1
|
Li X, Yang F, Wang M, Huang X, Zeng X, Zhou L, Peng S, Zhang J. Unleashing the power of peptides in prostate cancer immunotherapy: mechanism, facts and perspectives. Front Pharmacol 2025; 16:1478331. [PMID: 40078274 PMCID: PMC11897510 DOI: 10.3389/fphar.2025.1478331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer, the second most common cancer in men, often progresses to castration-resistant prostate cancer despite androgen deprivation therapy. Immunotherapy, revolutionary in cancer treatment, has limited efficacy in prostate cancer due to its "cold tumor" nature. Peptides, with unique advantages, offer new hope. This review explores how peptide-based tumor immunotherapy can transform prostate cancer from a "cold" to a "hot" state. It modulates the immunosuppressive tumor microenvironment by regulating non-immune cells (such as cancer-associated fibroblasts, endothelial cells, and adipose stromal cells), repolarizing tumor-associated macrophages, activating NK cells, and tuning cytokines. Additionally, peptides can induce immunogenic cell death (ICD) in prostate cancer cells through ferroptosis, pyroptosis, and autophagy modulation. The review also revisits existing prostate cancer immunotherapies, including immune checkpoint blockade, CAR T cell therapy, and dendritic cell vaccines, highlighting how peptides can enhance their effectiveness and safety. Finally, two peptide-based immunotherapy strategies in the development stage, peptide-integrated Proteolysis-Targeting Chimera therapy and peptide-involved epigenomic therapy, are introduced, showing great potential for future prostate cancer treatment.
Collapse
Affiliation(s)
- Xiaoya Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meijing Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zeng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sixue Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
3
|
Calixto GMF, Victorelli FD, Franz-Montan M, Baltazar F, Chorilli M. Innovative Mucoadhesive Precursor of Liquid Crystalline System Loading Anti-Gellatinolytic Peptide for Topical Treatment of Oral Cancer. J Biomed Nanotechnol 2021; 17:253-262. [PMID: 33785096 DOI: 10.1166/jbn.2021.3025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current researches report an actual benefit of a treatment for oral cancer via inhibition of proteolytic matrix metallopro-teinases (MPP) with a peptide drug, called CTT1. However, peptides present poor oral bioavailability. Topical administration on oral mucosa avoids its passage through the gastrointestinal tract and the first-pass liver metabolism, but the barrier function of the oral mucosa can impair the permeation and retention of CTT1. The objective of this study is to incorporate CTT1 into a mucoadhesive precursor of liquid crystalline system (PLCS) as an interesting strategy for the topical treatment of oral cancer. PLCS consisting of oleic acid, ethoxylated 20 and propoxylated cetyl alcohol 5, polyethyleneimine (P)-associated chitosan (C) dispersion and CTT1 (FPC-CTT1) was developed and characterized by polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). In vitro permeation and retention across esophageal mucosa, In vitro cytotoxicity towards tongue squamous cell carcinoma cells, and in vivo evaluation of vascular changes using the chick embryo chorioallantoic membrane (CAM) model were performed. PLM and SAXS showed that FPC-CTT1acted as PLCS, because it formed a lamellar liquid crystalline system after the addition of artificial saliva. FPC-CTT1increased approximately 2-fold the flux of permeation and 3-fold the retention of CTT1 on the porcine esophageal mucosa. CTT1 does not affect cell viability. CAM tests showed that FPC preserved the blood vessels and it can be a safe formulation. These findings encourage the use of the FPC-CTT1 for topical treatment of oral cancer.
Collapse
Affiliation(s)
| | - Francesca Damiani Victorelli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Michelle Franz-Montan
- UNICAMP, University of Campinas, Piracicaba Dental School Department of Biosciences, Piracicaba, SP, 13414-903, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, 4710-057, Portugal
| | - Marlus Chorilli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
4
|
Takenaga K, Ochiya T, Endo H. Inhibition of the invasion and metastasis of mammary carcinoma cells by NBD peptide targeting S100A4 via the suppression of the Sp1/MMP‑14 axis. Int J Oncol 2021; 58:397-408. [PMID: 33650647 PMCID: PMC7864152 DOI: 10.3892/ijo.2021.5173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
A synthetic peptide that blocks the interaction between the metastasis‑enhancing calcium‑binding protein, S100A4, and its effector protein, methionine aminopeptidase 2 (MetAP2) (the NBD peptide), was previously demonstrated to inhibit the angiogenesis of endothelial cells, leading to the regression of human prostate cancer in a xenograft model. However, the effects of the NBD peptide on the malignant properties of cancer cells that express S100A4 remain to be elucidated. The present study demonstrates that the NBD peptide inhibits the invasiveness and metastasis of highly metastatic human mammary carcinoma cells. The introduction of the peptide into MDA‑MB‑231 variant cells resulted in the suppression of matrix degradation in a gelatin invadopodia assay and invasiveness in a Matrigel invasion assay. In line with these results, the peptide significantly downregulated the expression of matrix metalloproteinase (MMP)‑14 (MT1‑MMP). Mechanistic analysis of the downregulation of MMP‑14 revealed the suppression of the expression of the transcription factor, specificity protein 1 (Sp1), but not that of nuclear factor (NF)‑κB, early growth response 1 (EGR1) or ELK3, all of which were reported to be involved in transcriptional regulation of the MMP‑14 gene. At the same time, evidence suggested that the NBD peptide also suppressed Sp1 and MMP‑14 expression levels in MDA‑MB‑468 cells. Importantly, the intravenous administration of the NBD peptide encapsulated in liposomes inhibited pulmonary metastasis from mammary gland tumors in mice with xenograft tumors. These results indicate that the NBD peptide can suppress malignant tumor growth through the suppression of the Sp1/MMP‑14 axis. Taken together, these results reveal that the NBD peptide acts on not only endothelial cells, but also on tumor cells in an integrated manner, suggesting that the peptide may prove to be a promising cancer therapeutic peptide drug.
