1
|
Szewczyk S, Buckley B, Chernov M, Wang X, Pathak S, Yeger H, Attwood KM, Holtz R, Ambrosone CB, Higgins MJ. Cell-based assay to detect small molecules restoring levels of let-7 miRNAs. Am J Cancer Res 2024; 14:4772-4787. [PMID: 39553217 PMCID: PMC11560832 DOI: 10.62347/mbld9480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 11/19/2024] Open
Abstract
Blockage of let-7 miRNA biogenesis by LIN28, or other mechanisms, results in derepression of let-7 target genes, some of which are oncogenic (e.g., MYCN) potentially contributing to tumor progression and drug resistance. We have developed a cell-based assay to identify small molecules that increase levels of mature functional let-7 miRNAs by inhibiting the function of Lin28B protein or by other means. This system consists of a reporter gene (GFP) regulated by the tTR-KRAB repressor protein which in turn is regulated by processed let-7 miRNAs. Using this system, we screened approximately 4000 small molecules and identified more than a dozen compounds capable of augmenting levels of mature let-7 miRNAs. Among those compounds, Kenpaullone and BIO were shown to increase let-7 miRNA levels with consequent suppression of MYCN protein in neuroblastoma cell lines. This novel strategy provides an additional cell-based assay for candidate cancer drug screening in a high throughput setting and will facilitate the identification of anti-cancer drugs. Moreover, this assay could be used to screen shRNA and CRISPR libraries to identify novel components of the LIN28-let-7 axis which may provide new therapeutic targets.
Collapse
Affiliation(s)
- Sirinapa Szewczyk
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Brian Buckley
- Drug Discovery Core Shared Resource, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Mikhail Chernov
- Drug Discovery Core Shared Resource, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | | | - Herman Yeger
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, Ontario M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, SickKids555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Kristopher M Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Renae Holtz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
2
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
3
|
Anti-CD19 CARs displayed at the surface of lentiviral vector particles promote transduction of target-expressing cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:42-53. [PMID: 33768128 PMCID: PMC7966970 DOI: 10.1016/j.omtm.2021.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022]
Abstract
Recently, a rare type of relapse was reported upon treating a B cell acute lymphoblastic leukemia (B-ALL) patient with anti-CD19 chimeric antigen receptor (CAR)-T cells caused by unintentional transduction of residual malignant B cells (CAR-B cells). We show that anti-CD19 and anti-CD20 CARs are presented on the surface of lentiviral vectors (LVs), inducing specific binding to the respective antigen. Binding of anti-CD19 CAR-encoding LVs containing supernatant was reduced by CD19-specific blocking antibodies in a dose-dependent manner, and binding was absent for unspecific LV containing supernatant. This suggests that LVs bind via displayed CAR molecules to CAR antigen-expressing cells. The relevance for CAR-T cell manufacturing was evaluated when PBMCs and B-ALL malignant B cells were mixed and transduced with anti-CD19 or anti-CD20 CAR-displaying LVs in clinically relevant doses to mimic transduction conditions of unpurified patient leukapheresis samples. Malignant B cells were transduced at higher levels with LVs displaying anti-CD19 CARs compared to LVs displaying non-binding control constructs. Stability of gene transfer was confirmed by applying a potent LV inhibitor and long-term cultures for 10 days. Our findings provide a potential explanation for the emergence of CAR-B cells pointing to safer manufacturing procedures with reduced risk of this rare type of relapse in the future.
Collapse
|
4
|
Gutierrez-Guerrero A, Cosset FL, Verhoeyen E. Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses 2020; 12:v12091016. [PMID: 32933033 PMCID: PMC7551254 DOI: 10.3390/v12091016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses have been repurposed into tools for gene delivery by transforming them into viral vectors. The most frequently used vectors are lentiviral vectors (LVs), derived from the human immune deficiency virus allowing efficient gene transfer in mammalian cells. They represent one of the safest and most efficient treatments for monogenic diseases affecting the hematopoietic system. LVs are modified with different viral envelopes (pseudotyping) to alter and improve their tropism for different primary cell types. The vesicular stomatitis virus glycoprotein (VSV-G) is commonly used for pseudotyping as it enhances gene transfer into multiple hematopoietic cell types. However, VSV-G pseudotyped LVs are not able to confer efficient transduction in quiescent blood cells, such as hematopoietic stem cells (HSC), B and T cells. To solve this problem, VSV-G can be exchanged for other heterologous viral envelopes glycoproteins, such as those from the Measles virus, Baboon endogenous retrovirus, Cocal virus, Nipah virus or Sendai virus. Here, we provide an overview of how these LV pseudotypes improved transduction efficiency of HSC, B, T and natural killer (NK) cells, underlined by multiple in vitro and in vivo studies demonstrating how pseudotyped LVs deliver therapeutic genes or gene editing tools to treat different genetic diseases and efficiently generate CAR T cells for cancer treatment.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France;
| | - François-Loïc Cosset
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France;
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France;
- INSERM, C3M, Université Côte d’Azur, 06204 Nice, France
- Correspondence:
| |
Collapse
|
5
|
Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2020; 3:461-475. [PMID: 30755435 DOI: 10.1182/bloodadvances.2018027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023] Open
Abstract
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Collapse
|
6
|
Radek C, Bernadin O, Drechsel K, Cordes N, Pfeifer R, Sträßer P, Mormin M, Gutierrez-Guerrero A, Cosset FL, Kaiser AD, Schaser T, Galy A, Verhoeyen E, Johnston IC. Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Hum Gene Ther 2019; 30:1477-1493. [PMID: 31578886 PMCID: PMC6919281 DOI: 10.1089/hum.2019.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/21/2019] [Indexed: 01/07/2023] Open
