1
|
Hong Z, Tesic N, Bofill-De Ros X. Analysis of Processing, Post-Maturation, and By-Products of shRNA in Gene and Cell Therapy Applications. Methods Protoc 2025; 8:38. [PMID: 40278512 PMCID: PMC12029666 DOI: 10.3390/mps8020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Short hairpin RNAs (shRNAs) are potent tools for gene silencing, offering therapeutic potential for gene and cell therapy applications. However, their efficacy and safety depend on precise processing by the RNA interference machinery and the generation of minimal by-products. In this protocol, we describe how to systematically analyze the processing of therapeutic small RNAs by DROSHA and DICER1 and their incorporation into functional AGO complexes. Using standard small RNA sequencing and tailored bioinformatic analysis (QuagmiR), we evaluate the different steps of shRNA maturation that influence processing efficiency and specificity. We provide guidelines for troubleshooting common design pitfalls and off-target effects in transcriptome-wide profiling to identify unintended mRNA targeting via the miRNA-like effect. We provide examples of the bioinformatic analysis that can be performed to characterize therapeutic shRNA. Finally, we provide guidelines for troubleshooting shRNA designs that result in suboptimal processing or undesired off-target effects. This protocol underscores the importance of rational shRNA design to enhance specificity and reduce biogenesis by-products that can lead to off-target effects, providing a framework for optimizing the use of small RNAs in gene and cell therapies.
Collapse
Affiliation(s)
- Zhenyi Hong
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nikola Tesic
- Seven Bridges Genomics Inc., Cambridge, MA 02138, USA
| | - Xavier Bofill-De Ros
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Strings-Ufombah V, Malerba A, Kao SC, Harbaran S, Roth F, Cappellari O, Lu-Nguyen N, Takahashi K, Mukadam S, Kilfoil G, Kloth C, Roelvink P, Dickson G, Trollet C, Suhy D. BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:67-78. [PMID: 33738139 PMCID: PMC7940701 DOI: 10.1016/j.omtn.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/14/2021] [Indexed: 11/08/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare autosomal dominant disease that results from an alanine expansion in the N-terminal domain of Poly-A Binding Protein Nuclear-1 (PABPN1). We have recently demonstrated that a two-vector gene therapy strategy significantly ameliorated the pathology in a mouse model of OPMD. This approach entailed intramuscular injection of two recombinant adeno-associated viruses (AAVs), one expressing three short hairpin RNAs (shRNAs) to silence both mutant and wild-type PABPN1 and one expressing a codon-optimized version of PABPN1 that is insensitive to RNA interference. Here we report the continued development of this therapeutic strategy by delivering “silence and replace” sequences in a single AAV vector named BB-301. This construct is composed of a modified AAV serotype 9 (AAV9) capsid that expresses a unique single bifunctional construct under the control of the muscle-specific Spc5-12 promoter for the co-expression of both the codon-optimized PABPN1 protein and two small inhibitory RNAs (siRNAs) against PABPN1 modeled into microRNA (miRNA) backbones. A single intramuscular injection of BB-301 results in robust inhibition of mutant PABPN1 and concomitant replacement of the codon-optimized PABPN1 protein. The treatment restores muscle strength and muscle weight to wild-type levels as well as improving other physiological hallmarks of the disease in a mouse model of OPMD.
Collapse
Affiliation(s)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | - Fanny Roth
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Ornella Cappellari
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | | | | | | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Capucine Trollet
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - David Suhy
- Benitec Biopharma, Inc., Hayward, CA 94545, USA
| |
Collapse
|
3
|
Sheng P, Flood KA, Xie M. Short Hairpin RNAs for Strand-Specific Small Interfering RNA Production. Front Bioeng Biotechnol 2020; 8:940. [PMID: 32850763 PMCID: PMC7427337 DOI: 10.3389/fbioe.2020.00940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is an effective mechanism for inhibiting gene expression at the post-transcriptional level. Expression of a messenger RNA (mRNA) can be inhibited by a ∼22-nucleotide (nt) small interfering (si)RNA with the corresponding reverse complementary sequence. Typically, a duplex of siRNA, composed of the desired siRNA and a passenger strand, is processed from a short hairpin RNA (shRNA) precursor by Dicer. Subsequently, one strand of the siRNA duplex is associated with Argonaute (Ago) protein for RNAi. Although RNAi is widely used, the off-target effect induced by the passenger strand remains a potential problem. Here, based on current understanding of endogenous precursor microRNA (pre-miRNA) hairpins, called Ago-shRNA and m7G-capped pre-miRNA, we discuss the principles of shRNA designs that produce a single siRNA from one strand of the hairpin.