Collapse
Affiliation(s)
- Keizo Takenaga
- Department of Life Science, Faculty of Medicine, Shimane University, Shimane 690-0823
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023
| | - Hideya Endo
- Division of Cellular and Molecular Biology, Department of Cancer Biology
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Takenaga K, Akimoto M, Koshikawa N, Nagase H. Obesity reduces the anticancer effect of AdipoRon against orthotopic pancreatic cancer in diet-induced obese mice. Sci Rep 2021; 11:2923. [PMID: 33536560 PMCID: PMC7859201 DOI: 10.1038/s41598-021-82617-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The antidiabetic adiponectin receptor agonist AdipoRon has been shown to suppress the tumour growth of human pancreatic cancer cells. Because obesity and diabetes affect pancreatic cancer progression and chemoresistance, we investigated the effect of AdipoRon on orthotopic tumour growth of Panc02 pancreatic cancer cells in DIO (diet-induced obese) prediabetic mice. Administration of AdipoRon into DIO mice fed high-fat diets, in which prediabetic conditions were alleviated to some extent, did not reduce either body weight or tumour growth. However, when the DIO mice were fed low-fat diets, body weight and the blood leptin level gradually decreased, and importantly, AdipoRon became effective in suppressing tumour growth, which was accompanied by increases in necrotic areas and decreases in Ki67-positive cells and tumour microvessels. AdipoRon inhibited cell growth and induced necrotic cell death of Panc02 cells and suppressed angiogenesis of endothelial MSS31 cells. Insulin and IGF-1 only slightly reversed the AdipoRon-induced suppression of Panc02 cell survival but had no effect on the AdipoRon-induced suppression of MSS31 cell angiogenesis. Leptin significantly ameliorated AdipoRon-induced suppression of angiogenesis through inhibition of ERK1/2 activation. These results suggest that obesity-associated factors weaken the anticancer effect of AdipoRon, which indicates the importance of weight loss in combating pancreatic cancer.
Collapse
Affiliation(s)
- Keizo Takenaga
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba, 260-8717, Japan.
| | - Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Nobuko Koshikawa
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba, 260-8717, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba, 260-8717, Japan
| |
Collapse
|
6
|
Tseng P, Sie Z, Liu M, Lin H, Yang W, Lin T, Hsieh H, Hung S, Cheng C, Wang H, Chang H, Yuh C. Identification of Two Novel Small Compounds that Inhibit Liver Cancer Formation in Zebrafish and Analysis of Their Conjugation to Nanodiamonds to Further Reduce Toxicity. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Po‐Han Tseng
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
- Institute of Biotechnology National Tsing Hua University Hsinchu 30010 Taiwan
| | - Zong‐Lin Sie
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
- Institute of Biotechnology National Tsing Hua University Hsinchu 30010 Taiwan
| | - Meng‐Chieh Liu
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
- Institute of Biotechnology National Tsing Hua University Hsinchu 30010 Taiwan
| | - Han‐Syuan Lin
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
- Institute of Biotechnology National Tsing Hua University Hsinchu 30010 Taiwan
| | - Wan‐Yu Yang
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
| | - Ting‐Yu Lin
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
| | - Hsing‐Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Miaoli 35053 Taiwan
| | - Shih‐Che Hung
- Institute of Medical Sciences Tzu‐Chi University Hualien 97004 Taiwan
- Department of Molecular Biology and Human Genetics Tzu‐Chi University Hualien 97004 Taiwan
| | - Chia‐Liang Cheng
- Department of Physics National Dong Hwa University Hualien 97447 Taiwan
| | - Horng‐Dar Wang
- Institute of Biotechnology National Tsing Hua University Hsinchu 30010 Taiwan
| | - Hsin‐Hou Chang
- Institute of Medical Sciences Tzu‐Chi University Hualien 97004 Taiwan
- Department of Molecular Biology and Human Genetics Tzu‐Chi University Hualien 97004 Taiwan
| | - Chiou‐Hwa Yuh
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Miaoli 35053 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30010 Taiwan
- Institute of Bioinformatics and Structural Biology National Tsing‐Hua University Hsinchu 30071 Taiwan
- Ph.D. Program in Environmental and Occupational Medicine Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
7
|