Abstract
Cell and gene therapies are finally becoming viable patient treatment options, with both T cell- and hematopoietic stem cell (HSC)-based therapies being approved to market in Europe. However, these therapies, which involve the use of viral vector to modify the target cells, are expensive and there is an urgent need to reduce manufacturing costs. One major cost factor is the viral vector production itself, therefore improving the gene modification efficiency could significantly reduce the amount of vector required per patient. This study describes the use of a transduction enhancing peptide, Vectofusin-1®, to improve the transduction efficiency of primary target cells using lentiviral and gammaretroviral vectors (LV and RV) pseudotyped with a variety of envelope proteins. Using Vectofusin-1 in combination with LV pseudotyped with viral glycoproteins derived from baboon endogenous retrovirus, feline endogenous virus (RD114), and measles virus (MV), a strongly improved transduction of HSCs, B cells and T cells, even when cultivated under low stimulation conditions, could be observed. The formation of Vectofusin-1 complexes with MV-LV retargeted to CD20 did not alter the selectivity in mixed cell culture populations, emphasizing the precision of this targeting technology. Functional, ErbB2-specific chimeric antigen receptor-expressing T cells could be generated using a gibbon ape leukemia virus (GALV)-pseudotyped RV. Using a variety of viral vectors and target cells, Vectofusin-1 performed in a comparable manner to the traditionally used surface-bound recombinant fibronectin. As Vectofusin-1 is a soluble peptide, it was possible to easily transfer the T cell transduction method to an automated closed manufacturing platform, where proof of concept studies demonstrated efficient genetic modification of T cells with GALV-RV and RD114-RV and the subsequent expansion of mainly central memory T cells to a clinically relevant dose.
Collapse
Affiliation(s)
| | - Ornellie Bernadin
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pia Sträßer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Mirella Mormin
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Alejandra Gutierrez-Guerrero
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - François-loïc Cosset
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Galy
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Els Verhoeyen
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
7
|
Moore N, Chevillet JR, Healey LJ, McBrine C, Doty D, Santos J, Teece B, Truslow J, Mott V, Hsi P, Tandon V, Borenstein JT, Balestrini J, Kotz K. A Microfluidic Device to Enhance Viral Transduction Efficiency During Manufacture of Engineered Cellular Therapies. Sci Rep 2019; 9:15101. [PMID: 31641163 PMCID: PMC6806008 DOI: 10.1038/s41598-019-50981-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
Abstract
The development and approval of engineered cellular therapies are revolutionizing approaches to treatment of diseases. However, these life-saving therapies require extensive use of inefficient bioprocessing equipment and specialized reagents that can drive up the price of treatment. Integration of new genetic material into the target cells, such as viral transduction, is one of the most costly and labor-intensive steps in the production of cellular therapies. Approaches to reducing the costs associated with gene delivery have been developed using microfluidic devices to increase overall efficiency. However, these microfluidic approaches either require large quantities of virus or pre-concentration of cells with high-titer viral particles. Here, we describe the development of a microfluidic transduction device (MTD) that combines microfluidic spatial confinement with advective flow through a membrane to efficiently colocalize target cells and virus particles. We demonstrate that the MTD can improve the efficiency of lentiviral transduction for both T-cell and hematopoietic stem-cell (HSC) targets by greater than two fold relative to static controls. Furthermore, transduction saturation in the MTD is reached with only half the virus required to reach saturation under static conditions. Moreover, we show that MTD transduction does not adversely affect cell viability or expansion potential.
Collapse
Affiliation(s)
- Nathan Moore
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA.
| | - John R Chevillet
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Laura J Healey
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Connor McBrine
- Synthetic Biology, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Daniel Doty
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Jose Santos
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Bryan Teece
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - James Truslow
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Vienna Mott
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Peter Hsi
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Vishal Tandon
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | | | - Jenna Balestrini
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Kenneth Kotz
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
9
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
10
|
Tat T, Li H, Constantinescu CS, Onaciu A, Chira S, Osan C, Pasca S, Petrushev B, Moisoiu V, Micu WT, Berce C, Tranca S, Dima D, Berindan-Neagoe I, Shen J, Tomuleasa C, Qian L. Genetically enhanced T lymphocytes and the intensive care unit. Oncotarget 2018; 9:16557-16572. [PMID: 29662667 PMCID: PMC5893262 DOI: 10.18632/oncotarget.24637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor-modified T cells (CAR-T cells) and donor lymphocyte infusion (DLI) are important protocols in lymphocyte engineering. CAR-T cells have emerged as a new modality for cancer immunotherapy due to their potential efficacy against hematological malignancies. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in lymphocyte T cell activation subsequent to antigen binding. In present-day medicine, four generations of CAR-T cells are described depending on the intracellular signaling domain number of T cell receptors. DLI represents a form of adoptive therapy used after hematopoietic stem cell transplant for its anti-tumor and anti-infectious properties. This article covers the current status of CAR-T cells and DLI research in the intensive care unit (ICU) patient, including the efficacy, toxicity, side effects and treatment.
