1
|
Li H, Zhao Q, Xu J, Li X, Chen X, Zhang Y, Li H, Zhu Y, Liu M, Zhao L, Hua D, Zhang X, Chen K. From Biomphalaria glabrata to Drosophila melanogaster and Anopheles gambiae: the diversity and role of FREPs and Dscams in immune response. Front Immunol 2025; 16:1579905. [PMID: 40370466 PMCID: PMC12074976 DOI: 10.3389/fimmu.2025.1579905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Fibrinogen-related proteins (FREPs) and Down syndrome cell adhesion molecules (Dscams) are important immune-related molecules in invertebrates. Although they are found in different taxonomic groups and possess unique functions, both exhibit high diversity and adaptability. FREPs are characterized by their fibrinogen-related domains and have been primarily studied in mollusks, such as Biomphalaria glabrata. Through mechanisms of diversity generation, such as gene conversion and point mutations, BgFREP plays a critical role in the host's defense against parasites. Dscams are immunoglobulin-like transmembrane proteins, mainly studied in arthropods, such as Drosophila melanogaster and Anopheles gambiae. Through alternative splicing, Dscams generate multiple isoforms that participate in pathogen recognition and the precise wiring of neural circuits. In D. melanogaster, DmDscam plays a role not only in neuronal self-recognition but also in pathogen recognition. In A. gambiae, AgDscam defends against parasite infections, by binding to pathogens and mediating phagocytosis. This paper highlights the key roles of FREPs and Dscams in the immunity of two major invertebrate groups-mollusks and arthropods-and summarizes the main advancements in current research. These studies not only deepen the understanding of invertebrate immune mechanisms but also lay a solid foundation for future exploration of their potential applications in the biomedical field.
Collapse
Affiliation(s)
- Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Ocean College, Beibu Gulf University, Qinzhou, China
| | - Qingzhi Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jialu Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xianwei Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hairun Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingcheng Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Dingji Hua
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Hu D, Masai I. Dscamb regulates cone mosaic formation in zebrafish via filopodium-mediated homotypic recognition. Nat Commun 2025; 16:2501. [PMID: 40133281 PMCID: PMC11937385 DOI: 10.1038/s41467-025-57506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Cone photoreceptors assemble to form a regular mosaic pattern in vertebrate retinas. In zebrafish, four distinct spectral cone types (red, green, blue, and ultraviolet), form a lattice-like pattern. However, the mechanism of cone mosaic formation has been unknown. Here we show that Down Syndrome Cell Adhesion Molecule b (Dscamb) regulates the cone mosaic pattern in zebrafish, especially via red-cone spacing. During photoreceptor differentiation, newly formed cones extend filopodium-like processes laterally to apical surfaces of neighboring cones. Interestingly, red cones extend filopodia, but promptly retract them when they meet their own cone type, suggesting filopodium-mediated, homotypic recognition and self-avoidance. This self-avoidance is compromised in zebrafish dscamb mutants, leading to abnormal clustering of red cones and subsequent disruption of regular cone spacing. Thus, apical filopodium-mediated spacing of the same cone type depends on Dscamb and is essential for cone mosaic formation in zebrafish.
Collapse
Affiliation(s)
- Dongpeng Hu
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|
3
|
Zhang Z, Chen F, Zhang Z, Guo L, Feng T, Fang Z, Xin L, Yu Y, Hu H, Liu Y, He Y. Structural insights into the in situ assembly of clustered protocadherin γB4. Nat Commun 2025; 16:1682. [PMID: 39956828 PMCID: PMC11830823 DOI: 10.1038/s41467-025-56948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Clustered protocadherins (cPcdhs) belong to the cadherin superfamily and play important roles in neural development. cPcdhs mediate homophilic adhesion and lead to self-avoidance and tiling by giving neurons specific identities in vertebrates. Structures and functions of cPcdhs have been studied extensively in past decades, but the mechanisms behind have not been fully understood. Here we investigate the in situ assembly of cPcdh-γB4, a member in the γ subfamily of cPcdhs, by electron tomography and find that the full length cPcdh-γB4 does not show regular organization at the adhesion interfaces. By contrast, cPcdh-γB4 lacking the intracellular domain can generate an ordered zigzag pattern between cells and the cis-interacting mode is different from the crystal packing of the ectodomain. We also identify the residues on the ectodomain that might be important for the zigzag pattern formation by mutagenesis. Furthermore, truncation mutants of the intracellular domain reveal different assembly patterns between cell membranes, suggesting that the intracellular domain plays a crucial role in the intermembrane organization of cPcdh-γB4. Taken together, these results suggest that both ectodomain and intracellular domain regulate the in situ assembly of cPcdh-γB4 for homophilic cell adhesion, thereby providing mechanistic insights into the functional roles of cPcdhs during neuronal wiring.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fabao Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luqiang Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tingting Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Fang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihui Xin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongyu Hu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital Jiading Branch, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital Jiading Branch, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Odierna GL, Kerwin SK, Shin GJE, Millard SS. Drosophila larval motor patterning relies on regulated alternative splicing of Dscam2. Front Mol Neurosci 2024; 17:1415207. [PMID: 39092203 PMCID: PMC11292952 DOI: 10.3389/fnmol.2024.1415207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Recent studies capitalizing on the newly complete nanometer-resolution Drosophila larval connectome have made significant advances in identifying the structural basis of motor patterning. However, the molecular mechanisms utilized by neurons to wire these circuits remain poorly understood. In this study we explore how cell-specific expression of two Dscam2 isoforms, which mediate isoform-specific homophilic binding, contributes to motor patterning and output of Drosophila larvae. Ablating Dscam2 isoform diversity resulted in impaired locomotion. Electrophysiological assessment at the neuromuscular junction during fictive locomotion indicated that this behavioral defect was largely caused by weaker bouts of motor neuron activity. Morphological analyses of single motor neurons using MultiColour FlpOut revealed severe errors in dendrite arborization and assessment of cholinergic and GABAergic projections to the motor domain revealed altered morphology of interneuron processes. Loss of Dscam2 did not affect locomotor output, motor neuron activation or dendrite targeting. Our findings thus suggest that locomotor circuit phenotypes arise specifically from inappropriate Dscam2 interactions between premotor interneurons and motor neurons when they express the same isoform. Indeed, we report here that first-order premotor interneurons express Dscam2A. Since motor neurons express Dscam2B, our results provide evidence that Dscam2 isoform expression alternates between synaptic partners in the nerve cord. Our study demonstrates the importance of cell-specific alternative splicing in establishing the circuitry that underlies neuromotor patterning without inducing unwanted intercellular interactions.
