, Institute of Clinical Neurosciences, Southmead Hospital, Bristol BS16 1LE, UK
| | - Steven S. Gill
- The Functional Neurosurgery Research Group, Bristol University, Institute of Clinical Neurosciences, Southmead Hospital, Bristol BS16 1LE, UK
| | - Cameron W. McLeod
- Centre For Analytical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Stephen L. Hart
- Molecular Immunology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
16
|
Cheng CJ, Saltzman WM. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials 2011; 32:6194-203. [PMID: 21664689 PMCID: PMC3130098 DOI: 10.1016/j.biomaterials.2011.04.053] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023]
Abstract
We have developed a polymer nanoparticle-based siRNA delivery system that exploits a cell surface binding synergism between targeting ligands and cell-penetrating peptides. Nanoparticles were coated with folate and penetratin via a PEGylated phospholipid linker (DSPE-PEG): the combination of both of these ligands represents a strategy for enhancing intracellular delivery of attached polymer nanoparticles. Nanoparticles were characterized for size, morphology, density of surface modification, and ligand association and retention. The surface coverage achieved on DSPE-PEG-coated nanoparticles is as high as (or higher than) obtained with other ligand-modified nano-scale particulate systems (∼0.5-5 pmol ligand/cm²). Additionally, these nanoparticles were loaded with a high density of siRNA (∼130-140 pmol siRNA/mg nanoparticles), which is slowly released upon incubation in water. Synergies between the activity of surface binding and cell internalizing ligands on these siRNA-loaded nanoparticles impart delivery enhancements that improve their gene silencing efficacy both in culture and in tumor models. Traditionally, targeting ligands function by binding to cell surface receptors, while cell-penetrating peptides function by nonspecifically transporting across cell membranes. Interestingly, we have observed that improved delivery of these dual-functionalized nanoparticles was in part, a result of increased cell surface avidity afforded by both ligands. This siRNA delivery system presents an approach to surface modification of nanovehicles, in which multiple ligands function in parallel to enhance cell binding and uptake.
Collapse
Affiliation(s)
- Christopher J Cheng
- Department of Biomedical Engineering Yale University 55 Prospect Street, MEC 414 New Haven, CT 06511 USA
- Department of Molecular Biophysics and Biochemistry Yale University 260 Whitney Avenue P.O. Box 208114 New Haven, CT 06520 USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering Yale University 55 Prospect Street, MEC 414 New Haven, CT 06511 USA
| |
Collapse
|
17
|
Serum amyloid P component facilitates DNA clearance and inhibits plasmid transfection: implications for human DNA vaccine. Gene Ther 2011; 19:70-7. [PMID: 21544098 DOI: 10.1038/gt.2011.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that naked plasmid DNA can induce strong immune responses in mice has attracted considerable attention in the vaccine community. However, similar immunizations have been less/not effective in clinical trials during the past decade, and the underlying mechanisms remain unknown. In this study, we hypothesized that some DNA-binding proteins in human serum may serve as host barriers, responsible for the low efficiency of plasmids' transfection in vivo. Using proteomics, we showed that human serum amyloid P component (hSAP) is specifically present in human DNA-protein complexes. Further analysis indicated that hSAP effectively binds plasmid DNA, inhibits DNA transfection into somatic cells and facilitates the endocytosis of DNA by macrophages, whereas mouse SAP (mSAP) has similar, but much weaker, activities. In the presence of hSAP, the plasmid DNA expression in vivo and plasmid DNA-induced immune responses also significantly decreased. Therefore, our results suggest that hSAP contributes to extracellular DNA clearance and the inhibition of plasmid DNA transfection in vivo. This mechanism may be partly responsible for the insufficient immune responses to DNA vaccination in human beings; therefore, it may serve as a novel target for the improvement of DNA vaccines and DNA-based gene therapy.