Collapse
Affiliation(s)
- Tiberiu Tat
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Department of Anesthesiology-Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Huming Li
- Department of Pulmonary and Critical Care Medicine, Navy General Hospital of PLA, Beijing, China
| | - Catalin-Sorin Constantinescu
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Osan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Wilhelm-Thomas Micu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristian Berce
- Department of Experimental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sebastian Tranca
- Department of Anesthesiology-Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Jianliang Shen
- Department of Hematology, Navy General Hospital of PLA, Beijing, China
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Research Center for Functional Genomics and Translational Medicine / Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Liren Qian
- Department of Hematology, Navy General Hospital of PLA, Beijing, China
| |
Collapse
|
11
|
Tomuleasa C, Fuji S, Berce C, Onaciu A, Chira S, Petrushev B, Micu WT, Moisoiu V, Osan C, Constantinescu C, Pasca S, Jurj A, Pop L, Berindan-Neagoe I, Dima D, Kitano S. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2018. [PMID: 29515572 PMCID: PMC5825894 DOI: 10.3389/fimmu.2018.00239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Shigeo Fuji
- Department of Stem Cell Transplantation, Osaka International Cancer Institute, Osaka, Japan
| | - Cristian Berce
- Animal Facility, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Wilhelm-Thomas Micu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Osan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj Napoca, Romania
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy, Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Milward KF, Wood KJ, Hester J. Enhancing human regulatory T cells in vitro for cell therapy applications. Immunol Lett 2017; 190:139-147. [DOI: 10.1016/j.imlet.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022]
|
13
|
Madrigal JL, Stilhano R, Silva EA. Biomaterial-Guided Gene Delivery for Musculoskeletal Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:347-361. [PMID: 28166711 PMCID: PMC5749599 DOI: 10.1089/ten.teb.2016.0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy is a promising strategy for musculoskeletal tissue repair and regeneration where local and sustained expression of proteins and/or therapeutic nucleic acids can be achieved. However, the musculoskeletal tissues present unique engineering and biological challenges as recipients of genetic vectors. Targeting specific cell populations, regulating expression in vivo, and overcoming the harsh environment of damaged tissue accompany the general concerns of safety and efficacy common to all applications of gene therapy. In this review, we will first summarize these challenges and then discuss how biomaterial carriers for genetic vectors can address these issues. Second, we will review how limitations specific to given vectors further motivate the utility of biomaterial carriers. Finally, we will discuss how these concepts have been combined with tissue engineering strategies and approaches to improve the delivery of these vectors for musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Roberta Stilhano
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| |
Collapse
|
14
|
Fesnak AD, Hanley PJ, Levine BL. Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy. Curr Hematol Malig Rep 2017; 12:335-343. [PMID: 28762038 PMCID: PMC5693739 DOI: 10.1007/s11899-017-0395-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Based on laboratory and clinical research findings and investments in immunotherapy by many institutions in academia, government-funded laboratories, and industry, there is tremendous and deserved excitement in the field of cell and gene therapy. In particular, understanding of immune-mediated control of cancer has created opportunities to develop new forms of therapies based on engineered T cells. Unlike conventional drugs or biologics, the source material for these new therapies is collected from the patient or donor. The next step is commonly either enrichment to deplete unwanted cells, or methods to positively select T cells prior to polyclonal expansion or antigen-specific expansion. As the first generation of engineered T cell therapies have demonstrated proof of concept, the next stages of development will require the integration of automated technologies to enable more consistent manufacturing and the ability to produce therapies for more patients.
Collapse
Affiliation(s)
- Andrew D Fesnak
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-5156, USA.
| | - Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research, Division of Blood and Marrow Transplantation, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System and The George Washington University, Washington, DC, 20010, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-5156, USA
| |
Collapse
|
15
|
Levy C, Fusil F, Amirache F, Costa C, Girard-Gagnepain A, Negre D, Bernadin O, Garaulet G, Rodriguez A, Nair N, Vandendriessche T, Chuah M, Cosset FL, Verhoeyen E. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc -/- mice. J Thromb Haemost 2016; 14:2478-2492. [PMID: 27685947 DOI: 10.1111/jth.13520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/25/2016] [Indexed: 12/30/2022]
Abstract
Essentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy. BaEV-LVs allowed secretion of functional factor IX from B cells at therapeutic levels in vivo. SUMMARY Background B cells are attractive targets for gene therapy for diseases associated with B-cell dysfunction and particularly interesting for immunotherapy. Moreover, B cells are potent protein-secreting cells and can be tolerogenic antigen-presenting cells. Objective Evaluation of human B cells for secretion of clotting factors such as factor IX (FIX) as a possible treatment for hemophilia. Methods We tested here for the first time our newly developed baboon envelope (BaEV) pseudotyped lentiviral vectors (LVs) for human (h) B-cell transduction following their adaptive transfer into an NOD/SCIDγc-/- (NSG) mouse. Results Upon B-cell receptor stimulation, BaEV-LVs transduced up to 80% of hB cells, whereas vesicular stomatitis virus G protein VSV-G-LV only reached 5%. Remarkably, BaEVTR-LVs permitted efficient transduction of 20% of resting naive and 40% of resting memory B cells. Importantly, BaEV-LVs reached up to 100% transduction of human plasmocytes ex vivo. Adoptive transfer of BaEV-LV-transduced mature B cells into NOD/SCID/γc-/- (NSG) [non-obese diabetic (NOD), severe combined immuno-deficiency (SCID)] mice allowed differentiation into plasmablasts and plasma B cells, confirming a sustained high-level gene marking in vivo. As proof of principle, we assessed BaEV-LV for transfer of human factor IX (hFIX) into B cells. BaEV-LVs encoding FIX efficiently transduced hB cells and their transfer into NSG mice demonstrated for the first time secretion of functional hFIX from hB cells at therapeutic levels in vivo. Conclusions The BaEV-LVs might represent a valuable tool for therapeutic protein secretion from autologous B cells in vivo in the treatment of hemophilia and other acquired or inherited diseases.
