1
|
Bestas B, Estupiñán HY, Wang Q, Kharazi S, He C, K Mohammad D, Gupta D, Wiklander OPB, Lehto T, Lundin KE, Berglöf A, Karlsson MCI, Abendroth F, El Andaloussi S, Gait MJ, Wood MJA, Leumann CJ, Stetsenko DA, Månsson R, Wengel J, Zain R, Smith CIE. Cell-penetrating peptide-conjugated, splice-switching oligonucleotides mitigate the phenotype in BTK/ Tec double deficient X-linked agammaglobulinemia model. RSC Chem Biol 2025; 6:761-771. [PMID: 40171248 PMCID: PMC11955834 DOI: 10.1039/d4cb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Splice-switching oligonucleotides (SSOs) have been developed as a treatment for various disorders, including Duchenne muscular dystrophy and spinal muscular atrophy. Here, the activity of several different SSOs was investigated as potential treatments for B lymphocyte disorders with a focus on X-linked agammaglobulinemia (XLA), caused by defects in the gene encoding Bruton's tyrosine kinase (BTK). In this study, the activity of locked nucleic acid (LNA), tricyclo-DNA (tcDNA), phosphoryl guanidine oligonucleotides (PGO) and phosphorodiamidate morpholino oligomers (PMO) were compared, targeting the pseudoexon region of BTK pre-mRNA. We further investigated the effect of conjugating cell-penetrating peptides, including Pip6a, to the SSOs. The effect was measured as splice-switching in vitro as well as in a further developed, bacterial artificial chromosome transgenic mouse model of XLA. Therapy in the form of intravenous infusions 2 times a week during 3 weeks of PMO oligomers conjugated to Pip6a was sufficient to partly restore the in vivo B lineage phenotype. SSOs treatment also provides a unique opportunity to get insights into a restoration process, when B lymphocytes of different maturation stages are simultaneously splice-corrected.
Collapse
Affiliation(s)
- Burcu Bestas
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - H Yesid Estupiñán
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Departamento de Ciencias Básicas, Universidad Industrial de Santander Bucaramanga Colombia
| | - Qing Wang
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Shabnam Kharazi
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm Sweden
| | - Dara K Mohammad
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Department of Paediatrics, University of Oxford Oxford OX3 7TY UK
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Stockholm Sweden
| | - Taavi Lehto
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Institute of Techology, University of Tartu, Tartu Estonia
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu Estonia
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Anna Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm Sweden
| | - Frank Abendroth
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
- Department of Chemistry, University of Marburg Marburg D-35043 Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital SE-171 76 Stockholm Sweden
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford Oxford OX3 7TY UK
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3 CH-3012 Bern Switzerland
| | - Dmitry A Stetsenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave. Novosibirsk 630090 Russia
- Department of Physics, Novosibirsk State University, 2 Pirogov Str. Novosibirsk 630090 Russia
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Stockholm Sweden
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark Odense Denmark
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital SE-171 76 Stockholm Sweden
- Centre for Rare Diseases, Department of Clinical Genetics and Genomics, Karolinska University Hospital SE-171 76 Stockholm Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital SE-171 76 Stockholm Sweden
| |
Collapse
|
2
|
Cuevas-Ocaña S, Yang JY, Aushev M, Schlossmacher G, Bear CE, Hannan NRF, Perkins ND, Rossant J, Wong AP, Gray MA. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:10266. [PMID: 37373413 PMCID: PMC10299534 DOI: 10.3390/ijms241210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jin Ye Yang
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Magomet Aushev
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Biomedicine West Wing, Centre for Life, Times Square, Newcastle upon Tyne NE1 3BZ, UK;
| | - George Schlossmacher
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Christine E. Bear
- Programme in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Nicholas R. F. Hannan
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Neil D. Perkins
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Janet Rossant
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Amy P. Wong
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Michael A. Gray
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| |
Collapse
|
3
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
4
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
5
|
Darwish T, Al-Khulaifi A, Ali M, Mowafy R, Arredouani A, Doi SA, Emara MM. Assessing the consistency of iPSC and animal models in cystic fibrosis modelling: A meta-analysis. PLoS One 2022; 17:e0272091. [PMID: 35944004 PMCID: PMC9362911 DOI: 10.1371/journal.pone.0272091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/12/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a hereditary autosomal recessive disorder caused by a range of mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. This gene encodes the CFTR protein, which acts as a chloride channel activated by cyclic AMP (cAMP). This meta-analysis aimed to compare the responsiveness of induced pluripotent stem cells (iPSCs) to cAMP analogues to that of commonly used animal models. METHODS Databases searched included PubMed, Scopus, and Medline from inception to January 2020. A total of 8 and 3 studies, respectively, for animal models and iPSCs, were analyzed. Studies were extracted for investigating cAMP-stimulated anion transport by measuring the short circuit current (Isc) of chloride channels in different animal models and iPSC systems We utilized an inverse variance heterogeneity model for synthesis. RESULTS Our analysis showed considerable heterogeneity in the mean Isc value in both animal models and iPSCs studies (compared to their WT counterparts), and both suffer from variable responsiveness based on the nature of the underlying model. There was no clear advantage of one over the other. CONCLUSIONS Studies on both animal and iPSCs models generated considerable heterogeneity. Given the potential of iPSC-derived models to study different diseases, we recommend paying more attention to developing reproducible models of iPSC as it has potential if adequately developed.