Collapse
Affiliation(s)
- Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Krystal A Flood
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, University of Florida, Gainesville, FL, United States.,UF Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020; 46:467-488. [PMID: 32468014 PMCID: PMC7307820 DOI: 10.3892/ijmm.2020.4608] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The major impact produced by the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) focused many researchers attention to find treatments that can suppress transmission or ameliorate the disease. Despite the very fast and large flow of scientific data on possible treatment solutions, none have yet demonstrated unequivocal clinical utility against coronavirus disease 2019 (COVID‑19). This work represents an exhaustive and critical review of all available data on potential treatments for COVID‑19, highlighting their mechanistic characteristics and the strategy development rationale. Drug repurposing, also known as drug repositioning, and target based methods are the most used strategies to advance therapeutic solutions into clinical practice. Current in silico, in vitro and in vivo evidence regarding proposed treatments are summarized providing strong support for future research efforts.
Collapse
Affiliation(s)
| | - Horia Paunescu
- Faculty of Medicine, ′Carol Davila′ University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Sterghios A. Moschos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University
- PulmoBioMed Ltd., Newcastle-Upon-Tyne NE1 8ST, UK
| | | | | | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | |
Collapse
|
5
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
6
|
Weng Y, Huang Q, Li C, Yang Y, Wang X, Yu J, Huang Y, Liang XJ. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:581-601. [PMID: 31927331 PMCID: PMC6957827 DOI: 10.1016/j.omtn.2019.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Due to a series of systemic and intracellular obstacles in nucleic acid (NA) therapy, including fast degradation in blood, renal clearance, poor cellular uptake, and inefficient endosomal escape, NAs may need delivery methods to transport to the cell nucleus or cytosol to be effective. Advanced nanoscale biotechnology-associated strategies, such as controlling the particle size, charge, drug loading, response to environmental signals, or other physical/chemical properties of delivery carriers, have provided great help for the in vivo and in vitro delivery of NA therapeutics. In this review, we introduce the characteristics of different NA modalities and illustrate how advanced nanoscale biotechnology assists NA therapy. The specific features and challenges of various nanocarriers in clinical and preclinical studies are summarized and discussed. With the help of advanced nanoscale biotechnology, some of the major barriers to the development of NA therapy will eventually be overcome in the near future.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Qianqian Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yongfeng Yang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China.
| |
Collapse
|
7
|
Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019; 37:801-825. [PMID: 31034960 DOI: 10.1016/j.biotechadv.2019.04.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO™ (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
8
|
Deep-RACE: Comprehensive Search for Novel ncRNAs Associated to a Specific Locus. Methods Mol Biol 2018; 1543:129-143. [PMID: 28349424 DOI: 10.1007/978-1-4939-6716-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deep-RACE (or RACEseq) is a recently described method (Olivarius et al. BioTechniques 46(2):130-132, 2009) that applies next-generation sequencing to the Rapid Amplification of cDNA End (RACE) protocol to define the 5' and 3' ends of RNA transcripts. Conventional mapping of 5' and 3' ends is achieved by manually cloning the PCR product of RACE followed by Sanger sequencing; this process can become costly and time-consuming when investigating multiple transcripts. High-throughput sequencing of the RACE products streamlines this process by eliminating the need to manually cut bands from an agarose gel and to clone each product individually. Importantly, in addition to these advantages, next-generation sequencing can detect low abundance fragments that would be difficult to extract from gel and clone for Sanger sequencing. For these reasons, Deep-RACE is an ideal protocol for the comprehensive study of noncoding transcripts from both intergenic regions of the genome and from within the loci of protein coding genes.
