1
|
Zhu E, Wang J, Shi W, Jing Q, Ai P, Shan D, Ai Z. Optimizing adjuvant treatment options for patients with glioblastoma. Front Neurol 2024; 15:1326591. [PMID: 38456152 PMCID: PMC10919147 DOI: 10.3389/fneur.2024.1326591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Background This study focused on minimizing the costs and toxic effects associated with unnecessary chemotherapy. We sought to optimize the adjuvant therapy strategy, choosing between radiotherapy (RT) and chemoradiotherapy (CRT), for patients based on their specific characteristics. This selection process utilized an innovative deep learning method. Methods We trained six machine learning (ML) models to advise on the most suitable treatment for glioblastoma (GBM) patients. To assess the protective efficacy of these ML models, we employed various metrics: hazards ratio (HR), inverse probability treatment weighting (IPTW)-adjusted HR (HRa), the difference in restricted mean survival time (dRMST), and the number needed to treat (NNT). Results The Balanced Individual Treatment Effect for Survival data (BITES) model emerged as the most effective, demonstrating significant protective benefits (HR: 0.53, 95% CI, 0.48-0.60; IPTW-adjusted HR: 0.65, 95% CI, 0.55-0.78; dRMST: 7.92, 95% CI, 7.81-8.15; NNT: 1.67, 95% CI, 1.24-2.41). Patients whose treatment aligned with BITES recommendations exhibited notably better survival rates compared to those who received different treatments, both before and after IPTW adjustment. In the CRT-recommended group, a significant survival advantage was observed when choosing CRT over RT (p < 0.001). However, this was not the case in the RT-recommended group (p = 0.06). Males, older patients, and those whose tumor invasion is confined to the ventricular system were more frequently advised to undergo RT. Conclusion Our study suggests that BITES can effectively identify GBM patients likely to benefit from CRT. These ML models show promise in transforming the complex heterogeneity of real-world clinical practice into precise, personalized treatment recommendations.
Collapse
Affiliation(s)
- Enzhao Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Jiayi Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Weizhong Shi
- Shanghai Hospital Development Center, Shanghai, China
| | - Qi Jing
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pu Ai
- School of Medicine, Tongji University, Shanghai, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Mental Disorders, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Foreman PM, Friedman GK, Cassady KA, Markert JM. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 2017; 14:333-344. [PMID: 28265902 PMCID: PMC5398989 DOI: 10.1007/s13311-017-0516-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma is the most common primary brain tumor and carries a grim prognosis, with a median survival of just over 14 months. Given the poor outcomes with standard-of-care treatments, novel treatment strategies are needed. The concept of virotherapy for the treatment of malignant tumors dates back more than a century and can be divided into replication-competent oncolytic viruses and replication-deficient viral vectors. Oncolytic viruses are designed to selectively target, infect, and replicate in tumor cells, while sparing surrounding normal brain. A host of oncolytic viruses has been evaluated in early phase human trials with promising safety results, but none has progressed to phase III trials. Despite the 25 years that has passed since the initial publication of genetically engineered oncolytic viruses for the treatment of glioma, much remains to be learned about the use of this therapy, including its mechanism of action, optimal treatment paradigm, appropriate targets, and integration with adjuvant agents. Oncolytic viral therapy for glioma remains promising and will undoubtedly impact the future of patient care.
Collapse
Affiliation(s)
- Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2015; 6:1359-70. [PMID: 25312641 PMCID: PMC4237465 DOI: 10.15252/emmm.201302627] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumor with a more than 90% 5-year mortality. GBM has a paltry median survival of 12.6 months attributed to the unique treatment limitations such as the high average age of onset, tumor location, and poor current understandings of the tumor pathophysiology. The resection techniques, chemotherapic strategies, and radiation therapy currently used to treat GBM have slowly evolved, but the improvements have not translated to marked increases in patient survival. Here, we will discuss the recent progress in our understanding of GBM pathophysiology, and the diagnostic techniques and treatment options. The discussion will include biomarkers, tumor imaging, novel therapies such as monoclonal antibodies and small-molecule inhibitors, and the heterogeneity resulting from the GBM cancer stem cell population.