Collapse
Affiliation(s)
- Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Azhar Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Menatalla Ali
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Rana Mowafy
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - Suhail A. Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Suzuki S, Chosa K, Barillà C, Yao M, Zuffardi O, Kai H, Shuto T, Suico MA, Kan YW, Sargent RG, Gruenert DC. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed 2022; 4:843885. [PMID: 35465025 PMCID: PMC9019469 DOI: 10.3389/fgeed.2022.843885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keisuke Chosa
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cristina Barillà
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michael Yao
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W. Kan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - R. Geoffrey Sargent
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- GeneTether Inc., San Lorenzo, CA, United States
| | - Dieter C. Gruenert
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT, United States
| |
Collapse
|
7
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Maule G, Ensinck M, Bulcaen M, Carlon MS. Rewriting CFTR to cure cystic fibrosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:185-224. [PMID: 34175042 DOI: 10.1016/bs.pmbts.2020.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive monogenic disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Although F508del is the most frequent mutation, there are in total 360 confirmed disease-causing CFTR mutations, impairing CFTR production, function and stability. Currently, the only causal treatments available are CFTR correctors and potentiators that directly target the mutant protein. While these pharmacological advances and better symptomatic care have improved life expectancy of people with CF, none of these treatments provides a cure. The discovery and development of programmable nucleases, in particular CRISPR nucleases and derived systems, rekindled the field of CF gene therapy, offering the possibility of a permanent correction of the CFTR gene. In this review we will discuss different strategies to restore CFTR function via gene editing correction of CFTR mutations or enhanced CFTR expression, and address how best to deliver these treatments to target cells.
Collapse
Affiliation(s)
- Giulia Maule
- Department CIBIO, University of Trento, Trento, Italy; Institute of Biophysics, National Research Council, Trento, Italy
| | - Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Mattijs Bulcaen
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne S Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium.
| |
Collapse
|
10
|
Smirnikhina SA, Kondrateva EV, Adilgereeva EP, Anuchina AA, Zaynitdinova MI, Slesarenko YS, Ershova AS, Ustinov KD, Yasinovsky MI, Amelina EL, Voronina ES, Yakushina VD, Tabakov VY, Lavrov AV. P.F508del editing in cells from cystic fibrosis patients. PLoS One 2020; 15:e0242094. [PMID: 33175893 PMCID: PMC7657551 DOI: 10.1371/journal.pone.0242094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Development of genome editing methods created new opportunities for the development of etiology-based therapies of hereditary diseases. Here, we demonstrate that CRISPR/Cas9 can correct p.F508del mutation in the CFTR gene in the CFTE29o- cells and induced pluripotent stem cells (iPSCs) derived from patients with cystic fibrosis (CF). We used several combinations of Cas9, sgRNA and ssODN and measured editing efficiency in the endogenous CFTR gene and in the co-transfected plasmid containing the CFTR locus with the p.F508del mutation. The non-homologous end joining (NHEJ) frequency in the CFTR gene in the CFTE29o- cells varied from 1.25% to 2.54% of alleles. The best homology-directed repair (HDR) frequency in the endogenous CFTR locus was 1.42% of alleles. In iPSCs, the NHEJ frequency in the CFTR gene varied from 5.5% to 12.13% of alleles. The best HDR efficacy was 2.38% of alleles. Our results show that p.F508del mutation editing using CRISPR/Cas9 in CF patient-derived iPSCs is a relatively rare event and subsequent cell selection and cultivation should be carried out.