Collapse
Affiliation(s)
- G. Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sarah K. Kerwin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Grace Ji-eun Shin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Hizawa K, Sasaki T, Arimura N. A comparative overview of DSCAM and its multifunctional roles in Drosophila and vertebrates. Neurosci Res 2024; 202:1-7. [PMID: 38141781 DOI: 10.1016/j.neures.2023.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
DSCAM (Down syndrome cell adhesion molecule) is a unique neuronal adhesion protein with extensively documented multifaceted functionalities. DSCAM also has interesting properties in vertebrates and invertebrates, respectively. In Drosophila species, particularly, Dscam exhibits remarkable genetic diversity, with tens of thousands of splicing isoforms that modulate the specificity of neuronal wiring. Interestingly, this splice variant diversity of Dscam is absent in vertebrates. DSCAM plays a pivotal role in mitigating excessive adhesion between identical cell types, thereby maintaining the structural and functional coherence of neural networks. DSCAM contributes to the oversight of selective intercellular interactions such as synaptogenesis; however, the precise regulatory mechanisms underlying the promotion and inhibition of cell adhesion involved remain unclear. In this review, we aim to delineate the distinct molecules that interact with DSCAM and their specific roles within the biological landscapes of Drosophila and vertebrates. By integrating these comparative insights, we aim to elucidate the multifunctional nature of DSCAM, particularly its capacity to facilitate or deter intercellular adhesion.
Collapse
Affiliation(s)
- Kento Hizawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Nariko Arimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
6
|
Zipursky S, Lee J, Sergeeva A, Ahlsen G, Mannepalli S, Bahna F, Goodman K, Khakh B, Weiner J, Shapiro L, Honig B. Astrocyte morphogenesis requires self-recognition. RESEARCH SQUARE 2024:rs.3.rs-3932947. [PMID: 38463964 PMCID: PMC10925414 DOI: 10.21203/rs.3.rs-3932947/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Self-recognition is a fundamental cellular process across evolution and forms the basis of neuronal self-avoidance1-4. Clustered protocadherins (Pcdh), comprising a large family of isoform-specific homophilic recognition molecules, play a pivotal role in neuronal self-avoidance required for mammalian brain development5-7. The probabilistic expression of different Pcdh isoforms confers unique identities upon neurons and forms the basis for neuronal processes to discriminate between self and non-self5,6,8. Whether this self-recognition mechanism exists in astrocytes, the other predominant cell type of the brain, remains unknown. Here, we report that a specific isoform in the Pcdhγ cluster, γC3, is highly enriched in human and murine astrocytes. Through genetic manipulation, we demonstrate that γC3 acts autonomously to regulate astrocyte morphogenesis in the mouse visual cortex. To determine if γC3 proteins act by promoting recognition between processes of the same astrocyte, we generated pairs of γC3 chimeric proteins capable of heterophilic binding to each other, but incapable of homophilic binding. Co-expressing complementary heterophilic binding isoform pairs in the same γC3 null astrocyte restored normal morphology. By contrast, chimeric γC3 proteins individually expressed in single γC3 null mutant astrocytes did not. These data establish that self-recognition is essential for astrocyte development in the mammalian brain and that, by contrast to neuronal self-recognition, a single Pcdh isoform is both necessary and sufficient for this process.
Collapse
Affiliation(s)
| | - John Lee
- University of California Los Angeles
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kardum Hjort C, Paris JR, Smith HG, Dudaniec RY. Selection despite low genetic diversity and high gene flow in a rapid island invasion of the bumblebee, Bombus terrestris. Mol Ecol 2024; 33:e17212. [PMID: 37990959 DOI: 10.1111/mec.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Invasive species are predicted to adjust their morphological, physiological and life-history traits to adapt to their non-native environments. Although a loss of genetic variation during invasion may restrict local adaptation, introduced species often thrive in novel environments. Despite being founded by just a few individuals, Bombus terrestris (Hymenoptera: Apidae) has in less than 30 years successfully spread across the island of Tasmania (Australia), becoming abundant and competitive with native pollinators. We use RADseq to investigate what neutral and adaptive genetic processes associated with environmental and morphological variation allow B. terrestris to thrive as an invasive species in Tasmania. Given the widespread abundance of B. terrestris, we expected little genetic structure across Tasmania and weak signatures of environmental and morphological selection. We found high gene flow with low genetic diversity, although with significant isolation-by-distance and spatial variation in effective migration rates. Restricted migration was evident across the mid-central region of Tasmania, corresponding to higher elevations, pastural land, low wind speeds and low precipitation seasonality. Tajima's D indicated a recent population expansion extending from the south to the north of the island. Selection signatures were found for loci in relation to precipitation, wind speed and wing loading. Candidate loci were annotated to genes with functions related to cuticle water retention and insect flight muscle stability. Understanding how a genetically impoverished invasive bumblebee has rapidly adapted to a novel island environment provides further understanding about the evolutionary processes that determine successful insect invasions, and the potential for invasive hymenopteran pollinators to spread globally.