Collapse
|
9
|
Herrera-Carrillo E, Berkhout B. Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 2017; 45:10369-10379. [PMID: 28977573 PMCID: PMC5737282 DOI: 10.1093/nar/gkx779] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in the regulation of cellular gene expression via the conserved RNA interference (RNAi) mechanism. Biogenesis of the unusual miR-451 does not require Dicer. This molecule is instead processed by the Argonaute 2 (Ago2) enzyme. Similarly, unconventional short hairpin RNA (shRNA) molecules have been designed as miR-451 mimics that rely exclusively on Ago2 for maturation. We will review recent progress made in the understanding of this alternative processing route. Next, we describe different Dicer-independent shRNA designs that have been developed and discuss their therapeutic advantages and disadvantages. As an example, we will present the route towards development of a durable gene therapy against HIV-1.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
10
|
Theotokis PI, Usher L, Kortschak CK, Schwalbe E, Moschos SA. Profiling the Mismatch Tolerance of Argonaute 2 through Deep Sequencing of Sliced Polymorphic Viral RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:22-33. [PMID: 29246301 PMCID: PMC5602524 DOI: 10.1016/j.omtn.2017.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
Abstract
Low allelic and clonal variability among endogenous RNAi targets has focused mismatch tolerance studies to RNAi-active guide strands. However, the inherent genomic instability of RNA viruses such as hepatitis C virus (HCV) gives rise to quasi-species mutants within discrete clones: this facilitates mismatch tolerance studies from a target perspective. We recently quantified the slicing imprecision of Argonaute 2 using small interfering RNA (siRNA) analogs of the DNA-directed RNAi drug TT-034 and next-generation sequencing of 5' RNA ligase-mediated rapid amplification of cDNA ends (RACE-SEQ). Here, we present an open-source, customizable, and computationally light RACE-SEQ bioinformatic pipeline, describing adaptations that semiquantitatively report the impact of RNAi hybridization site mismatches from the target perspective. The analysis shows that Argonaute 2 has a substitution-specific, 3- to 5-log activity window between fully complementary targets and targets with mismatches across positions 10-11. It further focuses the endonucleotic Slicer imprecision around positions 13-17, demonstrating its dependence on guide strand central region complementarity, and potentiation by even a single mismatch. We further propose pharmacogenomics value in testing endogenous targets using recombinant replicon systems and RACE-SEQ to report the pharmacodynamics of sequence-specific oligonucleotide therapeutics against all possible polymorphisms in a population, in a minimally biased, patient-free manner.
Collapse
Affiliation(s)
- Pantazis I Theotokis
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - Louise Usher
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK; Westminster Genomic Services, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - Christopher K Kortschak
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - Ed Schwalbe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Sterghios A Moschos
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK; Westminster Genomic Services, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK.
| |
Collapse
|
11
|
Watanabe C, Cuellar TL, Haley B. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi. RNA Biol 2016; 13:25-33. [PMID: 26786363 PMCID: PMC4829305 DOI: 10.1080/15476286.2015.1128062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme.
Collapse
Affiliation(s)
- Colin Watanabe
- a Departments of Bioinformatics and Computational Biology , South San Francisco , CA 94080.,c Genentech, Inc . South San Francisco , CA 94080 , USA
| | - Trinna L Cuellar
- b Molecular Biology South San Francisco , CA 94080.,c Genentech, Inc . South San Francisco , CA 94080 , USA
| | - Benjamin Haley
- b Molecular Biology South San Francisco , CA 94080.,c Genentech, Inc . South San Francisco , CA 94080 , USA
| |
Collapse
|
12
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
13
|
Borgia G, Maraolo AE, Buonomo AR, Scotto R, Gentile I. The therapeutic potential of new investigational hepatitis C virus translation inhibitors. Expert Opin Investig Drugs 2016; 25:1209-14. [PMID: 27537604 DOI: 10.1080/13543784.2016.1225036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis, hepatocellular carcinoma and liver-related death worldwide. Currently, the anti-HCV armamentarium encompasses several direct-acting antivirals (DAA) that achieve very high response rates and have an excellent tolerability profile. However, they do not represent a final solution for HCV global eradication for at least these two reasons: i) some patients harbour resistant strains to DAAs and cannot benefit from currently available treatments; ii) the cost of these drugs remains very high. AREAS COVERED This review summarizes pre-clinical and clinical data regarding HCV translation inhibitors, a new class of drugs currently in the pipeline with novel mechanisms of action. EXPERT OPINION The availability of DAAs resolved most issues related to HCV treatment compared with the previous interferon-based therapies. However, there are some patients that cannot achieve a viral clearance with currently available treatments. Therefore, there is still room for new drugs in this setting, providing that they demonstrate an advantage in terms of efficacy, safety, cost or or simplicity of use. Based on preliminary results, at least for some promising molecules (e.g. miravirsen and RG-101), studies on safety and efficacy on this intriguing class of drugs are needed.