Collapse
Affiliation(s)
- Svetlana A. Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
- * E-mail:
| | - Ekaterina V. Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elmira P. Adilgereeva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Arina A. Anuchina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Yana S. Slesarenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Angelina S. Ershova
- Nazarbayev University, School of Science and Technology, Nur-Sultan, Republic of Kazakhstan
| | - Kirill D. Ustinov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Matvei I. Yasinovsky
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elena L. Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russian Federation
| | - Ekaterina S. Voronina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Valentina D. Yakushina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Vyacheslav Yu. Tabakov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexander V. Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|
11
|
King NE, Suzuki S, Barillà C, Hawkins FJ, Randell SH, Reynolds SD, Stripp BR, Davis BR. Correction of Airway Stem Cells: Genome Editing Approaches for the Treatment of Cystic Fibrosis. Hum Gene Ther 2020; 31:956-972. [PMID: 32741223 PMCID: PMC7495916 DOI: 10.1089/hum.2020.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although CF affects multiple organs, the primary cause of mortality is respiratory failure resulting from poor clearance of hyperviscous secretions and subsequent airway infection. Recently developed CFTR modulators provide significant therapeutic benefit to the majority of CF individuals. However, treatments directed at the underlying cause are needed for the ∼7% of CF patients who are not expected to be responsive to these modulators. Genome editing can restore the native CFTR genetic sequence and function to mutant cells, representing an approach to establish durable physiologic CFTR correction. Although editing the CFTR gene in various airway cell types may transiently restore CFTR activity, effort is focused on editing airway basal stem/progenitor cells, since their correction would allow appropriate and durable expression of CFTR in stem cell-derived epithelial cell types. Substantial progress has been made to directly correct airway basal cells in vitro, theoretically enabling transplantation of autologous corrected cells to regenerate an airway with CFTR functional cells. Another approach to create autologous, gene-edited airway basal cells is derivation of CF donor-specific induced pluripotent stem cells, correction of the CFTR gene, and subsequent directed differentiation to airway basal cells. Further work is needed to translate these advances by developing effective transplantation methods. Alternatively, gene editing in vivo may enable CFTR correction. However, this approach will require robust delivery methods ensuring that basal cells are efficiently targeted and corrected. Recent advances in gene editing-based therapies provide hope that the genetic underpinning of CF can be durably corrected in airway epithelial stem cells, thereby preventing or treating lung disease in all people with CF.
Collapse
Affiliation(s)
- Nicholas E. King
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Scott H. Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan D. Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Barry R. Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brian R. Davis
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Bañuls L, Pellicer D, Castillo S, Navarro-García MM, Magallón M, González C, Dasí F. Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far? J Clin Med 2020; 9:E2577. [PMID: 32784514 PMCID: PMC7463867 DOI: 10.3390/jcm9082577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions-cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)-alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.
Collapse
Affiliation(s)
- Lucía Bañuls
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Daniel Pellicer
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Silvia Castillo
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Paediatrics Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - María Mercedes Navarro-García
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - María Magallón
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Cruz González
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Pneumology Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Francisco Dasí
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| |
Collapse
|
13
|
Suzuki S, Crane AM, Anirudhan V, Barillà C, Matthias N, Randell SH, Rab A, Sorscher EJ, Kerschner JL, Yin S, Harris A, Mendel M, Kim K, Zhang L, Conway A, Davis BR. Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction. Mol Ther 2020; 28:1684-1695. [PMID: 32402246 PMCID: PMC7335734 DOI: 10.1016/j.ymthe.2020.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
There is a strong rationale to consider future cell therapeutic approaches for cystic fibrosis (CF) in which autologous proximal airway basal stem cells, corrected for CFTR mutations, are transplanted into the patient's lungs. We assessed the possibility of editing the CFTR locus in these cells using zinc-finger nucleases and have pursued two approaches. The first, mutation-specific correction, is a footprint-free method replacing the CFTR mutation with corrected sequences. We have applied this approach for correction of ΔF508, demonstrating restoration of mature CFTR protein and function in air-liquid interface cultures established from bulk edited basal cells. The second is targeting integration of a partial CFTR cDNA within an intron of the endogenous CFTR gene, providing correction for all CFTR mutations downstream of the integration and exploiting the native CFTR promoter and chromatin architecture for physiologically relevant expression. Without selection, we observed highly efficient, site-specific targeted integration in basal cells carrying various CFTR mutations and demonstrated restored CFTR function at therapeutically relevant levels. Significantly, Omni-ATAC-seq analysis revealed minimal impact on the positions of open chromatin within the native CFTR locus. These results demonstrate efficient functional correction of CFTR and provide a platform for further ex vivo and in vivo editing.