Collapse
Affiliation(s)
- Cecilia Kardum Hjort
- Department of Biology, Lund University, Lund, Sweden
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Henrik G Smith
- Department of Biology, Lund University, Lund, Sweden
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Xiao C, M’Angale PG, Wang S, Lemieux A, Thomson T. Identifying new players in structural synaptic plasticity through dArc1 interrogation. iScience 2023; 26:108048. [PMID: 37876812 PMCID: PMC10590816 DOI: 10.1016/j.isci.2023.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The formation, expansion, and pruning of synapses, known as structural synaptic plasticity, is needed for learning and memory, and perturbation of plasticity is associated with many neurological disorders and diseases. Previously, we observed that the Drosophila homolog of Activity-regulated cytoskeleton-associated protein (dArc1), forms a capsid-like structure, associates with its own mRNA, and is transported across synapses. We demonstrated that this transfer is needed for structural synaptic plasticity. To identify mRNAs that are modified by dArc1 in presynaptic neuron and postsynaptic muscle, we disrupted the expression of dArc1 and performed genomic analysis with deep sequencing. We found that dArc1 affects the expression of genes involved in metabolism, phagocytosis, and RNA-splicing. Through immunoprecipitation we also identified potential mRNA cargos of dArc1 capsids. This study suggests that dArc1 acts as a master regulator of plasticity by affecting several distinct and highly conserved cellular processes.
Collapse
Affiliation(s)
- Cong Xiao
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - P. Githure M’Angale
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shuhao Wang
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Adrienne Lemieux
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Mao J, Cao Y, Zhang Y, Huang B, Zhao Y. A novel method for identifying key genes in macroevolution based on deep learning with attention mechanism. Sci Rep 2023; 13:19727. [PMID: 37957311 PMCID: PMC10643560 DOI: 10.1038/s41598-023-47113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
Macroevolution can be regarded as the result of evolutionary changes of synergistically acting genes. Unfortunately, the importance of these genes in macroevolution is difficult to assess and hence the identification of macroevolutionary key genes is a major challenge in evolutionary biology. In this study, we designed various word embedding libraries of natural language processing (NLP) considering the multiple mechanisms of evolutionary genomics. A novel method (IKGM) based on three types of attention mechanisms (domain attention, kmer attention and fused attention) were proposed to calculate the weights of different genes in macroevolution. Taking 34 species of diurnal butterflies and nocturnal moths in Lepidoptera as an example, we identified a few of key genes with high weights, which annotated to the functions of circadian rhythms, sensory organs, as well as behavioral habits etc. This study not only provides a novel method to identify the key genes of macroevolution at the genomic level, but also helps us to understand the microevolution mechanisms of diurnal butterflies and nocturnal moths in Lepidoptera.
Collapse
Affiliation(s)
- Jiawei Mao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Yong Cao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Yan Zhang
- College of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Biaosheng Huang
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Youjie Zhao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
10
|
Bollepogu Raja KK, Yeung K, Shim YK, Li Y, Chen R, Mardon G. A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines. Nat Commun 2023; 14:7205. [PMID: 37938573 PMCID: PMC10632452 DOI: 10.1038/s41467-023-43037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The Drosophila eye is a powerful model system to study the dynamics of cell differentiation, cell state transitions, cell maturation, and pattern formation. However, a high-resolution single cell genomics resource that accurately profiles all major cell types of the larval eye disc and their spatiotemporal relationships is lacking. Here, we report transcriptomic and chromatin accessibility data for all known cell types in the developing eye. Photoreceptors appear as strands of cells that represent their dynamic developmental timelines. As photoreceptor subtypes mature, they appear to assume a common transcriptomic profile that is dominated by genes involved in axon function. We identify cell type maturation genes, enhancers, and potential regulators, as well as genes with distinct R3 or R4 photoreceptor specific expression. Finally, we observe that the chromatin accessibility between cones and photoreceptors is distinct. These single cell genomics atlases will greatly enhance the power of the Drosophila eye as a model system.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
12
|
Kiefer L, Chiosso A, Langen J, Buckley A, Gaudin S, Rajkumar SM, Servito GIF, Cha ES, Vijay A, Yeung A, Horta A, Mui MH, Canzio D. WAPL functions as a rheostat of Protocadherin isoform diversity that controls neural wiring. Science 2023; 380:eadf8440. [PMID: 37347873 DOI: 10.1126/science.adf8440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/07/2023] [Indexed: 06/24/2023]
Abstract
Neural type-specific expression of clustered Protocadherin (Pcdh) proteins is essential for the establishment of connectivity patterns during brain development. In mammals, deterministic expression of the same Pcdh isoform promotes minimal overlap of tiled projections of serotonergic neuron axons throughout the brain, while stochastic expression of Pcdh genes allows for convergence of tightly packed, overlapping olfactory sensory neuron axons into targeted structures. How can the same gene locus generate opposite transcriptional programs that orchestrate distinct spatial arrangements of axonal patterns? Here, we reveal that cell type-specific Pcdh expression and axonal behavior depend on the activity of cohesin and its unloader, WAPL (wings apart-like protein homolog). While cohesin erases genomic-distance biases in Pcdh choice, WAPL functions as a rheostat of cohesin processivity that determines Pcdh isoform diversity.
Collapse
Affiliation(s)
- Lea Kiefer
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Chiosso
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Langen
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alex Buckley
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simon Gaudin
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Ecole Normale Superieure de Lyon, 69432 Lyon, France
| | - Sandy M Rajkumar
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Isabelle F Servito
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth S Cha
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akshara Vijay
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Albert Yeung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adan Horta
- Pura Vida Investments, New York, NY 10106, USA
| | - Michael H Mui
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniele Canzio
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Galindo SE, Shin GJE, Millard SS, Grueber WB. Regulated alternative splicing of Dscam2 is required for somatosensory circuit wiring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530539. [PMID: 36909552 PMCID: PMC10002739 DOI: 10.1101/2023.03.01.530539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Axon and dendrite placement and connectivity is guided by a wide range of secreted and surface molecules in the developing nervous system. Nevertheless, the extraordinary complexity of connections in the brain requires that this repertoire be further diversified to precisely and uniquely regulate cell-cell interactions. One important mechanism for molecular diversification is alternative splicing. Drosophila Down syndrome cell adhesion molecule (Dscam2) undergoes cell type-specific alternative splicing to produce two isoform-specific homophilic binding proteins. Regulated alternative splicing of Dscam2 is important for dendrite and axon patterning, but how this translates to circuit wiring and animal behavior is not well understood. Here, we examined the role of cell-type specific expression of Dscam2 isoforms in regulating synaptic partner selection in the larval somatosensory system. We found that synaptic partners in the nociceptive circuit express different Dscam2 isoforms. Forcing synaptic partners to express a common isoform resulted in nociceptive axon patterning defects and attenuated nocifensive behaviors, indicating that a role for Dscam2 alternative splicing is to ensure that synaptic partners do not express matching isoforms. These results point to a model in which regulated alternative splicing of Dscam2 across populations of neurons restricts connectivity to specific partners and prevents inappropriate synaptic connections.