Collapse
Affiliation(s)
- C Levy
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Fusil
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Amirache
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - C Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - A Girard-Gagnepain
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - D Negre
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - O Bernadin
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - G Garaulet
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - A Rodriguez
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Nair
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - T Vandendriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - M Chuah
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - F-L Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - E Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm, U1065, Équipe 'contrôle métabolique des morts cellulaires', Nice, France
| |
Collapse
|
16
|
Lévy C, Verhoeyen E, Cosset FL. Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Curr Opin Pharmacol 2015; 24:79-85. [DOI: 10.1016/j.coph.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
17
|
Zhou Q, Uhlig KM, Muth A, Kimpel J, Lévy C, Münch RC, Seifried J, Pfeiffer A, Trkola A, Coulibaly C, von Laer D, Wels WS, Hartwig UF, Verhoeyen E, Buchholz CJ. Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors. THE JOURNAL OF IMMUNOLOGY 2015; 195:2493-501. [PMID: 26232436 DOI: 10.4049/jimmunol.1500956] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Playing a central role in both innate and adaptive immunity, CD4(+) T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4(+) cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4(+) but not CD4(-) cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood by flow cytometry demonstrated exclusive gene transfer into CD4(+) human lymphocytes. In bone marrow and spleen, memory T cells were preferentially hit. Toward therapeutic applications, we also show that CD4-LV can be used for HIV gene therapy, as well as for tumor therapy, by delivering chimeric Ag receptors. The potential for in vivo delivery of the FOXP3 gene was also demonstrated, making CD4-LV a powerful tool for inducible regulatory T cell generation. In summary, our work demonstrates the exclusive gene transfer into a T cell subset upon systemic vector administration opening an avenue toward novel strategies in immunotherapy.
Collapse
Affiliation(s)
- Qi Zhou
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Katharina M Uhlig
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Anke Muth
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Camille Lévy
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Robert C Münch
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Janna Seifried
- Host Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Anett Pfeiffer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Cheick Coulibaly
- Central Animal Unit, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60596 Frankfurt, Germany
| | - Udo F Hartwig
- 3rd Department of Medicine-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Équipe 3, 06204 Nice, France; and
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Marino MP, Panigaj M, Ou W, Manirarora J, Wei CH, Reiser J. A scalable method to concentrate lentiviral vectors pseudotyped with measles virus glycoproteins. Gene Ther 2015; 22:280-5. [DOI: 10.1038/gt.2014.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023]
|
19
|
Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood 2014; 123:1422-4. [DOI: 10.1182/blood-2013-11-540641] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Weber ND, Aubert M, Dang CH, Stone D, Jerome KR. DNA cleavage enzymes for treatment of persistent viral infections: recent advances and the pathway forward. Virology 2014; 454-455:353-61. [PMID: 24485787 DOI: 10.1016/j.virol.2013.12.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022]
Abstract
Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application.
Collapse
Affiliation(s)
- Nicholas D Weber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109, USA.
| | - Chung H Dang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109, USA.
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109, USA.
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
CCR5 as a natural and modulated target for inhibition of HIV. Viruses 2013; 6:54-68. [PMID: 24381033 PMCID: PMC3917431 DOI: 10.3390/v6010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/02/2013] [Accepted: 12/11/2013] [Indexed: 01/30/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection—this without detrimental effects to the host—and transplantation of CCR5-delta32 stem cells in a patient with HIV (“Berlin patient”) achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46) that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.
Collapse
|
22
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
23
|
Denning W, Das S, Guo S, Xu J, Kappes JC, Hel Z. Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations. Mol Biotechnol 2013; 53:308-14. [PMID: 22407723 DOI: 10.1007/s12033-012-9528-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lentiviral vectors are widely used as effective gene-delivery vehicles. Optimization of the conditions for efficient lentiviral transduction is of a high importance for a variety of research applications. Presence of positively charged polycations reduces the electrostatic repulsion forces between a negatively charged cell and an approaching enveloped lentiviral particle resulting in an increase in the transduction efficiency. Although a variety of polycations are commonly used to enhance the transduction with retroviruses, the relative effect of various types of polycations on the efficiency of transduction and on the potential bias in the determination of titer of lentiviral vectors is not fully understood. Here, we present data suggesting that DEAE-dextran provides superior results in enhancing lentiviral transduction of most tested cell lines and primary cell cultures. Specific type and source of serum affects the efficiency of transduction of target cell populations. Non-specific binding of enhanced green fluorescent protein (EGFP)-containing membrane aggregates in the presence of DEAE-dextran does not significantly affect the determination of the titer of EGFP-expressing lentiviral vectors. In conclusion, various polycations and types of sera should be tested when optimizing lentiviral transduction of target cell populations.