Collapse
|
18
|
Khondee S, Baoum A, Siahaan TJ, Berkland C. Calcium condensed LABL-TAT complexes effectively target gene delivery to ICAM-1 expressing cells. Mol Pharm 2011; 8:788-98. [PMID: 21473630 DOI: 10.1021/mp100393j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted gene delivery using nonviral vectors is a highly touted scheme to reduce the potential for toxic or immunological side effects by reducing dose. In previous reports, TAT polyplexes with DNA have shown relatively poor gene delivery. The transfection efficiency has been enhanced by condensing TAT/DNA complexes to a small particle size using calcium. To explore the targetability of these condensed TAT complexes, LABL peptide targeting intercellular cell-adhesion molecule-1 (ICAM-1) was conjugated to TAT peptide using a polyethylene glycol (PEG) spacer. PEGylation reduced the transfection efficiency of TAT, but TAT complexes targeting ICAM-1 expressing cells regained much of the lost transfection efficiency. Targeted block peptides properly formulated with calcium offer promise for gene delivery to ICAM-1 expressing cells at sites of injury or inflammation.
Collapse
Affiliation(s)
- Supang Khondee
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
19
|
Yamano S, Dai J, Yuvienco C, Khapli S, Moursi AM, Montclare JK. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J Control Release 2011; 152:278-85. [PMID: 21315780 DOI: 10.1016/j.jconrel.2011.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/19/2011] [Accepted: 02/01/2011] [Indexed: 01/23/2023]
Abstract
The HIV-1 Tat peptide has been successfully used for intracellular gene delivery. Likewise, various lipid-based methods have shown increased endocytosis and can influence endosomal escape. This study combines the favorable properties of Tat peptide with that of lipid systems for DNA delivery. We combined the lipid FuGENE HD (FH) with the Tat peptide sequence modified with histidine and cysteine residues (mTat). mTat/FH transfection was evaluated by luciferase expression plasmid in five cell types. mTat/FH produced significant improvement in transfection efficiency of all cell lines when compared to FH or mTat. Treatment with chloroquine, associated with energy-dependent endocytosis, significantly increased transfection efficiency with mTat/FH while incubation at low temperature decreased it. The zeta potential of mTat/FH/DNA was significantly higher compared to FH, mTat, or their DNA combination in the presence of serum, and it was correlated with transfection efficiency. The particle size of the FH/DNA complex was significantly reduced by addition of mTat. Filipin III, an inhibitor of caveolae-mediated endocytosis, significantly inhibited mTat/FH transfection, but transfection was increased by chlorpromazine, an inhibitor of clathrin-mediated endocytosis. These findings demonstrated the feasibility of using a combination of mTat with lipids, utilizing temperature-dependent and caveolae-mediated endocytosis, as a potentially attractive non-viral gene vector.
Collapse
Affiliation(s)
- Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Betigeri S, Zhang M, Garbuzenko O, Minko T. Non-viral systemic delivery of siRNA or antisense oligonucleotides targeted to Jun N-terminal kinase 1 prevents cellular hypoxic damage. Drug Deliv Transl Res 2010; 1:13-24. [PMID: 21461383 PMCID: PMC3063508 DOI: 10.1007/s13346-010-0003-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many pathological conditions and environmental impacts lead to the development of severe tissue hypoxia that aggravates the primary disorder, provokes cell death, and limits the patient’s recovery. We hypothesized that suppression of Jun N-terminal kinase 1 (JNK1) will limit tissue damage induced by severe hypoxia. To test the hypothesis, antisense oligonucleotides (ASO) or small interfering RNA (siRNA) targeted to JNK1 mRNA were incorporated or complexed with neutral or cationic liposomes, respectively, and administered systemically to mice prior to hypoxia exposure. The animals were placed in a special chamber ventilated with room air (normoxia) or a gas mixture containing 6% O2 and 94% N2 (hypoxia). Liposomes, ASO, and siRNA were found to accumulate in the lungs, kidney, spleen, and heart. Only trace amounts of liposomes and their payloads (ASO and siRNA) were found in the brain. The down regulation of JNK1 protein limited activation of cell death signal, apoptotic, and necrotic tissue damage under hypoxic conditions. Consequently, we were able to verify our hypothesis and provide proof of concept of a unique approach to the prevention of cellular hypoxic damage by the suppression of JNK1 signaling pathways after the efficient delivery of ASO or siRNA.