Collapse
Affiliation(s)
- Samantha E. Galindo
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Grace Ji-eun Shin
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Wesley B. Grueber
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Hendi A, Niu LG, Snow AW, Ikegami R, Wang ZW, Mizumoto K. Channel-independent function of UNC-9/Innexin in spatial arrangement of GABAergic synapses in C. elegans. eLife 2022; 11:80555. [PMID: 36378164 PMCID: PMC9665852 DOI: 10.7554/elife.80555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in Caenorhabditis elegans, in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
| | - Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center
| | - Andrew William Snow
- Graduate Program in Cell and Developmental Biology, University of British Columbia
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
- Graduate Program in Cell and Developmental Biology, University of British Columbia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia
| |
Collapse
|
16
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
17
|
Neurons Induce Tiled Astrocytes with Branches That Avoid Each Other. Int J Mol Sci 2022; 23:ijms23084161. [PMID: 35456979 PMCID: PMC9028504 DOI: 10.3390/ijms23084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurons induce astrocyte branches that approach synapses. Each astrocyte tiles by expanding branches in an exclusive territory, with limited entries for the neighboring astrocyte branches. However, how astrocytes form exclusive territories is not known. For example, the extensive branching of astrocytes may sterically interfere with the penetration of other astrocyte branches. Alternatively, astrocyte branches may actively avoid each other or remove overlapped branches to establish a territory. Here, we show time-lapse imaging of the multi-order branching process of GFP-labeled astrocytes. Astrocyte branches grow in the direction where other astrocyte branches do not exist. Neurons that had just started to grow dendrites were able to induce astrocyte branching and tiling. Upon neuronal loss by glutamate excitotoxicity, astrocytes’ terminal processes retracted and more branches went over other branches. Our results indicate that neurons induce astrocyte branches and make them avoid each other.
Collapse
|
18
|
Barber HM, Ali MF, Kucenas S. Glial Patchwork: Oligodendrocyte Progenitor Cells and Astrocytes Blanket the Central Nervous System. Front Cell Neurosci 2022; 15:803057. [PMID: 35069117 PMCID: PMC8766310 DOI: 10.3389/fncel.2021.803057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tiling is a developmental process where cell populations become evenly distributed throughout a tissue. In this review, we discuss the developmental cellular tiling behaviors of the two major glial populations in the central nervous system (CNS)—oligodendrocyte progenitor cells (OPCs) and astrocytes. First, we discuss OPC tiling in the spinal cord, which is comprised of the three cellular behaviors of migration, proliferation, and contact-mediated repulsion (CMR). These cellular behaviors occur simultaneously during OPC development and converge to produce the emergent behavior of tiling which results in OPCs being evenly dispersed and occupying non-overlapping domains throughout the CNS. We next discuss astrocyte tiling in the cortex and hippocampus, where astrocytes migrate, proliferate, then ultimately determine their exclusive domains by gradual removal of overlap rather than sustained CMR. This results in domains that slightly overlap, allowing for both exclusive control of “synaptic islands” and astrocyte-astrocyte communication. We finally discuss the similarities and differences in the tiling behaviors of these glial populations and what remains unknown regarding glial tiling and how perturbations to this process may impact injury and disease.
Collapse
Affiliation(s)
- Heather M. Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Maria F. Ali
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Sarah Kucenas
| |
Collapse
|
19
|
Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. KLC4 shapes axon arbors during development and mediates adult behavior. eLife 2022; 11:74270. [PMID: 36222498 PMCID: PMC9596160 DOI: 10.7554/elife.74270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Korri H Burnett
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Jiaye He
- Morgridge Institute for ResearchMadisonUnited States,National Innovation Center for Advanced Medical DevicesShenzenChina
| | - Marcel W Jean-Pierre
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Martin Jarzyna
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States,Department of Biology and Psychology, Georg-August-UniversityGöttingenGermany
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
20
|
McMenamin AJ, Brutscher LM, Daughenbaugh KF, Flenniken ML. The Honey Bee Gene Bee Antiviral Protein-1 Is a Taxonomically Restricted Antiviral Immune Gene. FRONTIERS IN INSECT SCIENCE 2021; 1:749781. [PMID: 38468887 PMCID: PMC10926557 DOI: 10.3389/finsc.2021.749781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 03/13/2024]
Abstract
Insects have evolved a wide range of strategies to combat invading pathogens, including viruses. Genes that encode proteins involved in immune responses often evolve under positive selection due to their co-evolution with pathogens. Insect antiviral defense includes the RNA interference (RNAi) mechanism, which is triggered by recognition of non-self, virally produced, double-stranded RNAs. Indeed, insect RNAi genes (e.g., dicer and argonaute-2) are under high selective pressure. Honey bees (Apis mellifera) are eusocial insects that respond to viral infections via both sequence specific RNAi and a non-sequence specific dsRNA triggered pathway, which is less well-characterized. A transcriptome-level study of virus-infected and/or dsRNA-treated honey bees revealed increased expression of a novel antiviral gene, GenBank: MF116383, and in vivo experiments confirmed its antiviral function. Due to in silico annotation and sequence similarity, MF116383 was originally annotated as a probable cyclin-dependent serine/threonine-protein kinase. In this study, we confirmed that MF116383 limits virus infection, and carried out further bioinformatic and phylogenetic analyses to better characterize this important gene-which we renamed bee antiviral protein-1 (bap1). Phylogenetic analysis revealed that bap1 is taxonomically restricted