Collapse
Affiliation(s)
- Shingo Suzuki
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ana M Crane
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Varada Anirudhan
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cristina Barillà
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Kenneth Kim
- Sangamo Therapeutics, Richmond, CA 94804, USA
| | - Lei Zhang
- Sangamo Therapeutics, Richmond, CA 94804, USA
| | | | - Brian R Davis
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
15
|
Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int J Mol Sci 2020; 21:E3903. [PMID: 32486152 PMCID: PMC7313467 DOI: 10.3390/ijms21113903] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Since the early days of its conceptualization and application, human gene transfer held the promise of a permanent solution to genetic diseases including cystic fibrosis (CF). This field went through alternated periods of enthusiasm and distrust. The development of refined technologies allowing site specific modification with programmable nucleases highly revived the gene therapy field. CRISPR nucleases and derived technologies tremendously facilitate genome manipulation offering diversified strategies to reverse mutations. Here we discuss the advancement of gene therapy, from therapeutic nucleic acids to genome editing techniques, designed to reverse genetic defects in CF. We provide a roadmap through technologies and strategies tailored to correct different types of mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, and their applications for the development of experimental models valuable for the advancement of CF therapies.
Collapse
Affiliation(s)
- Giulia Maule
- Department of Cellular Computational Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
- National Council of Research, CNR, 38123 Trento, Italy;
| | | | - Anna Cereseto
- Department of Cellular Computational Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| |
Collapse
|
16
|
Fleischer A, Vallejo-Díez S, Martín-Fernández JM, Sánchez-Gilabert A, Castresana M, Del Pozo A, Esquisabel A, Ávila S, Castrillo JL, Gaínza E, Pedraz JL, Viñas M, Bachiller D. iPSC-Derived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:858-870. [PMID: 32373648 PMCID: PMC7195499 DOI: 10.1016/j.omtm.2020.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Cystic fibrosis (CF) is the main genetic cause of death among the Caucasian population. The disease is characterized by abnormal fluid and electrolyte mobility across secretory epithelia. The first manifestations occur within hours of birth (meconium ileus), later extending to other organs, generally affecting the respiratory tract. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encodes a cyclic adenosine monophosphate (cAMP)-dependent, phosphorylation-regulated chloride channel required for transport of chloride and other ions through cell membranes. There are more than 2,000 mutations described in the CFTR gene, but one of them, phenylalanine residue at amino acid position 508 (p.F508del), a recessive allele, is responsible for the vast majority of CF cases worldwide. Here, we present the results of the application of genome-editing techniques to the restoration of CFTR activity in p.F508del patient-derived induced pluripotent stem cells (iPSCs). Gene-edited iPSCs were subsequently used to produce intestinal organoids on which the physiological activity of the restored gene was tested in forskolin-induced swelling tests. The seamless restoration of the p.F508del mutation resulted in normal expression of the mature CFTR glycoprotein, full recovery of CFTR activity, and a normal response of the repaired organoids to treatment with two approved CF therapies: VX-770 and VX-809.
Collapse
Affiliation(s)
- Aarne Fleischer
- Karuna Good Cells Technologies S.L., C/Cercas Bajas 13 Bajo, 01001 Vitoria-Gasteiz, Spain
| | - Sara Vallejo-Díez
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Miguel Marqués 21, 07190 Esporles, Spain
| | | | | | - Mónica Castresana
- Karuna Good Cells Technologies S.L., C/Cercas Bajas 13 Bajo, 01001 Vitoria-Gasteiz, Spain
| | | | - Amaia Esquisabel
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Silvia Ávila
- Genetadi Biotech S.L., Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | | | | | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Miguel Viñas
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, University of Barcelona, 08097 Barcelona, Spain
| | - Daniel Bachiller
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Miguel Marqués 21, 07190 Esporles, Spain
| |
Collapse
|
17
|
Yoshie S, Omori K, Hazama A. Airway regeneration using iPS cell-derived airway epithelial cells with Cl - channel function. Channels (Austin) 2020; 13:227-234. [PMID: 31198082 PMCID: PMC6602574 DOI: 10.1080/19336950.2019.1628550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
induced pluripotent stem (iPS) cells can be differentiated into various cell types, including airway epithelial cells, since they have the capacity for self-renewal and pluripotency. Thus, airway epithelial cells generated from iPS cells are expected to be potent candidates for use in airway regeneration and the treatment of airway diseases such as cystic fibrosis (CF). Recently, it was reported that iPS cells can be differentiated into airway epithelial cells according to the airway developmental process. These studies demonstrate that airway epithelial cells generated from iPS cells are equivalent to their in vivo counterparts. However, it has not been evaluated in detail whether these cells exhibit physiological functions and are fully mature. Airway epithelial cells adequately control water volume on the airway surface via the function of Cl− channels. Reasonable environments on the airway surface cause ciliary movement with a constant rhythm and maintain airway clearance. Therefore, the generation of functional airway epithelial cells/tissues with Cl− channel function from iPS cells will be indispensable for cell/tissue replacement therapy, the development of a reliable airway disease model, and the treatment of airway disease. This review highlights the generation of functional airway epithelial cells from iPS cells and discusses the remaining challenges to the generation of functional airway epithelial cells for airway regeneration and the treatment of airway disease.