Katagiri N, Nagatoishi S, Tsumoto K, Endo H. Structural features of methionine aminopeptidase2-active core peptide essential for binding with S100A4. Biochem Biophys Res Commun 2019; 516:1123-1129. [PMID: 31284952 DOI: 10.1016/j.bbrc.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Methionine aminopeptidase 2 (MetAP2) is one of the effector proteins of S100A4, a metastasis-associated calcium-binding protein. This interaction is involved in angiogenesis. The region of MetAP2 that interacts with S100A4 includes amino acids 170 to 208. A peptide corresponding to this region, named as NBD, has potent anti-angiogenic activity and suppresses tumor growth in a xenograft cancer model. However, the binding mode of NBD to S100A4 was totally unknown. Here we describe our analysis of the relationship between the inhibitory activity and the structure of NBD, which adopts a characteristic helix-turn-helix structure as shown by X-ray crystallographic analysis, and peptide fragments of NBD. We conducted physicochemical analyses of the interaction between S100A4 and the peptides, including surface plasmon resonance, microscale thermophoresis, and circular dichroism, and performed docking/molecular dynamics simulations. Active peptides had stable secondary structures, whereas inactive peptides had a little secondary structure. A computational analysis of the interaction mechanism led to the design of a peptide smaller than NBD, NBD-ΔN10, that possessed inhibitory activity. Our study provides a strategy for design for a specific peptide inhibitor against S100A4 that can be applied to the discovery of inhibitors of other protein-protein interactions.
Collapse
Affiliation(s)
- Naohiro Katagiri
- School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Hideya Endo
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
8
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
9
|
Liu Z, Meng Y, Wang H, Rudland PS, Barraclough R, Zhang S. Metastasis-inducing protein S100A4 interacts with p53 in the nuclei of living cells. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhen Liu
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
- School of Medicine and Life Sciences; University of Jinan, Shandong Academy of Medical Sciences; Jinan Shandong Province China
| | - Ying Meng
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
| | - Huijun Wang
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
| | - Philip S. Rudland
- School of Biological Sciences; University of Liverpool; Liverpool UK
| | - Roger Barraclough
- School of Biological Sciences; University of Liverpool; Liverpool UK
| | - Shu Zhang
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
- School of Medicine and Life Sciences; University of Jinan, Shandong Academy of Medical Sciences; Jinan Shandong Province China
| |
Collapse
|
10
|
Critical risk-benefit assessment of the novel anti-cancer aurora a kinase inhibitor alisertib (MLN8237): A comprehensive review of the clinical data. Crit Rev Oncol Hematol 2017; 119:59-65. [PMID: 29065986 DOI: 10.1016/j.critrevonc.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Many current anticancer chemotherapeutics suffer from significant side effects, which have led to the exploration of more targeted therapies. This resulted in the exploration of inhibitors of Aurora A kinase as a potential anti-cancer treatment. Alisertib (MLN8237) has proven to be a potent Aurora A kinase inhibitor that had the highest safety profile among its therapeutic family. Phase I/II/III clinical trials with Alisertib have been carried out and reported promising efficacy, yet serious side effects. This article attempts to assess the clinical effect of Alisertib administration in various cancer phenotypes while describing the reported side effects. METHODS Alisertib clinical data were systematically retrieved from Medline, CINAHL, PubMed, and Cochrane Central Register of Controlled Trials and analyzed for quality, relevance, and originality in three stages prior to inclusion. RESULTS Overall, seven studies met inclusion criteria and enrolled a total of 630 patients. The reported "potential" clinical effect of Alisertib in various tumours is promising as it improved time to disease progression, progression-free survival, and the duration of disease stability. The achieved improvement therefore rationalizes its further investigation as a novel anticancer therapy. However, the administration of the drug was associated with serious haematological disturbances in a relatively high percentage of patients. CONCLUSION The evidence of the anti-tumour effect of Alisertib administration is compelling in various types of malignancies. The reported side effects were serious but manageable in many cases. Topical or more targeted routes of administration are suggested when possible to overcome off-target events with systematic administration of the drug.
Collapse
|
11
|
Juanes-García A, Llorente-González C, Vicente-Manzanares M. Molecular control of non-muscle myosin II assembly. Oncotarget 2016; 7:5092-3. [PMID: 26799185 PMCID: PMC4868672 DOI: 10.18632/oncotarget.6936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 12/03/2022] Open
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Universidad Autonoma de Madrid School of Medicine and Instituto de Investigacion Sanitaria Hospital de la Princesa, Madrid, Spain
| |
Collapse
|