Collapse
Affiliation(s)
- Warren Denning
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | |
Collapse
|
24
|
Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13:987-1011. [PMID: 23590247 DOI: 10.1517/14712598.2013.779249] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lentiviruses are a very potent class of viral vectors for which there is presently a rapidly growing interest for a number of gene therapy. However, their construction, production and purification need to be performed according to state-of-the-art techniques in order to obtain sufficient quantities of high purity material of any usefulness and safety. AREAS COVERED The recent advances in the field of recombinant lentivirus vector design, production and purification will be reviewed with an eye toward its utilization for gene therapy. Such a review should be helpful for the potential user of this technology. EXPERT OPINION The principal hurdles toward the use of recombinant lentivirus as a gene therapy vector are the low titer at which it is produced as well as the difficulty to purify it at an acceptable level without degrading it. The recent advances in the bioproduction of this vector suggest these issues are about to be resolved, making the retrovirus gene therapy a mature technology.
Collapse
Affiliation(s)
- Maria Mercedes Segura
- Chemical Engineering Department, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès (08193), Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Pichard V, Boni S, Baron W, Nguyen TH, Ferry N. Priming of hepatocytes enhances in vivo liver transduction with lentiviral vectors in adult mice. Hum Gene Ther Methods 2013; 23:8-17. [PMID: 22428976 DOI: 10.1089/hgtb.2011.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lentiviral vectors are promising tools for liver disease gene therapy, because they can achieve protracted expression of transgenes in hepatocytes. However, the question as to whether cell division is required for optimal hepatocyte transduction has still not been completely answered. Liver gene-transfer efficiency after in vivo administration of recombinant lentiviral vectors carrying a green fluorescent protein reporter gene under the control of a liver-specific promoter in mice that were either hepatectomized or treated with cholic acid or phenobarbital was compared. Phenobarbital is known as a weak inducer of hepatocyte proliferation, whereas cholic acid has no direct effect on the cell cycle. This study shows that cholic acid is able to prime hepatocytes without mitosis induction. Both phenobarbital and cholic acid significantly increased hepatocyte transduction six- to ninefold, although cholic acid did not modify the mitotic index or cell-cycle entry. However, the effect of either compound was weaker than that observed after partial hepatectomy. In no cases was there a correlation between the expression of cell-cycle marker and transduction efficiency. We conclude that priming of hepatocytes should be considered a clinically applicable strategy to enhance in vivo liver gene therapy with lentiviral vectors.
Collapse
Affiliation(s)
- Virginie Pichard
- INSERM U948, Biothérapies Hépatiques, CHU Hotel Dieu, 44093 Nantes Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, Breckpot K, Escors D. Retroviral and lentiviral vectors for the induction of immunological tolerance. SCIENTIFICA 2012; 2012:694137. [PMID: 23526794 PMCID: PMC3605697 DOI: 10.6064/2012/694137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Retroviral and lentiviral vectors have proven to be particularly efficient systems to deliver genes of interest into target cells, either in vivo or in cell cultures. They have been used for some time for gene therapy and the development of gene vaccines. Recently retroviral and lentiviral vectors have been used to generate tolerogenic dendritic cells, key professional antigen presenting cells that regulate immune responses. Thus, three main approaches have been undertaken to induce immunological tolerance; delivery of potent immunosuppressive cytokines and other molecules, modification of intracellular signalling pathways in dendritic cells, and de-targeting transgene expression from dendritic cells using microRNA technology. In this review we briefly describe retroviral and lentiviral vector biology, and their application to induce immunological tolerance.
Collapse
Affiliation(s)
- Inès Dufait
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Alessio Lanna
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Christopher Bricogne
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Roberta Laranga
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Antonella Padella
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Karine Breckpot
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- *David Escors:
| |
Collapse
|
27
|
Nipah virus envelope-pseudotyped lentiviruses efficiently target ephrinB2-positive stem cell populations in vitro and bypass the liver sink when administered in vivo. J Virol 2012. [PMID: 23192877 DOI: 10.1128/jvi.02032-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope's natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of "stemness" (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼10(6) IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2(+) cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2(+) populations in vivo or in vitro.
Collapse
|
28
|
Suerth JD, Schambach A, Baum C. Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 2012; 24:598-608. [PMID: 22995202 DOI: 10.1016/j.coi.2012.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/23/2012] [Indexed: 01/02/2023]
Abstract
The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use.
Collapse
Affiliation(s)
- Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
29
|
|
30
|
Daniel-Meshulam I, Ya'akobi S, Ankri C, Cohen CJ. How (specific) would like your T-cells today? Generating T-cell therapeutic function through TCR-gene transfer. Front Immunol 2012; 3:186. [PMID: 22783259 PMCID: PMC3390604 DOI: 10.3389/fimmu.2012.00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
T-cells are central players in the immune response against both pathogens and cancer. Their specificity is solely dictated by the T-cell receptor (TCR) they clonally express. As such, the genetic modification of T lymphocytes using pathogen- or cancer-specific TCRs represents an appealing strategy to generate a desired immune response from peripheral blood lymphocytes. Moreover, notable objective clinical responses were observed in terminally ill cancer patients treated with TCR-gene modified cells in several clinical trials conducted recently. Nevertheless, several key aspects of this approach are the object of intensive research aimed at improving the reliability and efficacy of this strategy. Herein, we will survey recent studies in the field of TCR-gene transfer dealing with the improvement of this approach and its application for the treatment of malignant, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Inbal Daniel-Meshulam
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
31
|
pLR: a lentiviral backbone series to stable transduction of bicistronic genes and exchange of promoters. Plasmid 2012; 68:179-85. [PMID: 22728068 DOI: 10.1016/j.plasmid.2012.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 06/02/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
Abstract
Gene transfer based on lentiviral vectors allow the integration of exogenous genes into the genome of a target cell, turning these vectors into one of the most used methods for stable transgene expression in mammalian cells, in vitro and in vivo. Currently, there are no lentivectors that allow the cloning of different genes to be regulated by different promoters. Also, there are none that permit the analysis of the expression through an IRES (internal ribosome entry site)-- reporter gene system. In this work, we have generated a series of lentivectors containing: (1) a malleable structure to allow the cloning of different target genes in a multicloning site (mcs); (2) unique site to exchange promoters, and (3) IRES followed by one of two reporter genes: eGFP or DsRed. The series of the produced vectors were named pLR (for lentivirus and RSV promoter) and were fairly efficient with a strong fluorescence of the reporter genes in direct transfection and viral transduction experiments. This being said, the pLR series have been found to be powerful biotechnological tools for stable gene transfer and expression.