Collapse
Affiliation(s)
- Susumu Yoshie
- a Department of Cellular and Integrative Physiology, School of Medicine , Fukushima Medical University , Fukushima , Japan
| | - Koichi Omori
- b Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine , Kyoto University , Kyoto , Japan
| | - Akihiro Hazama
- a Department of Cellular and Integrative Physiology, School of Medicine , Fukushima Medical University , Fukushima , Japan
| |
Collapse
|
18
|
Li XF, Zhou YW, Cai PF, Fu WC, Wang JH, Chen JY, Yang QN. CRISPR/Cas9 facilitates genomic editing for large-scale functional studies in pluripotent stem cell cultures. Hum Genet 2019; 138:1217-1225. [PMID: 31606751 DOI: 10.1007/s00439-019-02071-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cell (PSC) cultures form an integral part of biomedical and medical research due to their capacity to rapidly proliferate and differentiate into hundreds of highly specialized cell types. This makes them a highly useful tool in exploring human physiology and disease. Genomic editing of PSC cultures is an essential method of attaining answers to basic physiological functions, developing in vitro models of human disease, and exploring potential therapeutic strategies and the identification of drug targets. Achieving reliable and efficient genomic editing is an important aspect of using large-scale PSC cultures. The CRISPR/Cas9 genomic editing tool has facilitated highly efficient gene knockout, gene correction, or gene modifications through the design and use of single-guide RNAs which are delivered to the target DNA via Cas9. CRISPR/Cas9 modification of PSCs has furthered the understanding of basic physiology and has been utilized to develop in vitro disease models, to test therapeutic strategies, and to facilitate regenerative or tissue repair approaches. In this review, we discuss the benefits of the CRISPR/Cas9 system in large-scale PSC cultures.
Collapse
Affiliation(s)
- Xiao-Fei Li
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Yong-Wei Zhou
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Peng-Fei Cai
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Wei-Cong Fu
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Jin-Hua Wang
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology, Hangzhou, 310052, Zhejiang, People's Republic of China
| | - Qi-Ning Yang
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Mention K, Santos L, Harrison PT. Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis-Learning from Other Diseases. Genes (Basel) 2019; 10:E387. [PMID: 31117296 PMCID: PMC6562706 DOI: 10.3390/genes10050387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder caused by mutations in the CFTR gene. There are at least 346 disease-causing variants in the CFTR gene, but effective small-molecule therapies exist for only ~10% of them. One option to treat all mutations is CFTR cDNA-based therapy, but clinical trials to date have only been able to stabilise rather than improve lung function disease in patients. While cDNA-based therapy is already a clinical reality for a number of diseases, some animal studies have clearly established that precision genome editing can be significantly more effective than cDNA addition. These observations have led to a number of gene-editing clinical trials for a small number of such genetic disorders. To date, gene-editing strategies to correct CFTR mutations have been conducted exclusively in cell models, with no in vivo gene-editing studies yet described. Here, we highlight some of the key breakthroughs in in vivo and ex vivo gene and base editing in animal models for other diseases and discuss what might be learned from these studies in the development of editing strategies that may be applied to cystic fibrosis as a potential therapeutic approach. There are many hurdles that need to be overcome, including the in vivo delivery of editing machinery or successful engraftment of ex vivo-edited cells, as well as minimising potential off-target effects. However, a successful proof-of-concept study for gene or base editing in one or more of the available CF animal models could pave the way towards a long-term therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Karen Mention
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| | - Lúcia Santos
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
- University of Lisboa Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|
20
|
Efficient Gene Editing at Major CFTR Mutation Loci. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:73-81. [PMID: 30852378 PMCID: PMC6409404 DOI: 10.1016/j.omtn.2019.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.