Collapse
Affiliation(s)
- Steven K Carlsson
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Glioblastoma antigen discovery--foundations for immunotherapy. J Neurooncol 2015; 123:347-58. [PMID: 26045361 DOI: 10.1007/s11060-015-1836-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/30/2015] [Indexed: 01/07/2023]
Abstract
Prognosis for patients with glioblastoma (GBM), the most common high-grade primary central nervous system (CNS) tumor, remains discouraging despite multiple discoveries and clinical advances. Immunotherapy has emerged as a promising approach to GBM therapy as the idea the human CNS is immunoprivileged is being challenged. Early clinical studies of vaccine-based approaches have been encouraging, but further investigation is required before these therapies become clinically meaningful. A key challenge in immunotherapy involves identification of target antigens that are specific and sensitive for GBM. Here we discuss tumor-associated antigens that have been targeted for GBM therapy, strategies for discovery of novel antigens, and the theory of epitope spreading as it applies to GBM immunotherapy.
Collapse
|
5
|
8th International Conference on Oncolytic Virus Therapeutics 2014 • April 10–13, 2014Lincoln College & Examination Schools • Oxford, United Kingdom. Hum Gene Ther 2014. [DOI: 10.1089/hum.2014.2538.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Dong W, van Ginkel JWH, Au KY, Alemany R, Meulenberg JJM, van Beusechem VW. ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models. Hum Gene Ther 2014; 25:897-904. [PMID: 25093639 DOI: 10.1089/hum.2013.229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Improving the antitumor potency of current oncolytic adenoviruses represents one of the major challenges in development of these viruses for clinical use. We have generated an oncolytic adenovirus carrying the safety-enhancing E1AΔ24 deletion, the potency-enhancing T1 mutation, and the infectivity-enhancing fiber RGD modification. The results of in vitro cytotoxicity assays on 15 human cancer cell lines derived from different tumor types demonstrated that ORCA-010 is more potent than Ad5-Δ24RGD or ONYX-015. As ORCA-010 will initially be developed for the treatment of prostate cancer, selectivity experiments were performed using primary human prostate cells. ORCA-010 killed cancer cells more effectively than these primary human cells. In both primary prostate fibroblasts and epithelial cells, ORCA-010 was as safe as Ad5-Δ24RGD. Evaluation of ORCA-010 in in vivo xenograft tumor models in nude mice showed that ORCA-010 significantly inhibited growth of prostate, lung, and ovarian tumors and conferred prolonged survival of tumor-bearing animals. Furthermore, we observed a substantial increase in infectious viral particles in tumors injected with ORCA-010. The number of infectious viral particles increased after treatment and infectious particles remained present up to at least 4 weeks posttreatment. Intratumoral virus replication was associated with substantial necrosis and fibrosis. In conclusion, ORCA-010 is more potent than earlier generation oncolytic adenoviruses, without demonstrating increased toxicity. ORCA-010 exerted strong in vivo antitumor activity and is therefore a suitable candidate for clinical evaluation.
Collapse
Affiliation(s)
- Wenliang Dong
- 1 ORCA Therapeutics B.V. , 1081 HZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
8
|
Abstract
Despite extensive research, current glioma therapies are still unsatisfactory, and novel approaches are pressingly needed. In recent years, both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment, and the mechanistic background of their cytotoxicity has been unveiled. A growing number of clinical trials have convincingly established viral therapies to be safe in glioma patients, and maximum tolerated doses have generally not been reached. However, evidence for therapeutic benefit has been limited: new generations of therapeutic vectors need to be developed in order to target not only tumor cells but also the complex surrounding microenvironment. Such therapies could also direct long-lasting immune responses toward the tumor while reducing early antiviral reactions. Furthermore, viral delivery methods are to be improved and viral spread within the tumor will have to be enhanced. Here, we will review the outcome of completed glioma virus therapy trials as well as highlight the ongoing clinical activities. On this basis, we will give an overview of the numerous strategies to enhance therapeutic efficacy of new-generation viruses and novel treatment regimens. Finally, we will conclude with approaches that may be crucial to the development of successful glioma therapies in the future.
Collapse
Affiliation(s)
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|