1
|
Baik R, Cromer MK, Glenn SE, Vakulskas CA, Chmielewski KO, Dudek AM, Feist WN, Klermund J, Shipp S, Cathomen T, Dever DP, Porteus MH. Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells. Nat Commun 2024; 15:111. [PMID: 38169468 PMCID: PMC10762240 DOI: 10.1038/s41467-023-43413-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.
Collapse
Affiliation(s)
- Ron Baik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kyle Cromer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steve E Glenn
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | | | - Kay O Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Amanda M Dudek
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - William N Feist
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
| | - Suzette Shipp
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
| | - Daniel P Dever
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew H Porteus
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Lin Y, Cai F, Wang X, Yang Y, Ren Y, Yao C, Yin X, Zhuang H, Hua Z. FADD phosphorylation contributes to development of renal fibrosis by accelerating epithelial-mesenchymal transition. Cell Cycle 2023; 22:580-595. [PMID: 36281535 PMCID: PMC9928456 DOI: 10.1080/15384101.2022.2136463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/26/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022] Open
Abstract
FADD, a classical apoptotic signaling adaptor, has recently been reported to exhibit a series of non-apoptotic functions. Here, we report that FADD may play a critical role in the development of renal fibrosis. Neutrophil infiltration in the renal interstitial part, glomerular mesangial cell proliferation, and base-membrane thickening were observed in FADD-D mice by H&E, PAS, and PASM staining. Immunofluorescence analysis revealed that macrophage infiltration was significantly enhanced in FADD-D mice. Renal fibrosis might be induced by IgA nephritis in FADD-D mice as evidenced by increased Ki67 and type IV collagen. Additionally, the levels of α-SMA, Fibronectin, and Vimentin were also found to be elevated. Mechanism study indicated that the TLR4/myD88/NF-κB signaling pathway was activated in FADD-D mice. Moreover, FADD phosphorylation activated the mTOR and TGF-β/Smad pathway and accelerated the process of epithelial mesenchymal transition. Further studies indicated that the TGF-β1 pathway was also activated and the process of EMT was accelerated in both FADD-disrupted HEK293 cells and FADD-deficient MES cells. Thus, we concluded that FADD phosphorylation could lead to IgA nephritis and eventually result in renal fibrosis. Taken together, our study provides evidence, for the first time, that FADD, especially in its phosphorylated form, has an effect on the development of renal fibrosis.Abbreviations: FADD: FAS-associated protein with death domain; DED: death effector domain; DD: death domain; CKD: chronic kidney disease; ECM: extracellular matrix; ESRD: end-stage renal disease; RRT: renal replacement therapy; H&E: hematoxylin and eosin; PASM: periodic acid silver methenamine.
Collapse
Affiliation(s)
- Yan Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Yunwen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Yongzhe Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou medical university, Xuzhou, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, P. R. China
| |
Collapse
|
3
|
Madhu A, Cherian I, Gautam AK. Interdisciplinary approach to biomedical research: a panacea to efficient research output during the global pandemic. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217733 DOI: 10.1016/b978-0-323-85156-5.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biomedical research is rapidly growing due to inventions and developments in science and technology. Several interdisciplinary fields should be combined to find the remedy of diseases including pandemics. To accomplish this, interdisciplinary research is a prerequisite. Using improved techniques in microscopy and genetic engineering, the systemic perspective of the human body and related diseases can be found. Recent genetic-based inheritance studies of diseases, understanding various omics, stem cell systems, and gene editing tools including CRISPR relevant to biomedical research require multidisciplinary approach. Improvements in the field of bioinformatics and efficient use of model organisms in clinical testing including drug assessment are important disciplines common in different researches. The merging of different closely related areas of medical research will produce suitable changes in diagnosis and treatment. In the present scenario of increased global pandemic hits like COVID-19, an understanding on the interdisciplinary approach is needed for controlling the spread and finding vaccines.
