1
|
Görücü Yilmaz S. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI JOURNAL 2021; 20:19-45. [PMID: 33510590 PMCID: PMC7838830 DOI: 10.17179/excli2020-3070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Genome editing technologies include techniques used for desired genetic modifications and allow the insertion, modification or deletion of specific DNA fragments. Recent advances in genome biology offer unprecedented promise for interdisciplinary collaboration and applications in gene editing. New genome editing technologies enable specific and efficient genome modifications. The sources that inspire these modifications and already exist in the genome are DNA degradation enzymes and DNA repair pathways. Six of these recent technologies are the clustered regularly interspaced short palindromic repeats (CRISPR), leveraging endogenous ADAR for programmable editing of RNA (LEAPER), recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing (RESTORE), chemistry-based artificial restriction DNA cutter (ARCUT), single homology arm donor mediated intron-targeting integration (SATI), RNA editing for specific C-to-U exchange (RESCUE). These technologies are widely used from various biomedical researches to clinics, agriculture, and allow you to rearrange genomic sequences, create cell lines and animal models to solve human diseases. This review emphasizes the characteristics, superiority, limitations, also whether each technology can be used in different biological systems and the potential application of these systems in the treatment of several human diseases.
Collapse
Affiliation(s)
- Senay Görücü Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey 27310
| |
Collapse
|
2
|
Amoasii L, Li H, Zhang Y, Min YL, Sanchez-Ortiz E, Shelton JM, Long C, Mireault AA, Bhattacharyya S, McAnally JR, Bassel-Duby R, Olson EN. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nat Commun 2019; 10:4537. [PMID: 31586095 PMCID: PMC6778191 DOI: 10.1038/s41467-019-12335-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder caused by mutations in the dystrophin gene. To enable the non-invasive analysis of DMD gene correction strategies in vivo, we introduced a luciferase reporter in-frame with the C-terminus of the dystrophin gene in mice. Expression of this reporter mimics endogenous dystrophin expression and DMD mutations that disrupt the dystrophin open reading frame extinguish luciferase expression. We evaluated the correction of the dystrophin reading frame coupled to luciferase in mice lacking exon 50, a common mutational hotspot, after delivery of CRISPR/Cas9 gene editing machinery with adeno-associated virus. Bioluminescence monitoring revealed efficient and rapid restoration of dystrophin protein expression in affected skeletal muscles and the heart. Our results provide a sensitive non-invasive means of monitoring dystrophin correction in mouse models of DMD and offer a platform for testing different strategies for amelioration of DMD pathogenesis.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
- Exonics Therapeutics, 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Yu Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
- Exonics Therapeutics, 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Chengzu Long
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alex A Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Samadrita Bhattacharyya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - John R McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA.
| |
Collapse
|
3
|
Nance ME, Shi R, Hakim CH, Wasala NB, Yue Y, Pan X, Zhang T, Robinson CA, Duan SX, Yao G, Yang NN, Chen SJ, Wagner KR, Gersbach CA, Duan D. AAV9 Edits Muscle Stem Cells in Normal and Dystrophic Adult Mice. Mol Ther 2019; 27:1568-1585. [PMID: 31327755 PMCID: PMC6731180 DOI: 10.1016/j.ymthe.2019.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
CRISPR editing of muscle stem cells (MuSCs) with adeno-associated virus serotype-9 (AAV9) holds promise for sustained gene repair therapy for muscular dystrophies. However, conflicting evidence exists on whether AAV9 transduces MuSCs. To rigorously address this question, we used a muscle graft model. The grafted muscle underwent complete necrosis before regenerating from its MuSCs. We injected AAV9.Cre into Ai14 mice. These mice express tdTomato upon Cre-mediated removal of a floxed stop codon. About 28%-47% and 24%-89% of Pax7+ MuSCs expressed tdTomato in pre-grafts and regenerated grafts (p > 0.05), respectively, suggesting AAV9 efficiently transduced MuSCs, and AAV9-edited MuSCs renewed successfully. Robust MuSC transduction was further confirmed by delivering AAV9.Cre to Pax7-ZsGreen-Ai14 mice in which Pax7+ MuSCs are genetically labeled by ZsGreen. Next, we co-injected AAV9.Cas9 and AAV9.gRNA to dystrophic mdx mice to repair the mutated dystrophin gene. CRISPR-treated and untreated muscles were grafted to immune-deficient, dystrophin-null NSG.mdx4cv mice. Grafts regenerated from CRISPR-treated muscle contained the edited genome and yielded 2.7-fold more dystrophin+ cells (p = 0.015). Importantly, increased dystrophin expression was not due to enhanced formation of revertant fibers or de novo transduction by residual CRISPR vectors in the graft. We conclude that AAV9 effectively transduces MuSCs. AAV9 CRISPR editing of MuSCs may provide enduring therapy.
Collapse
MESH Headings
- Animals
- Clustered Regularly Interspaced Short Palindromic Repeats
- Dependovirus/genetics
- Disease Models, Animal
- Dystrophin/chemistry
- Dystrophin/genetics
- Gene Editing
- Gene Expression
- Gene Transfer Techniques
- Genes, Reporter
- Genetic Vectors/genetics
- Mice
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- Regeneration
- Satellite Cells, Skeletal Muscle/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Michael E Nance
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ruicheng Shi
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Tracy Zhang
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn A Robinson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sean X Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Gang Yao
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO 65212, USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
4
|
Bubela T, Kleiderman E, Master Z, Ogbogu U, Ravitsky V, Zarzeczny A, Knoppers BM. Canada's Assisted Human Reproduction Act: Pragmatic Reforms in Support of Research. Front Med (Lausanne) 2019; 6:157. [PMID: 31355201 PMCID: PMC6636215 DOI: 10.3389/fmed.2019.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Canada's Assisted Human Reproduction Act is long overdue for Parliamentary review. We argue that the current regulation of research using human reproductive materials is not proportionate, not responsive to the uncertain threats posed to human and environmental health and safety, and is not considerate of diverse values in a democratic society. We propose tailored regulatory carve-outs for in vitro research for currently prohibited activities, such as gene editing, and for the exercise of Ministerial Discretion for access by Canadians to experimental in vivo interventions that are currently prohibited, such as mitochondrial replacement therapy. Our recommendations are bounded by constitutional constraints that recognize political and practical challenges in keeping oversight of this research under Federal jurisdiction, whether conducted in academic or private sectors. The proposed nuanced regulatory scheme should be overseen by a new national Agency, modeled on a blend of the Canadian Stem Cell Oversight Committee and Assisted Human Reproduction Canada.
Collapse
Affiliation(s)
- Tania Bubela
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Erika Kleiderman
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Zubin Master
- Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, United States
| | - Ubaka Ogbogu
- Faculties of Law, Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vardit Ravitsky
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Amy Zarzeczny
- Johnson Shoyama Graduate School of Public Policy, University of Regina, Regina, SK, Canada
| | - Bartha Maria Knoppers
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM, Bassel-Duby R, Piercy RJ, Olson EN. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018; 362:86-91. [PMID: 30166439 PMCID: PMC6205228 DOI: 10.1126/science.aau1549] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational "hotspot" in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery (n = 2) or 8 weeks after systemic delivery (n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Exonics Therapeutics, 75 Kneeland Street, Boston, MA 02111, USA
| | - John C W Hildyard
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London NW1 0TU, UK
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alex Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Daniel Caballero
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rachel Harron
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London NW1 0TU, UK
| | | | - Claire Massey
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London NW1 0TU, UK
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Richard J Piercy
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London NW1 0TU, UK
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|