Collapse
|
21
|
TALEN-Mediated Gene Targeting for Cystic Fibrosis-Gene Therapy. Genes (Basel) 2019; 10:genes10010039. [PMID: 30641980 PMCID: PMC6356284 DOI: 10.3390/genes10010039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited monogenic disorder, amenable to gene-based therapies. Because CF lung disease is currently the major cause of mortality and morbidity, and the lung airway is readily accessible to gene delivery, the major CF gene therapy effort at present is directed to the lung. Although airway epithelial cells are renewed slowly, permanent gene correction through gene editing or targeting in airway stem cells is needed to perpetuate the therapeutic effect. Transcription activator-like effector nuclease (TALEN) has been utilized widely for a variety of gene editing applications. The stringent requirement for nuclease binding target sites allows for gene editing with precision. In this study, we engineered helper-dependent adenoviral (HD-Ad) vectors to deliver a pair of TALENs together with donor DNA targeting the human AAVS1 locus. With homology arms of 4 kb in length, we demonstrated precise insertion of either a LacZ reporter gene or a human cystic fibrosis transmembrane conductance regulator (CFTR) minigene (cDNA) into the target site. Using the LacZ reporter, we determined the efficiency of gene integration to be about 5%. In the CFTR vector transduced cells, we were able to detect CFTR mRNA expression using qPCR and function correction using fluorometric image plate reader (FLIPR) and iodide efflux assays. Taken together, these findings suggest a new direction for future in vitro and in vivo studies in CF gene editing.
Collapse
|
22
|
Pollard BS, Pollard HB. Induced pluripotent stem cells for treating cystic fibrosis: State of the science. Pediatr Pulmonol 2018; 53:S12-S29. [PMID: 30062693 DOI: 10.1002/ppul.24118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a recently developed technology in which fully differentiated cells such as fibroblasts from individual CF patients can be repaired with [wildtype] CFTR, and reprogrammed to differentiate into fully differentiated cells characteristic of the proximal and distal airways. Here, we review properties of different epithelial cells in the airway, and the in vitro genetic roadmap which iPSCs follow as they are step-wise differentiated into either basal stem cells, for the proximal airway, or into Type II Alveolar cells for the distal airways. The central theme is that iPSC-derived basal stem cells, are penultimately dependent on NOTCH signaling for differentiation into club cells, goblet cells, ciliated cells, and neuroendocrine cells. Furthermore, given the proper matrix, these cellular progenies are also able to self-assemble into a fully functional pseudostratified squamous proximal airway epithelium. By contrast, club cells are reserve stem cells which are able to either differentiate into goblet or ciliated cells, but also to de-differentiate into basal stem cells. Variant club cells, located at the transition between airway and alveoli, may also be responsible for differentiation into Type II Alveolar cells, which then differentiate into Type I Alveolar cells for gas exchange in the distal airway. Using gene editing, the mutant CFTR gene in iPSCs from CF patients can be repaired, and fully functional epithelial cells can thus be generated through directed differentiation. However, there is a limitation in that the lung has other CFTR-dependent cells besides epithelial cells. Another limitation is that there are CFTR-dependent cells in other organs which would continue to contribute to CF disease. Furthermore, there are also bystander or modifier genes which affect disease outcome, not only in the lung, but specifically in other CF-affected organs. Finally, we discuss future personalized applications of the iPSC technology, many of which have already survived the "proof-of-principle" test. These include (i) patient-derived iPSCs used as a "lung-on-a-chip" tool for personalized drug discovery; (ii) replacement of mutant lung cells by wildtype lung cells in the living lung; and (iii) development of bio-artificial lungs. It is hoped that this review will give the reader a roadmap through the most complicated of the obstacles, and foster a guardedly optimistic view of how some of the remaining obstacles might one day be overcome.
Collapse
Affiliation(s)
| | - Harvey B Pollard
- Department of Cell Biology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
23
|
Chang CY, Ting HC, Su HL, Jeng JR. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications. Cell Transplant 2018; 27:379-392. [PMID: 29806481 PMCID: PMC6038034 DOI: 10.1177/0963689718754560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.
Collapse
Affiliation(s)
- Chia-Yu Chang
- 1 Bio-innovation Center, Tzu Chi Foundation, Hualien, Taiwan.,2 Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | - Hong-Lin Su
- 3 Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jing-Ren Jeng
- 4 Division of Cardiology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
24
|
Harrison PT, Hart S. A beginner's guide to gene editing. Exp Physiol 2018; 103:439-448. [DOI: 10.1113/ep086047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Patrick T. Harrison
- Department of Physiology, BioSciences Institute; University College Cork; Cork Ireland
| | - Stephen Hart
- UCL Great Ormond Street Institute of Child Health; University College London; London UK
| |
Collapse
|
25
|
Gene editing & stem cells. J Cyst Fibros 2017; 17:10-16. [PMID: 29233638 DOI: 10.1016/j.jcf.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
|
26
|
Abstract
It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success.