to Hymenoptera and Blatella germanica (the German cockroach) and that the majority of bap1 amino acids are evolving under neutral selection. This is in-line with the results from structural prediction tools that indicate Bap1 is a highly disordered protein, which likely has relaxed structural constraints. Assessment of honey bee gene expression using a weighted gene correlation network analysis revealed that bap1 expression was highly correlated with several immune genes-most notably argonaute-2. The coexpression of bap1 and argonaute-2 was confirmed in an independent dataset that accounted for the effect of virus abundance. Together, these data demonstrate that bap1 is a taxonomically restricted, rapidly evolving antiviral immune gene. Future work will determine the role of bap1 in limiting replication of other viruses and examine the signal cascade responsible for regulating the expression of bap1 and other honey bee antiviral defense genes, including coexpressed ago-2, and determine whether the virus limiting function of bap1 acts in parallel or in tandem with RNAi.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Laura M. Brutscher
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
- Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
21
|
Structure of cell-cell adhesion mediated by the Down syndrome cell adhesion molecule. Proc Natl Acad Sci U S A 2021; 118:2022442118. [PMID: 34531300 DOI: 10.1073/pnas.2022442118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily (IgSF) and plays important roles in neural development. It has a large ectodomain, including 10 Ig-like domains and 6 fibronectin III (FnIII) domains. Previous data have shown that DSCAM can mediate cell adhesion by forming homophilic dimers between cells and contributes to self-avoidance of neurites or neuronal tiling, which is important for neural network formation. However, the organization and assembly of DSCAM at cell adhesion interfaces has not been fully understood. Here we combine electron microscopy and other biophysical methods to characterize the structure of the DSCAM-mediated cell adhesion and generate three-dimensional views of the adhesion interfaces of DSCAM by electron tomography. The results show that mouse DSCAM forms a regular pattern at the adhesion interfaces. The Ig-like domains contribute to both trans homophilic interactions and cis assembly of the pattern, and the FnIII domains are crucial for the cis pattern formation as well as the interaction with the cell membrane. By contrast, no obvious assembly pattern is observed at the adhesion interfaces mediated by mouse DSCAML1 or Drosophila DSCAMs, suggesting the different structural roles and mechanisms of DSCAMs in mediating cell adhesion and neural network formation.
Collapse
|
22
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
23
|
Kurmangaliyev YZ, Yoo J, Valdes-Aleman J, Sanfilippo P, Zipursky SL. Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron 2020; 108:1045-1057.e6. [PMID: 33125872 DOI: 10.1016/j.neuron.2020.10.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022]
Abstract
Precise patterns of synaptic connections between neurons are encoded in their genetic programs. Here, we use single-cell RNA sequencing to profile neuronal transcriptomes at multiple stages in the developing Drosophila visual system. We devise an efficient strategy for profiling neurons at multiple time points in a single pool, thereby minimizing batch effects and maximizing the reliability of time-course data. A transcriptional atlas spanning multiple stages is generated, including more than 150 distinct neuronal populations; of these, 88 are followed through synaptogenesis. This analysis reveals a common (pan-neuronal) program unfolding in highly coordinated fashion in all neurons, including genes encoding proteins comprising the core synaptic machinery and membrane excitability. This program is overlaid by cell-type-specific programs with diverse cell recognition molecules expressed in different combinations and at different times. We propose that a pan-neuronal program endows neurons with the competence to form synapses and that cell-type-specific programs control synaptic specificity.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juyoun Yoo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier Valdes-Aleman
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Piero Sanfilippo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Chelicerata sDscam isoforms combine homophilic specificities to define unique cell recognition. Proc Natl Acad Sci U S A 2020; 117:24813-24824. [PMID: 32963097 DOI: 10.1073/pnas.1921983117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thousands of Down syndrome cell adhesion molecule (Dscam1) isoforms and ∼60 clustered protocadhrein (cPcdh) proteins are required for establishing neural circuits in insects and vertebrates, respectively. The strict homophilic specificity exhibited by these proteins has been extensively studied and is thought to be critical for their function in neuronal self-avoidance. In contrast, significantly less is known about the Dscam1-related family of ∼100 shortened Dscam (sDscam) proteins in Chelicerata. We report that Chelicerata sDscamα and some sDscamβ protein trans interactions are strictly homophilic, and that the trans interaction is meditated via the first Ig domain through an antiparallel interface. Additionally, different sDscam isoforms interact promiscuously in cis via membrane proximate fibronectin-type III domains. We report that cell-cell interactions depend on the combined identity of all sDscam isoforms expressed. A single mismatched sDscam isoform can interfere with the interactions of cells that otherwise express an identical set of isoforms. Thus, our data support a model by which sDscam association in cis and trans generates a vast repertoire of combinatorial homophilic recognition specificities. We propose that in Chelicerata, sDscam combinatorial specificity is sufficient to provide each neuron with a unique identity for self-nonself discrimination. Surprisingly, while sDscams are related to Drosophila Dscam1, our results mirror the findings reported for the structurally unrelated vertebrate cPcdh. Thus, our findings suggest a remarkable example of convergent evolution for the process of neuronal self-avoidance and provide insight into the basic principles and evolution of metazoan self-avoidance and self-nonself discrimination.