Collapse
|
32
|
Lentiviral vectors displaying modified measles virus gp overcome pre-existing immunity in in vivo-like transduction of human T and B cells. Mol Ther 2012; 20:1699-712. [PMID: 22617109 DOI: 10.1038/mt.2012.96] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene transfer into quiescent T and B cells is important for gene therapy and immunotherapy approaches. Previously, we generated lentiviral vectors (LVs) pseudotyped with Edmonston (Ed) measles virus (MV) hemagglutinin (H) and fusion (F) glycoproteins (H/F-LVs), which allowed efficient transduction of quiescent human T and B cells. However, a major obstacle in the use of H/F-LVs in vivo is that most of the human population is vaccinated against measles. As the MV humoral immune response is exclusively directed against the H protein of MV, we mutated the two dominant epitopes in H, Noose, and NE. LVs pseudotyped with these mutant H-glycoproteins escaped inactivation by monoclonal antibodies (mAbs) but were still neutralized by human serum. Consequently, we took advantage of newly emerged MV-D genotypes that were less sensitive to MV vaccination due to a different glycosylation pattern. The mutation responsible was introduced into the H/F-LVs, already mutated for Noose and NE epitopes. We found that these mutant H/F-LVs could efficiently transduce quiescent lymphocytes in the presence of high concentrations of MV antibody-positive human serum. Finally, upon incubation with total blood, mimicking the in vivo situation, the mutant H/F-LVs escaped MV antibody neutralization, where the original H/F-LVs failed. Thus, these novel H/F-LVs offer perspectives for in vivo lymphocyte-based gene therapy and immunotherapy.
Collapse
|
33
|
Gilham DE, Debets R, Pule M, Hawkins RE, Abken H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 2012; 18:377-84. [PMID: 22613370 DOI: 10.1016/j.molmed.2012.04.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Recent reports on the impressive efficacy of adoptively transferred T cells to challenge cancer in early phase clinical trials have significantly raised the profile of T cell therapy. Concomitantly, general expectations are also raised by these reports, with the natural aspiration to deliver this therapy over a wide range of tumor indications. Chimeric antigen receptors (CARs) endow T cell populations with defined antigen specificities that function independently of the natural T cell receptor and permit targeting of T cells towards virtually any tumor. Here, we review the current clinical application of CAR-T cells and relate clinical efficacy and safety of CAR-T cell trials to parameters considered critical for CAR engineering, classified as the three T's of CAR-T cell manipulation.
Collapse
Affiliation(s)
- David E Gilham
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, The University of Manchester, Withington, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
34
|
Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol 2012; 86:5192-203. [PMID: 22345444 DOI: 10.1128/jvi.06283-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells capable of promoting or regulating innate and adaptive immune responses against non-self antigens. To better understand the DC biology or to use them for immune intervention, a tremendous effort has been made to improve gene transfer in these cells. Lentiviral vectors (LVs) have conferred a huge advantage in that they can transduce nondividing cells such as human monocyte-derived DCs (MDDCs) but required high amounts of viral particles and/or accessory proteins such as Vpx or Vpr to achieve sufficient transduction rates. As a consequence, these LVs have been shown to cause dramatic functional modifications, such as the activation or maturation of transduced MDDCs. Taking advantage of new pseudotyped LVs, i.e., with envelope glycoproteins from the measles virus (MV), we demonstrate that MDDCs are transduced very efficiently with these new LVs compared to the classically used vesicular stomatitis virus G-pseudotyped LVs and thus allowed to achieve high transduction rates at relatively low multiplicities of infection. Moreover, in this experimental setting, no activation or maturation markers were upregulated, while MV-LV-transduced cells remained able to mature after an appropriate Toll-like receptor stimulation. We then demonstrate that our MV-pseudotyped LVs use DC-SIGN, CD46, and CD150/SLAM as receptors to transduce MDDCs. Altogether, our results show that MV-pseudotyped LVs provide the most accurate and simple viral method for efficiently transferring genes into MDDCs without affecting their activation and/or maturation status.