Collapse
Affiliation(s)
- Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Marson FAL, Bertuzzo CS, Ribeiro JD. Personalized or Precision Medicine? The Example of Cystic Fibrosis. Front Pharmacol 2017; 8:390. [PMID: 28676762 PMCID: PMC5476708 DOI: 10.3389/fphar.2017.00390] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
The advent of the knowledge on human genetics, by the identification of disease-associated variants, culminated in the understanding of human variability. With the genetic knowledge, the specificity of the clinical phenotype and the drug response of each individual were understood. Using the cystic fibrosis (CF) as an example, the new terms that emerged such as personalized medicine and precision medicine can be characterized. The genetic knowledge in CF is broad and the presence of a monogenic disease caused by mutations in the CFTR gene enables the phenotype–genotype association studies (including the response to drugs), considering the wide clinical and laboratory spectrum dependent on the mutual action of genotype, environment, and lifestyle. Regarding the CF disease, personalized medicine is the treatment directed at the symptoms, and this treatment is adjusted depending on the patient’s phenotype. However, more recently, the term precision medicine began to be widely used, although its correct application and understanding are still vague and poorly characterized. In precision medicine, we understand the individual as a response to the interrelation between environment, lifestyle, and genetic factors, which enabled the advent of new therapeutic models, such as conventional drugs adjustment by individual patient dosage and drug type and response, development of new drugs (read through, broker, enhancer, stabilizer, and amplifier compounds), genome editing by homologous recombination, zinc finger nucleases, TALEN (transcription activator-like effector nuclease), CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated endonuclease 9), and gene therapy. Thus, we introduced the terms personalized medicine and precision medicine based on the CF.
Collapse
Affiliation(s)
- Fernando A L Marson
- Department of Medical Genetics, Faculty of Medical Sciences, State University of CampinasCampinas, Brazil.,Department of Pediatrics, Faculty of Medical Sciences, State University of CampinasCampinas, Brazil
| | - Carmen S Bertuzzo
- Department of Medical Genetics, Faculty of Medical Sciences, State University of CampinasCampinas, Brazil
| | - José D Ribeiro
- Department of Pediatrics, Faculty of Medical Sciences, State University of CampinasCampinas, Brazil
| |
Collapse
|
28
|
Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 2017; 32:42-61. [PMID: 28049282 PMCID: PMC5214730 DOI: 10.3904/kjim.2016.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Collapse
Affiliation(s)
- Eun Ji Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Ji Hyeon Ju, M.D. Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6893 Fax: +82-2-3476-2274 E-mail:
| |
Collapse
|
29
|
Alton EWFW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harrison PT, Henig N, Higgins T, Hyde SC, Innes JA, Korman MSD. Genetic medicines for CF: Hype versus reality. Pediatr Pulmonol 2016; 51:S5-S17. [PMID: 27662105 DOI: 10.1002/ppul.23543] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
Since identification of the CFTR gene over 25 years ago, gene therapy for cystic fibrosis (CF) has been actively developed. More recently gene therapy has been joined by other forms of "genetic medicines" including mRNA delivery, as well as genome editing and mRNA repair-based strategies. Proof-of-concept that gene therapy can stabilize the progression of CF lung disease has recently been established in a Phase IIb trial. An early phase study to assess the safety and explore efficacy of CFTR mRNA repair is ongoing, while mRNA delivery and genome editing-based strategies are currently at the pre-clinical phase of development. This review has been written jointly by some of those involved in the various CF "genetic medicine" fields and will summarize the current state-of-the-art, as well as discuss future developments. Where applicable, it highlights common problems faced by each of the strategies, and also tries to highlight where a specific strategy may have an advantage on the pathway to clinical translation. We hope that this review will contribute to the ongoing discussion about the hype versus reality of genetic medicine-based treatment approaches in CF. Pediatr Pulmonol. 2016;51:S5-S17. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eric W F W Alton
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London
| | | | - Jane C Davies
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London
| | - Deborah R Gill
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London
| | - Uta Griesenbach
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London.