Collapse
|
4
|
Chooi WH, Chin JS, Chew SY. Scaffold-Based Delivery of CRISPR/Cas9 Ribonucleoproteins for Genome Editing. Methods Mol Biol 2021; 2211:183-191. [PMID: 33336278 DOI: 10.1007/978-1-0716-0943-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The simple and versatile CRISPR/Cas9 system is a promising strategy for genome editing in mammalian cells. Generally, the genome editing components, namely Cas9 protein and single-guide RNA (sgRNA), are delivered in the format of plasmids, mRNA, or ribonucleoprotein (RNP) complexes. In particular, non-viral approaches are desirable as they overcome the safety concerns posed by viral vectors. To control cell fate for tissue regeneration, scaffold-based delivery of genome editing components will offer a route for local delivery and provide possible synergistic effects with other factors such as topographical cues that are co-delivered by the same scaffold. In this chapter, we detail a simple method of surface modification to functionalize electrospun nanofibers with CRISPR/Cas9 RNP complexes. The mussel-inspired bio-adhesive coating will be used as it is a simple and effective method to immobilize biomolecules on the surface. Nanofibers will provide a biomimicking microenvironment and topographical cues to seeded cells. For evaluation, a model cell line with single copies of enhanced green fluorescent protein (U2OS.EGFP) will be used to validate the efficiency of gene disruption.
Collapse
Affiliation(s)
- Wai Hon Chooi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
6
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Baker C, Hayden MS. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000Res 2020; 9:281. [PMID: 32528662 DOI: 10.12688/f1000research.23185.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
8
|
Chin JS, Chooi WH, Wang H, Ong W, Leong KW, Chew SY. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Acta Biomater 2019; 90:60-70. [PMID: 30978509 DOI: 10.1016/j.actbio.2019.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 01/22/2023]
Abstract
Genome editing, especially via the simple and versatile type II CRISPR/Cas9 system, offers an effective avenue to precisely control cell fate, an important aspect of tissue regeneration. Unfortunately, most CRISPR/Cas9 non-viral delivery strategies only utilise micro-/nano-particle delivery methods. While these approaches provide reasonable genomic editing efficiencies, their systemic delivery may lead to undesirable off-target effects. For in vivo applications, a more localized and sustained delivery approach may be useful, particularly in the context of tissue regeneration. Here, we developed a scaffold that delivers the CRISPR/Cas9 components (i.e. single guide RNA (sgRNA) and Cas9 protein complexes) in a localized and non-viral manner. Specifically, using mussel-inspired bioadhesive coating, polyDOPA-melanin (pDOPA), we adsorbed Cas9:sgRNA lipofectamine complexes onto bio-mimicking fiber scaffolds. To evaluate the genome-editing efficiency of this platform, U2OS.EGFP cells were used as the model cell type. pDOPA coating was essential in allowing Cas9:sgRNA lipofectamine complexes to adhere onto the scaffolds with a higher loading efficiency, while laminin coating was necessary for maintaining cell viability and proliferation on the pDOPA-coated fibers for effective gene editing (21.5% editing efficiency, p < 0.001). Importantly, U2OS.EGFP cells took up Cas9:sgRNA lipofectamine complexes directly from the scaffolds via reverse transfection. Overall, we demonstrate the efficacy of such fiber scaffolds in providing localized, sustained and non-viral delivery of Cas9:sgRNA complexes. Such genome editing scaffolds may find useful applications in tissue regeneration. STATEMENT OF SIGNIFICANCE: Currently, there is a lack of effective non-viral means to deliver CRISPR/Cas9 components for genome editing. Most existing approaches only utilize micro-/nano-particles by injection or systemic delivery, which may lead to undesirable off-target effects. Here, we report a platform that delivers the CRISPR/Cas9 components (i.e. single guide RNA (sgRNA) and Cas9 protein complexes) in a localized and sustained manner. We used mussel-inspired bioadhesive coating to functionalize the bio-mimicking fiber scaffolds with Cas9:sgRNA lipofectamine complexes, to allow effective gene editing for the cells seeded on the scaffolds. Importantly, the cells took up Cas9:sgRNA lipofectamine complexes directly from the scaffolds. Such genome editing scaffolds may find useful applications in tissue regeneration.
Collapse
|
9
|
Khan SH. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:326-334. [PMID: 30965277 PMCID: PMC6454098 DOI: 10.1016/j.omtn.2019.02.027] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
The traditional healthcare system is at the doorstep for entering into the arena of molecular medicine. The enormous knowledge and ongoing research have now been able to demonstrate methodologies that can alter DNA coding. The techniques used to edit or change the genome evolved from the earlier attempts like nuclease technologies, homing endonucleases, and certain chemical methods. Molecular techniques like meganuclease, transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs) initially emerged as genome-editing technologies. These initial technologies suffer from lower specificity due to their off-targets side effects. Moreover, from biotechnology's perspective, the main obstacle was to develop simple but effective delivery methods for host cell entry. Later, small RNAs, including microRNA (miRNA) and small interfering RNA (siRNA), have been widely adopted in the research laboratories to replace lab animals and cell lines. The latest discovery of CRISPR/Cas9 technology seems more encouraging by providing better efficiency, feasibility, and multi-role clinical application. This later biotechnology seem to take genome-engineering techniques to the next level of molecular engineering. This review generally discusses the various gene-editing technologies in terms of the mechanisms of action, advantages, and side effects.