Collapse
|
25
|
Abstract
This study has taken advantage of the availability of the assembled genomic sequence of flies, mosquitos, ants and bees to explore the presence of ultraconserved sequence elements in these phylogenetic groups. We compared non-coding sequences found within and flanking Drosophila developmental genes to homologous sequences in Ceratitis capitata and Musca domestica. Many of the conserved sequence blocks (CSBs) that constitute Drosophila cis-regulatory DNA, recognized by EvoPrinter alignment protocols, are also conserved in Ceratitis and Musca. Also conserved is the position but not necessarily the orientation of many of these ultraconserved CSBs (uCSBs) with respect to flanking genes. Using the mosquito EvoPrint algorithm, we have also identified uCSBs shared among distantly related mosquito species. Side by side comparison of bee and ant EvoPrints of selected developmental genes identify uCSBs shared between these two Hymenoptera, as well as less conserved CSBs in either one or the other taxon but not in both. Analysis of uCSBs in these dipterans and Hymenoptera will lead to a greater understanding of their evolutionary origin and function of their conserved non-coding sequences and aid in discovery of core elements of enhancers. This study applies the phylogenetic footprinting program EvoPrinter to detection of ultraconserved non-coding sequence elements in Diptera, including flies and mosquitos, and Hymenoptera, including ants and bees. EvoPrinter outputs an interspecies comparison as a single sequence in terms of the input reference sequence. Ultraconserved sequences flanking known developmental genes were detected in Ceratitis and Musca when compared with Drosophila species, in Aedes and Culex when compared with Anopheles, and between ants and bees. Our methods are useful in detecting and understanding the core evolutionarily hardened sequences required for gene regulation.
Collapse
|
26
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
27
|
Odierna GL, Kerwin SK, Harris LE, Shin GJE, Lavidis NA, Noakes PG, Millard SS. Dscam2 suppresses synaptic strength through a PI3K-dependent endosomal pathway. J Cell Biol 2020; 219:151621. [PMID: 32259198 PMCID: PMC7265308 DOI: 10.1083/jcb.201909143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022] Open
Abstract
Dscam2 is a cell surface protein required for neuronal development in Drosophila; it can promote neural wiring through homophilic recognition that leads to either adhesion or repulsion between neurites. Here, we report that Dscam2 also plays a post-developmental role in suppressing synaptic strength. This function is dependent on one of two distinct extracellular isoforms of the protein and is autonomous to motor neurons. We link the PI3K enhancer, Centaurin gamma 1A, to the Dscam2-dependent regulation of synaptic strength and show that changes in phosphoinositide levels correlate with changes in endosomal compartments that have previously been associated with synaptic strength. Using transmission electron microscopy, we find an increase in synaptic vesicles at Dscam2 mutant active zones, providing a rationale for the increase in synaptic strength. Our study provides the first evidence that Dscam2 can regulate synaptic physiology and highlights how diverse roles of alternative protein isoforms can contribute to unique aspects of brain development and function.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Sarah K Kerwin
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Lucy E Harris
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Grace Ji-Eun Shin
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
29
|
Canzio D, Maniatis T. The generation of a protocadherin cell-surface recognition code for neural circuit assembly. Curr Opin Neurobiol 2019; 59:213-220. [PMID: 31710891 DOI: 10.1016/j.conb.2019.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
The assembly of functional neural circuits in vertebrate organisms requires complex mechanisms of self-recognition and self-avoidance. Neurites (axons and dendrites) from the same neuron recognize and avoid self, but engage in synaptic interactions with other neurons. Vertebrate neural self-avoidance requires the expression of distinct repertoires of clustered Protocadherin (Pcdh) cell-surface protein isoforms, which act as cell-surface molecular barcodes that mediate highly specific homophilic self-recognition, followed by repulsion. The generation of sufficiently diverse cell-surface barcodes is achieved by the stochastic and combinatorial activation of a subset of clustered Pcdh promoters in individual neurons. This remarkable mechanism leads to the generation of enormous molecular diversity at the cell surface. Here we review recent studies showing that stochastic expression of individual Pcdhα isoforms is accomplished through an extraordinary mechanism involving the activation of 'antisense strand' promoter within Pcdhα 'variable' exons, antisense transcription of a long non-coding RNA through the upstream 'sense strand' promoter, demethylation of this promoter, binding of the CTCF/cohesin complex and DNA looping to a distant enhancer through a mechanism of chromatin 'extrusion'.
Collapse
Affiliation(s)
- Daniele Canzio
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, United States; Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, United States; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94143, United States; Department of Psychiatry, University of California San Francisco, San Francisco, CA, 94143, United States.
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, United States; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, United States; New York Genome Center, New York, NY 10013, United States.
| |
Collapse
|
30
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
31
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
32
|
Kim B. Evolutionarily conserved and divergent functions for cell adhesion molecules in neural circuit assembly. J Comp Neurol 2019; 527:2061-2068. [PMID: 30779135 DOI: 10.1002/cne.24666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
The developing nervous system generates remarkably precise synaptic connections between neurons and their postsynaptic target cells. Numerous neural cell adhesion proteins have been identified to mediate cell recognition between synaptic partners in several model organisms. Here, I review the role of protein interactions of cell adhesion molecules in neural circuit assembly and address how these interactions are utilized to form different neural circuitries in different species. The emerging evidence suggests that the extracellular trans-interactions of cell adhesion proteins for neural wiring are evolutionarily conserved across taxa, but they are often used in different steps of circuit assembly. I also highlight how these conserved protein interactions work together as a group to specify neural connectivity.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Life Science, Dongguk University Seoul, Goyang, Republic of Korea
| |
Collapse
|
33
|
Kuehn ED, Meltzer S, Abraira VE, Ho CY, Ginty DD. Tiling and somatotopic alignment of mammalian low-threshold mechanoreceptors. Proc Natl Acad Sci U S A 2019; 116:9168-9177. [PMID: 30996124 PMCID: PMC6511030 DOI: 10.1073/pnas.1901378116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Innocuous mechanical stimuli acting on the skin are detected by sensory neurons, known as low-threshold mechanoreceptors (LTMRs). LTMRs are classified based on their response properties, action potential conduction velocity, rate of adaptation to static indentation of the skin, and terminal anatomy. Here, we report organizational properties of the cutaneous and central axonal projections of the five principal hairy skin LTMR subtypes. We find that axons of neurons within a particular LTMR class are largely nonoverlapping with respect to their cutaneous end organs (e.g., hair follicles), with Aβ rapidly adapting-LTMRs being the sole exception. Individual neurons of each LTMR class are mostly nonoverlapping with respect to their associated hair follicles, with the notable exception of C-LTMRs, which exhibit multiple branches that redundantly innervate individual hair follicles. In the spinal cord, LTMR central projections exhibit rostrocaudal elongation and mediolateral compression, compared with their cutaneous innervation patterns, and these central projections also exhibit a fine degree of homotypic topographic adjacency. These findings thus reveal homotypic tiling of LTMR subtype axonal projections in hairy skin and a remarkable degree of spatial precision of spinal cord axonal termination patterns, suggesting a somatotopically precise tactile encoding capability of the mechanosensory dorsal horn.