Collapse
|
35
|
Ayala-Breton C, Barber GN, Russell SJ, Peng KW. Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum Gene Ther 2012; 23:484-91. [PMID: 22171635 DOI: 10.1089/hum.2011.146] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oncolytic vesicular stomatitis virus (VSV) has potent antitumor activity, but infects a broad range of cell types. Here, we used the measles virus (MV) hemagglutinin (H) and fusion (F) envelope glycoproteins to redirect VSV entry and infection specifically to tumor-associated receptors. Replication-defective VSV, deleted of its glycoprotein gene (VSVΔG), was pseudotyped with MV-F and MV-H displaying single-chain antibodies (scFv) specific for epidermal growth factor receptor (EGFR), folate receptor (FR), or prostate membrane-specific antigen (PSMA). Viral titers were ∼10(5) PFU/ml, but could be concentrated to 10(7) PFU/ml. Immunoblotting confirmed incorporation of the MV-H-scFv and MV-F into functional VSV virions. Although VSV-G was able to infect all tumor cell lines tested, the retargeted VSV infected only cells that expressed the targeted receptor. In vivo specificities of the EGFR-, FR-, and PSMA-retargeted VSV were assessed by intratumoral injection into human tumor xenografts. Analysis of green fluorescent protein reporter gene expression indicated that VSV infection was restricted to receptor-positive tumors. In summary, we have demonstrated for the first time that VSV can be efficiently retargeted to different cellular receptors using the measles display technology, yielding retargeted VSV vectors that are highly specific for tumors that express the relevant receptor.
Collapse
|
36
|
Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Gene Ther 2012; 19:1133-40. [PMID: 22241177 PMCID: PMC3520013 DOI: 10.1038/gt.2011.206] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lentiviral vectors (LVs) provide unique opportunities for the development of immunotherapeutic strategies, as they transduce a variety of cells in situ, including antigen-presenting cells (APCs). Engineering LVs to specifically transduce APCs is required to promote their translation towards the clinic. We report on the Nanobody (Nb) display technology to target LVs to dendritic cells (DCs) and macrophages. This innovative approach exploits the budding mechanism of LVs to incorporate an APC-specific Nb and a binding-defective, fusion-competent form of VSV.G in the viral envelope. In addition to production of high titer LVs, we demonstrated selective, Nb-dependent transduction of mouse DCs and macrophages both in vitro and in situ. Moreover, this strategy was translated to a human model in which selective transduction of in vitro generated or lymph node (LN)-derived DCs and macrophages, was demonstrated. In conclusion, the Nb display technology is an attractive approach to generate LVs targeted to specific cell types.
Collapse
|
37
|
Abstract
Lentiviral vectors are vectors of choice for many gene therapy applications. Recently, efficient targeting of lentiviral vectors pseudotyped with the Measles virus (MV) glycoproteins has been reported. However, MV antibodies in patients might limit the clinical use of these vectors. We demonstrate here that lentiviral vectors can also be pseudotyped with the glycoproteins of Tupaia paramyxovirus (TPMV), the hemagglutinin (H) and fusion (F) protein. As this animal paramyxovirus has no known close relatives in humans, we do not expect TPMV antibodies in patients. Because TPMV normally does not infect human cells, 'detargeting' from natural receptors is unnecessary. Similar to the MV system, TPMV glycoproteins can mediate targeted cell entry by displaying different single-chain antibodies (scAb) directed against surface molecules on target cells on the viral hemagglutinin. We generated a panel of H and F proteins with truncated cytoplasmic tails and determined the variants that efficiently pseudotyped lentiviral vectors. The B-cell marker CD20 was used as a model antigen, and CD20-targeted TPMV vectors selectively transduced CD20-positive cells, including quiescent primary human B-cells. Lentiviral vectors pseudotyped with targeted TPMV envelope proteins might be a valuable vector choice when systemic application of targeted lentiviral vectors in humans is required.
Collapse
|
38
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|
39
|
Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2011; 22:14-22. [PMID: 22210183 DOI: 10.1016/j.semcancer.2011.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022]
Abstract
The adoptive transfer of tumor-specific T-lymphocytes holds promise for the treatment of metastatic cancer. Genetic modulation of T-lymphocytes using TCR transfer with tumor-specific TCR genes is an attractive strategy to generate anti-tumor response, especially against large solid tumors. Recently, several clinical trials have demonstrated the therapeutic potential of this approach which lead to impressive tumor regression in cancer patients. Still, several factors may hinder the clinical benefit of this approach, such as the type of cells to modulate, the vector configuration or the safety of the procedure. In the present review we will aim at giving an overview of the recent developments related to the immune modulation of the anti-tumor adaptive response using genetically engineered lymphocytes and will also elaborate the development of other genetic modifications to enhance their anti-tumor immune response.
Collapse
Affiliation(s)
- Efrat Merhavi-Shoham
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
40
|
Quantification of HIV-based lentiviral vectors: influence of several cell type parameters on vector infectivity. Arch Virol 2011; 157:217-23. [PMID: 22042211 DOI: 10.1007/s00705-011-1150-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
Abstract
A human immunodeficiency virus type (HIV-1)-based lentiviral vector pseudotyped with the vesicular stomatitis virus envelope glycoprotein and encoding the GFP reporter gene was used to evaluate different methods of lentiviral vector titration. GFP expression, viral DNA quantification and the efficiency of vector DNA integration were assayed after infection of conventional HIV-1-permissive cell lines and human primary adult fibroblasts with the vector. We found that vector titers based on GFP expression determined by flow cytometry may vary by more than 50-fold depending on the cell type and the promoter-cell combination used. Interestingly, we observed that the viral integration process in primary HDFa cells was significantly more efficient compared to that in SupT1 or 293T cells. We propose that determination of the amount of integrated viral DNA by quantitative PCR be used in combination with the reporter gene expression assay.