Collapse
Affiliation(s)
- Seema Betigeri
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020 USA
| | | | | | | |
Collapse
|
21
|
Candiani G, Pezzoli D, Ciani L, Chiesa R, Ristori S. Bioreducible liposomes for gene delivery: from the formulation to the mechanism of action. PLoS One 2010; 5:e13430. [PMID: 20976172 PMCID: PMC2955545 DOI: 10.1371/journal.pone.0013430] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/22/2010] [Indexed: 01/22/2023] Open
Abstract
Background A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid complexes (lipoplexes). On these premises, we previously described the synthesis of SS14 redox-sensitive gemini surfactant for gene delivery. Although others have attributed the beneficial effects of intracellular reducing environment to reduced glutathione (GSH), these observations cannot rule out the possible implication of the redox milieu in its whole on transfection efficiency of bioreducible transfectants leaving the determinants of DNA release largely undefined. Methodology/Principal Findings With the aim of addressing this issue, SS14 was here formulated into binary and ternary 100 nm-extruded liposomes and the effects of the helper lipid composition and of the SS14/helper lipids molar ratio on chemical-physical and structural parameters defining transfection effectiveness were investigated. Among all formulations tested, DOPC/DOPE/SS14 at 25∶50∶25 molar ratio was the most effective in transfection studies owing to the presence of dioleoyl chains and phosphatidylethanolamine head groups in co-lipids. The increase in SS14 content up to 50% along DOPC/DOPE/SS14 liposome series yielded enhanced transfection, up to 2.7-fold higher than that of the benchmark Lipofectamine 2000, without altering cytotoxicity of the corresponding lipoplexes at charge ratio 5. Secondly, we specifically investigated the redox-dependent mechanisms of gene delivery into cells through tailored protocols of transfection in GSH-depleted and repleted vs. increased oxidative stress conditions. Importantly, GSH specifically induced DNA release in batch and in vitro. Conclusions/Significance The presence of helper lipids carrying unsaturated dioleoyl chains and phosphatidylethanolamine head groups significantly improved transfection efficiencies of DOPC/DOPE/SS14 lipoplexes. Most importantly, this study shows that intracellular GSH levels linearly correlated with transfection efficiency while oxidative stress levels did not, highlighting for the first time the pivotal role of GSH rather than oxidative stress in its whole in transfection of bioreducible vectors.
Collapse
Affiliation(s)
- Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
22
|
He ZY, Zheng X, Wu XH, Song XR, He G, Wu WF, Yu S, Mao SJ, Wei YQ. Development of glycyrrhetinic acid-modified stealth cationic liposomes for gene delivery. Int J Pharm 2010; 397:147-54. [DOI: 10.1016/j.ijpharm.2010.06.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 11/26/2022]
|
23
|
Trabulo S, Cardoso AL, Mano M, De Lima MCP. Cell-Penetrating Peptides-Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals (Basel) 2010; 3:961-993. [PMID: 27713284 PMCID: PMC4034016 DOI: 10.3390/ph3040961] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/20/2010] [Accepted: 03/29/2010] [Indexed: 01/13/2023] Open
Abstract
The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs) have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides). In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.
Collapse
Affiliation(s)
- Sara Trabulo
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Miguel Mano
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Maria C Pedroso De Lima
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal.
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal.
| |
Collapse
|
24
|
Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother 2009; 9:1519-27. [PMID: 19831841 DOI: 10.1586/ern.09.99] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The brain is highly accessible for nutrients and oxygen, however delivery of drugs to malignant brain tumors is a very challenging task. Convection-enhanced delivery (CED) has been designed to overcome some of the difficulties so that pharmacological agents that would not normally cross the BBB can be used for treatment. Drugs are delivered through one to several catheters placed stereotactically directly within the tumor mass or around the tumor or the resection cavity. Several classes of drugs are amenable to this technology including standard chemotherapeutics or novel experimental targeted drugs. The first Phase III trial for CED-delivered, molecularly targeted cytotoxin in the treatment of recurrent glioblastoma multiforme has been accomplished and demonstrated objective clinical efficacy. The lessons learned from more than a decade of attempts at exploiting CED for brain cancer treatment weigh critically for its future clinical applications. The main issues center around the type of catheters used, number of catheters and their exact placement; pharmacological formulation of drugs, prescreening patients undergoing treatment and monitoring the distribution of drugs in tumors and the tumor-infiltrated brain. It is expected that optimizing CED will make this technology a permanent addition to clinical management of brain malignancies.