| | - Patrick T Harrison
- Department of Physiology and BioSciences Institute, University College Cork, Cork, Ireland
| | | | - Tracy Higgins
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London
| | - Stephen C Hyde
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London
| | - J Alastair Innes
- UK Cystic Fibrosis Gene Therapy Consortium, Edinburgh, Oxford, London
| | - Michael S D Korman
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Bednarski C, Tomczak K, vom Hövel B, Weber WM, Cathomen T. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS One 2016; 11:e0161072. [PMID: 27526025 PMCID: PMC4985144 DOI: 10.1371/journal.pone.0161072] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 01/04/2023] Open
Abstract
In vitro disease models have enabled insights into the pathophysiology of human disease as well as the functional evaluation of new therapies, such as novel genome engineering strategies. In the context of cystic fibrosis (CF), various cellular disease models have been established in recent years, including organoids based on induced pluripotent stem cell technology that allowed for functional readouts of CFTR activity. Yet, many of these in vitro CF models require complex and expensive culturing protocols that are difficult to implement and may not be amenable for high throughput screens. Here, we show that a simple cellular CF disease model based on the bronchial epithelial ΔF508 cell line CFBE41o- can be used to validate functional CFTR correction. We used an engineered nuclease to target the integration of a super-exon, encompassing the sequences of CFTR exons 11 to 27, into exon 11 and re-activated endogenous CFTR expression by treating CFBE41o- cells with a demethylating agent. We demonstrate that the integration of this super-exon resulted in expression of a corrected mRNA from the endogenous CFTR promoter and used short-circuit current measurements in Ussing chambers to corroborate restored ion transport of the repaired CFTR channels. In conclusion, this study proves that the targeted integration of a large super-exon in CFTR exon 11 leads to functional correction of CFTR, suggesting that this strategy can be used to functionally correct all CFTR mutations located downstream of the 5' end of exon 11.
Collapse
Affiliation(s)
- Christien Bednarski
- Institute for Cell and Gene Therapy, Medical Center–University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Freiburg, Germany
| | - Katja Tomczak
- Institute of Animal Physiology, Westphalian Wilhelms-University, Muenster, Germany
| | - Beate vom Hövel
- Institute for Cell and Gene Therapy, Medical Center–University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Freiburg, Germany
| | - Wolf-Michael Weber
- Institute of Animal Physiology, Westphalian Wilhelms-University, Muenster, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, Medical Center–University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Marson FAL, Bertuzzo CS, Ribeiro JD. Classification of CFTR mutation classes. THE LANCET RESPIRATORY MEDICINE 2016; 4:e37-e38. [PMID: 27377414 DOI: 10.1016/s2213-2600(16)30188-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, 126 Cidade Universitária Zeferino Vaz, Campinas, SP 13083-887, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, 126 Cidade Universitária Zeferino Vaz, Campinas, SP 13083-887, Brazil.
| | - Carmen Sílvia Bertuzzo
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, 126 Cidade Universitária Zeferino Vaz, Campinas, SP 13083-887, Brazil
| | - José Dirceu Ribeiro
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, 126 Cidade Universitária Zeferino Vaz, Campinas, SP 13083-887, Brazil
| |
Collapse
|
32
|
Harrison PT, Sanz DJ, Hollywood JA. Impact of gene editing on the study of cystic fibrosis. Hum Genet 2016; 135:983-92. [PMID: 27325484 DOI: 10.1007/s00439-016-1693-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Cystic fibrosis (CF) is a chronic and progressive autosomal recessive disorder of secretory epithelial cells, which causes obstructions in the lung airways and pancreatic ducts of 70,000 people worldwide (for recent review see Cutting Nat Rev Genet 16(1):45-56, 2015). The finding that mutations in the CFTR gene cause CF (Kerem et al. Science 245(4922):1073-1080, 1989; Riordan et al. Science 245(4922):1066-1073, 1989; Rommens et al. Science 245(4922):1059-1065, 1989), was hailed as the very happy middle of a story whose end is a cure for a fatal disease (Koshland Science 245(4922):1029, 1989). However, despite two licensed drugs (Ramsey et al. N Engl J Med 365(18):1663-1672, 2011; Wainwright et al. N Engl J Med 373(3):220-231, 2015), and a formal demonstration that repeated administration of CFTR cDNA to patients is safe and effects a modest but significant stabilisation of disease (Alton et al. Lancet Respir Med 3(9):684-691, 2015), we are still a long way from a cure, with many patients taking over 100 tablets per day, and a mean age at death of 28 years. The aim of this review is to discuss the impact on the study of CF of gene-editing techniques as they have developed over the last 30 years, up to and including the possibility of editing as a therapeutic approach.
Collapse
Affiliation(s)
| | | | - Jennifer A Hollywood
- University College Cork, Cork, Ireland.,The University of Auckland, Auckland, New Zealand
| |
Collapse
|