Collapse
|
41
|
Chung J, Rossi JJ, Jung U. Current progress and challenges in HIV gene therapy. Future Virol 2011; 6:1319-1328. [PMID: 22754586 DOI: 10.2217/fvl.11.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV-1 causes AIDS, a syndrome that affects millions of people globally. Existing HAART is efficient in slowing down disease progression but cannot eradicate the virus. Furthermore the severity of the side effects and the emergence of drug-resistant mutants call for better therapy. Gene therapy serves as an attractive alternative as it reconstitutes the immune system with HIV-resistant cells and could thereby provide a potential cure. The feasibility of this approach was first demonstrated with the 'Berlin patient', who was functionally cured from HIV/AIDS with undetectable HIV-1 viral load after transplantation of bone marrow harboring a naturally occurring CCR5 mutation that blocks viral entry. Here, we give an overview of the current status of HIV gene therapy and remaining challenges and obstacles.
Collapse
Affiliation(s)
- Janet Chung
- Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|
42
|
Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29:550-7. [PMID: 21663987 PMCID: PMC3193849 DOI: 10.1016/j.tibtech.2011.04.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/01/2023]
Abstract
Administration of ex vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) has been shown to mediate durable regression of melanoma tumors. However, the generation of TILs is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review, we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments.
Collapse
Affiliation(s)
- Tristen S Park
- National Institutes of Health, National Cancer Institute, Surgery Branch, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Targeted entry via somatostatin receptors using a novel modified retrovirus glycoprotein that delivers genes at levels comparable to those of wild-type viral glycoproteins. J Virol 2011; 86:373-81. [PMID: 22013043 DOI: 10.1128/jvi.05411-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 10(6) transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins.
Collapse
|
44
|
Pichard V, Boni S, Baron W, Nguyen TH, Ferry N. Priming of Hepatocytes EnhancesIn VivoLiver Transduction with Lentiviral Vectors in Adult Mice. Hum Gene Ther 2011. [DOI: 10.1089/hum.2011.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Transient proteasome inhibition as a strategy to enhance lentiviral transduction of hematopoietic CD34(+) cells and T lymphocytes: implications for the use of low viral doses and large-size vectors. J Biotechnol 2011; 156:218-26. [PMID: 21933686 DOI: 10.1016/j.jbiotec.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/08/2011] [Accepted: 09/01/2011] [Indexed: 11/21/2022]
Abstract
The proteasome system restricts lentiviral transduction of stem cells. We exploited proteasome inhibition as a strategy to enhance transduction of both hematopoietic stem cells (HSC) and T lymphocytes with low dose or large-size lentiviral vectors (LV). HSC showed higher transduction efficiency if transiently exposed to proteasome inhibitor MG132 (41.8% vs 10.7%, p<0.0001). Treatment with MG132 (0.5 μM) retained its beneficial effect with 3 different LV of increasing size up to 10.9 Kb (p<0.01). We extended, for the first time, the application of proteasome inhibition to the transduction of T lymphocytes. A transient exposure to MG132 significantly improved lentiviral T-cell transduction. The mean percentage of transduced T cells progressively increased from 13.5% of untreated cells, to 21% (p=0.3), 30% (p=0.03) and 37% (p=0.01) of T lymphocytes that were pre-treated with MG132 at 0.1, 0.5 and 1 μM, respectively. MG132 did not affect viability or functionality of HSC or T cells, nor significantly increased the number of integrated vector copies. Transient proteasome inhibition appears as a new procedure to safely enhance lentiviral transduction of HSC and T lymphocytes with low viral doses. This approach could be useful in settings where the use of large size vectors may impair optimal viral production.
Collapse
|
46
|
Measles virus glycoprotein-pseudotyped lentiviral vector-mediated gene transfer into quiescent lymphocytes requires binding to both SLAM and CD46 entry receptors. J Virol 2011; 85:5975-85. [PMID: 21450813 DOI: 10.1128/jvi.00324-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene transfer into quiescent T and B cells is of importance for gene therapy and immunotherapy approaches to correct hematopoietic disorders. Previously, we generated lentiviral vectors (LVs) pseudotyped with the Edmonston measles virus (MV) hemagglutinin and fusion glycoproteins (Hgps and Fgps) (H/F-LVs), which, for the first time, allowed efficient transduction of quiescent human B and T cells. These target cells express both MV entry receptors used by the vaccinal Edmonston strain, CD46 and signaling lymphocyte activation molecule (SLAM). Interestingly, LVs pseudotyped with an MV Hgp, blind for the CD46 binding site, were completely inefficient for resting-lymphocyte transduction. Similarly, SLAM-blind H mutants that recognize only CD46 as the entry receptor did not allow stable LV transduction of resting T cells. The CD46-tropic LVs accomplished vector-cell binding, fusion, entry, and reverse transcription at levels similar to those achieved by the H/F-LVs, but efficient proviral integration did not occur. Our results indicate that both CD46 and SLAM binding sites need to be present in cis in the Hgp to allow successful stable transduction of quiescent lymphocytes. Moreover, the entry mechanism utilized appears to be crucial: efficient transduction was observed only when CD46 and SLAM were correctly engaged and an entry mechanism that strongly resembles macropinocytosis was triggered. Taken together, our results suggest that although vector entry can occur through the CD46 receptor, SLAM binding and subsequent signaling are also required for efficient LV transduction of quiescent lymphocytes to occur.
Collapse
|