Collapse
Affiliation(s)
- Guglielmo Borgia
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Alberto Enrico Maraolo
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Antonio Riccardo Buonomo
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Riccardo Scotto
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Ivan Gentile
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| |
Collapse
|
14
|
Liu YP, Karg M, Harwig A, Herrera-Carrillo E, Jongejan A, van Kampen A, Berkhout B. Mechanistic insights on the Dicer-independent AGO2-mediated processing of AgoshRNAs. RNA Biol 2015; 12:92-100. [PMID: 25826416 DOI: 10.1080/15476286.2015.1017204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are widely used for gene knockdown by inducing the RNA interference (RNAi) mechanism, both for research and therapeutic purposes. The shRNA precursor is processed by the RNase III-like enzyme Dicer into biologically active small interfering RNA (siRNA). This effector molecule subsequently targets a complementary mRNA for destruction via the Argonaute 2 (AGO2) complex. The cellular role of Dicer concerns the processing of pre-miRNAs into mature microRNA (miRNA). Recently, a non-canonical pathway was reported for the biogenesis of miR-451, which bypasses Dicer and is processed instead by the slicer activity of AGO2, followed by the regular AGO2-mediated mRNA targeting step. Interestingly, shRNA designs that are characterized by a relatively short basepaired stem also bypass Dicer to be processed by AGO2. We named this design AgoshRNA as these molecules depend on AGO2 both for processing and silencing activity. In this study, we investigated diverse mechanistic aspects of this new class of AgoshRNA molecules. We probed the requirements for AGO2-mediated processing of AgoshRNAs by modification of the proposed cleavage site in the hairpin. We demonstrate by deep sequencing that AGO2-processed AgoshRNAs produce RNA effector molecules with more discrete ends than the products of the regular shRNA design. Furthermore, we tested whether trimming and tailing occurs upon AGO2-mediated processing of AgoshRNAs, similar to what has been described for miR-451. Finally, we tested the prediction that AgoshRNA activity, unlike that of regular shRNAs, is maintained in Dicer-deficient cell types. These mechanistic insights could aid in the design of optimised AgoshRNA tools and therapeutics.
Collapse
Affiliation(s)
- Ying Poi Liu
- a Laboratory of Experimental Virology; Department of Medical Microbiology; Center for Infection and Immunity Amsterdam (CINIMA); Academic Medical Center; University of Amsterdam ; Amsterdam , The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e247. [PMID: 26172504 PMCID: PMC4561654 DOI: 10.1038/mtna.2015.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 11/11/2022]
Abstract
The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1–3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).
Collapse
|
16
|
Liu YP, Karg M, Herrera-Carrillo E, Berkhout B. Towards Antiviral shRNAs Based on the AgoshRNA Design. PLoS One 2015; 10:e0128618. [PMID: 26087209 PMCID: PMC4472832 DOI: 10.1371/journal.pone.0128618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2) protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Margarete Karg
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Li T, Wu M, Zhu YY, Chen J, Chen L. Development of RNA Interference–Based Therapeutics and Application of Multi-Target Small Interfering RNAs. Nucleic Acid Ther 2014; 24:302-12. [DOI: 10.1089/nat.2014.0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tiejun Li
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Meihua Wu
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - York Yuanyuan Zhu
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Jianxin Chen
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China
| |
Collapse
|