Collapse
Affiliation(s)
- Waldemar Debinski
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Department of Neurosurgery, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
25
|
Aluri S, Janib SM, Mackay JA. Environmentally responsive peptides as anticancer drug carriers. Adv Drug Deliv Rev 2009; 61:940-52. [PMID: 19628014 PMCID: PMC2757494 DOI: 10.1016/j.addr.2009.07.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023]
Abstract
The tumor microenvironment provides multiple cues that may be exploited to improve the efficacy of established chemotherapeutics; furthermore, polypeptides are uniquely situated to capitalize on these signals. Peptides provide: 1) a rich repertoire of biologically specific interactions to draw upon; 2) environmentally responsive phase behaviors, which may be tuned to respond to signatures of disease; 3) opportunities to direct self-assembly; 4) control over routes of biodegradation; 5) the option to seamlessly combine functionalities into a single polymer via a one-step biosynthesis. As development of cancer-targeted nanocarriers expands, peptides provide a unique source of functional units that may target disease. This review explores potential microenvironmental physiology indicative of tumors and peptides that have demonstrated an ability to target and deliver to these signals.
Collapse
Affiliation(s)
- Suhaas Aluri
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90033-9121, USA
| | | | | |
Collapse
|
26
|
Ghonaim HM, Ahmed OAA, Pourzand C, Blagbrough IS. Varying the chain length in N4,N9-diacyl spermines: non-viral lipopolyamine vectors for efficient plasmid DNA formulation. Mol Pharm 2009; 5:1111-21. [PMID: 19434924 DOI: 10.1021/mp800062j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aims of this work are to study the effect of varying the chain length in synthesized N4,N9-diacyl spermines on DNA condensation and then to compare their transfection efficiencies in cell lines. The five novel N4,N9-diacyl lipopolyamines: N4,N9-[didecanoyl, dilauroyl, dimyristoyl, dimyristoleoyl, and dipalmitoyl]-1,12-diamino-4,9-diazadodecane were synthesized from the naturally occurring polyamine spermine. The abilities of these novel compounds to condense DNA and to form nanoparticles were studied using ethidium bromide fluorescence quenching and nanoparticle characterization techniques. Transfection efficiency was studied in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA), and compared with a saturated (distearoyl) analogue and also with the non-liposomal transfection formulation Lipogen, N4,N9-dioleoyl-1,12-diamino-4,9-diazadodecane. By incorporating two aliphatic chains and changing their length in a stepwise manner, we show efficient circular plasmid DNA (pEGFP) formulation and transfection of primary skin and cancer cell lines. Two C14 chains (both saturated or both cis-monounsaturated) were efficient transfecting agents, even in the presence of serum, but they were too toxic. N4,N9-Dioleoyl spermine efficiently condenses pDNA and achieves the highest transfection levels with the highest cell viability among the studied lipopolyamines in cultured cells even in the presence of serum.
Collapse
Affiliation(s)
- Hassan M Ghonaim
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
27
|
Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009; 157:195-206. [PMID: 19309362 PMCID: PMC2697800 DOI: 10.1111/j.1476-5381.2009.00057.x] [Citation(s) in RCA: 685] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of new potent therapeutic molecules that do not reach the clinic due to poor delivery and low bioavailability have made of delivery a key stone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs). CPPs were first discovered based on the potency of several proteins to enter cells. Numerous CPPs have been described so far, which can be grouped into two major classes, the first requiring chemical linkage with the drug for cellular internalization and the second involving formation of stable, non-covalent complexes with drugs. Nowadays, CPPs constitute very promising tools for non-invasive cellular import of cargo and have been successfully applied for in vitro and in vivo delivery of therapeutic molecules varying from small chemical molecule, nucleic acids, proteins, peptides, liposomes and particles. This review will focus on the structure/function and cellular uptake mechanism of CPPs in the general context of drug delivery. We will also highlight the application of peptide carriers for the delivery of therapeutic molecules and provide an update of their clinical evaluation. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009
Collapse
Affiliation(s)
- Frederic Heitz
- Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, Montpellier, France
| | | | | |
Collapse
|