Collapse
Affiliation(s)
- Emily D Kuehn
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shan Meltzer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Cheng-Ying Ho
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|
35
|
Li JSS, Millard SS. Deterministic splicing of Dscam2 is regulated by Muscleblind. SCIENCE ADVANCES 2019; 5:eaav1678. [PMID: 30746474 PMCID: PMC6357765 DOI: 10.1126/sciadv.aav1678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Alternative splicing increases the proteome diversity crucial for establishing the complex circuitry between trillions of neurons. To provide individual cells with different repertoires of protein isoforms, however, this process must be regulated. Previously, we found that the mutually exclusive alternative splicing of Drosophila Dscam2 produces two isoforms (A and B) with unique binding properties. This splicing event is cell type specific, and the transmembrane proteins that it generates are crucial for the development of axons, dendrites, and synapses. Here, we show that Muscleblind (Mbl) controls Dscam2 alternative splicing. Mbl represses isoform A and promotes the selection of isoform B. Mbl mutants exhibit phenotypes also observed in flies engineered to express a single Dscam2 isoform. Consistent with this, mbl expression is cell type specific and correlates with the splicing of isoform B. Our study demonstrates how the regulated expression of a splicing factor is sufficient to provide neurons with unique protein isoforms crucial for development.
Collapse
|
36
|
DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Neural Dev 2018; 13:22. [PMID: 30219101 PMCID: PMC6138929 DOI: 10.1186/s13064-018-0118-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Proper patterning of dendritic and axonal arbors is a critical step in the formation of functional neuronal circuits. Developing circuits rely on an array of molecular cues to shape arbor morphology, but the underlying mechanisms guiding the structural formation and interconnectivity of pre- and postsynaptic arbors in real time remain unclear. Here we explore how Down syndrome cell adhesion molecule (DSCAM) differentially shapes the dendritic morphology of central neurons and their presynaptic retinal ganglion cell (RGC) axons in the developing vertebrate visual system. METHODS The cell-autonomous role of DSCAM, in tectal neurons and in RGCs, was examined using targeted single-cell knockdown and overexpression approaches in developing Xenopus laevis tadpoles. Axonal arbors of RGCs and dendritic arbors of tectal neurons were visualized using real-time in vivo confocal microscopy imaging over the course of 3 days. RESULTS In the Xenopus visual system, DSCAM immunoreactivity is present in RGCs, cells in the optic tectum and the tectal neuropil at the time retinotectal synaptic connections are made. Downregulating DSCAM in tectal neurons significantly increased dendritic growth and branching rates while inducing dendrites to take on tortuous paths. Overexpression of DSCAM, in contrast, reduced dendritic branching and growth rate. Functional deficits mediated by tectal DSCAM knockdown were examined using visually guided behavioral assays in swimming tadpoles, revealing irregular behavioral responses to visual stimulus. Functional deficits in visual behavior also corresponded with changes in VGLUT/VGAT expression, markers of excitatory and inhibitory transmission, in the tectum. Conversely, single-cell DSCAM knockdown in the retina revealed that RGC axon arborization at the target is influenced by DSCAM, where axons grew at a slower rate and remained relatively simple. In the retina, dendritic arbors of RGCs were not affected by the reduction of DSCAM expression. CONCLUSIONS Together, our observations implicate DSCAM in the control of both pre- and postsynaptic structural and functional connectivity in the developing retinotectal circuit, where it primarily acts as a neuronal brake to limit and guide postsynaptic dendrite growth of tectal neurons while it also facilitates arborization of presynaptic RGC axons cell autonomously.
Collapse
|
37
|
Millard SS, Pecot MY. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev 2018; 13:11. [PMID: 29875010 PMCID: PMC5991427 DOI: 10.1186/s13064-018-0106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022] Open
Abstract
A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.
Collapse
Affiliation(s)
- S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew Y. Pecot
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
38
|
Regulated Alternative Splicing of Drosophila Dscam2 Is Necessary for Attaining the Appropriate Number of Photoreceptor Synapses. Genetics 2017; 208:717-728. [PMID: 29208630 DOI: 10.1534/genetics.117.300432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
How the brain makes trillions of synaptic connections using a genome of only 20,000 genes is a major question in modern neuroscience. Alternative splicing is one mechanism that can increase the number of proteins produced by each gene, but its role in regulating synapse formation is poorly understood. In Drosophila, photoreceptors form a synapse with multiple postsynaptic elements including lamina neurons L1 and L2. L1 and L2 express distinct isoforms of the homophilic repulsive protein Dscam2, and since these isoforms cannot bind to each other, cell-specific expression has been proposed to be necessary for preventing repulsive interactions that could disrupt the synapse. Here, we show that the number of synapses are reduced in flies that express only one isoform, and L1 and L2 dendritic morphology is perturbed. We propose that these defects result from inappropriate interactions between L1 and L2 dendrites. We conclude that regulated Dscam2 alternative splicing is necessary for the proper assembly of photoreceptor synapses.