Collapse
Affiliation(s)
- Sikandar Hayat Khan
- Department of Pathology, PNS HAFEEZ Hospital, Pathology E-8, Islamabad, Islamabad 44400, Pakistan.
| |
Collapse
|
10
|
Abstract
Change is an absolute so long as time does not stand still. We should expect it, embrace it, and try to predict its direction. Dermatology, as a specialty practice, has been changing rapidly over the past 30 years concurrent with the changes in medicine. What are these changes, how did they come about, and what may be the consequences? The goal of this review is to follow the march of time, as we move from one era to the other in step with what is happening in the world as a whole and the United States in particular. The growth of our specialty, Dermatology, is divided into 3 eras which are quite different in generational cultures. The first era spanning the 1980s and 1990s is dubbed as "old school." The second era begins with the new century, 2000 until today. This era will forever be remembered as the business era, the rise of elite cultures, and the losses and threats to academia. The third era begins now; it is that of technology which is fast progressing into the future. One can theoretically project what may occur during this technologic revolution and the directions in medicine as a whole. Dermatology can be at the forefront of this era or it could be lost as a whole if we do nothing to keep up. These eras are based on my personal experience as a dermatologist in a large academic institution in the United States and may not apply to other communities or societies elsewhere. The United States serves as a good example of a western technologically oriented society that is often emulated by others.
Collapse
Affiliation(s)
- Rokea A El-Azhary
- Department of Dermatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.
| |
Collapse
|
11
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
12
|
Charpentier E. CRISPR-Cas9: how research on a bacterial RNA-guided mechanism opened new perspectives in biotechnology and biomedicine. EMBO Mol Med 2015; 7:363-5. [PMID: 25796552 PMCID: PMC4403038 DOI: 10.15252/emmm.201504847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Strategies to increase genome editing frequencies and to facilitate the identification of edited cells. Methods Mol Biol 2015; 1239:281-9. [PMID: 25408413 DOI: 10.1007/978-1-4939-1862-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The power of genome editing is increasingly recognized as it has become more accessible to a wide range of scientists and a wider range of uses has been reported. Nonetheless, an important practical aspect of the strategy is develop methods to increase the frequency of genome editing or methods that enrich for genome-edited cells such that they can be more easily identified. This chapter discusses several different approaches including the use of cold-shock, exonucleases, surrogate markers, specialized donor vectors, and oligonucleotides to enhance the frequency of genome editing or to facilitate the identification of genome-edited cells.
Collapse
|
14
|
Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 2015; 23:570-7. [PMID: 25418680 PMCID: PMC4351458 DOI: 10.1038/mt.2014.226] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022] Open
Abstract
Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption.
Collapse
Affiliation(s)
- Cory Smith
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leire Abalde-Atristain
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chaoxia He
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett R Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Braunstein
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pooja Chaudhari
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yoon-Young Jang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Wei Q, Shen Y, Chen X, Shifman Y, Ellis RE. Rapid creation of forward-genetics tools for C. briggsae using TALENs: lessons for nonmodel organisms. Mol Biol Evol 2013; 31:468-73. [PMID: 24194560 PMCID: PMC3907053 DOI: 10.1093/molbev/mst213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although evolutionary studies of gene function often rely on RNA interference, the ideal approach would use reverse genetics to create null mutations for cross-species comparisons and forward genetics to identify novel genes in each species. We have used transcription activator-like effector nucleases (TALENs) to facilitate both approaches in Caenorhabditis nematodes. First, by combining golden gate cloning and TALEN technology, we can induce frameshifting mutations in any gene. Second, by combining this approach with bioinformatics we can predict and create the resources needed for forward genetic analysis in species like Caenorhabditis briggsae. Although developing genetic model organisms used to require years to isolate marker mutations, balancers, and tools, with TALENs, these reagents can now be produced in months. Furthermore, the analysis of nonsense mutants in related model organisms allows a directed approach for making these markers and tools. When used together, these methods could simplify the adaptation of other organisms for forward and reverse genetics.
Collapse
Affiliation(s)
- Qing Wei
- Graduate School of the Biomedical Sciences, Rowan University
| | | | | | | | | |
Collapse
|