Collapse
|
39
|
Li W, Tang X, Chen Y, Sun W, Liu Y, Gong Y, Wen X, Li S. Characterize a typically Dscam with alternative splicing in mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2017; 71:305-318. [PMID: 29042325 DOI: 10.1016/j.fsi.2017.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
As a member of the immunoglobulin superfamily, Down syndrome cell adhesion molecule (Dscam) could function in the innate immunity of invertebrates. Recently, it is shown that arthropod Dscams play similar functions as antibodies in the adaptive immune system. Dscam could produce thousands of isoforms by alternative splicing and specifically bind to various pathogens. In the present study, we cloned the first Dscam from mud crab Scylla paramamosain (SpDscam), with full-length cDNA 7363 bp containing an open reading frame (ORF) of 6069bp and encoding 2022 amino acids, which had typical domain architecture as other arthropods, i.e., 10 immunoglobulin domains (Ig), 6 fibronectin type 3 domains (FN III), transmembrane and cytoplasmic tail. Quantitative real-time PCR revealed that SpDscam was highly expressed in brain, skin, muscle, intestine and hepatopancreas, but weakly expressed in hemolymph, heart and gill. SpDscam had three alternative splicing regions, located at the N-terminal of Ig2 and Ig3 as well as on the whole Ig7. In these regions, 32, 41 and 14 exons were detected, together with the two exon types of transmembrane domain, indicating SpDscam could potentially encode at least 36,736 unique isoforms. SpDscam induced by Vibrio parahaemolyticus challenge had strong binding ability to V. parahaemolyticus. Further, SpDscam induced by V. parahaemolyticus possessed a clearance of V. parahaemolyticus in S. paramamosain. Collectively, the results indicated SpDscam was a hypervariable pattern-recognition receptor (PRR) by alternative splicing in innate immunity system of mud crab S. paramamosain.
Collapse
Affiliation(s)
- Wenshi Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Wanwei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yan Liu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China.
| |
Collapse
|
40
|
Simmons AB, Bloomsburg SJ, Sukeena JM, Miller CJ, Ortega-Burgos Y, Borghuis BG, Fuerst PG. DSCAM-mediated control of dendritic and axonal arbor outgrowth enforces tiling and inhibits synaptic plasticity. Proc Natl Acad Sci U S A 2017; 114:E10224-E10233. [PMID: 29114051 PMCID: PMC5703318 DOI: 10.1073/pnas.1713548114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam-/- OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina.
Collapse
Affiliation(s)
- Aaron B Simmons
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844
| | | | - Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844
| | - Calvin J Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844
| | - Yohaniz Ortega-Burgos
- Department of Chemistry, University of Puerto Rico-Humacao, Humacao Puerto Rico, 00792
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844;
- Washington-Wyoming-Alaska-Montana-Idaho Medical Education Program, University of Washington School of Medicine, Moscow, ID 83844
| |
Collapse
|
41
|
Plazaola-Sasieta H, Fernández-Pineda A, Zhu Q, Morey M. Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies. J Neurogenet 2017; 31:231-249. [DOI: 10.1080/01677063.2017.1391249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haritz Plazaola-Sasieta
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Alejandra Fernández-Pineda
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Qi Zhu
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Faddeeva-Vakhrusheva A, Kraaijeveld K, Derks MFL, Anvar SY, Agamennone V, Suring W, Kampfraath AA, Ellers J, Le Ngoc G, van Gestel CAM, Mariën J, Smit S, van Straalen NM, Roelofs D. Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida. BMC Genomics 2017; 18:493. [PMID: 28659179 PMCID: PMC5490193 DOI: 10.1186/s12864-017-3852-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Background Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle. Results We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster. Conclusions The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3852-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ken Kraaijeveld
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn F L Derks
- Department of Animal Sciences, Animal Breeding and Genetics, Wageningen University, Wageningen, The Netherlands
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Valeria Agamennone
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Suring
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Giang Le Ngoc
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Janine Mariën
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sandra Smit
- Department of Plant Sciences, Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Armitage SAO, Kurtz J, Brites D, Dong Y, Du Pasquier L, Wang HC. Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Front Immunol 2017. [PMID: 28649249 PMCID: PMC5465998 DOI: 10.3389/fimmu.2017.00662] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Down syndrome cell adhesion molecule 1 (Dscam1) gene is an extraordinary example of diversity: by combining alternatively spliced exons, thousands of isoforms can be produced from just one gene. So far, such diversity in this gene has only been found in insects and crustaceans, and its essential part in neural wiring has been well-characterized for Drosophila melanogaster. Ten years ago evidence from D. melanogaster showed that the Dscam1 gene is involved in insect immune defense and work on Anopheles gambiae indicated that it is a hypervariable immune receptor. These exciting findings showed that via processes of somatic diversification insects have the possibility to produce unexpected immune molecule diversity, and it was hypothesized that Dscam1 could provide the mechanistic underpinnings of specific immune responses. Since these first publications the quest to understand the function of this gene has uncovered fascinating insights from insects and crustaceans. However, we are still far from a complete understanding of how Dscam1 functions in relation to parasites and pathogens and its full relevance for the immune system. In this Hypothesis and Theory article, we first briefly introduce Dscam1 and what we know so far about how it might function in immunity. By focusing on seven questions, we then share our sometimes contrasting thoughts on what the evidence tells us so far, what essential experiments remain to be done, and the future prospects, with the aim to provide a multiangled view on what this fascinating gene has to do with immune defense.
Collapse
Affiliation(s)
- Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Daniela Brites
- Tuberculosis Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, United States
| | | | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
44
|
Chen WV, Nwakeze CL, Denny CA, O'Keeffe S, Rieger MA, Mountoufaris G, Kirner A, Dougherty JD, Hen R, Wu Q, Maniatis T. Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science 2017; 356:406-411. [PMID: 28450636 PMCID: PMC5529183 DOI: 10.1126/science.aal3231] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Serotonergic neurons project their axons pervasively throughout the brain and innervate various target fields in a space-filling manner, leading to tiled arrangements of their axon terminals to allow optimal allocation of serotonin among target neurons. Here we show that conditional deletion of the mouse protocadherin α (Pcdhα) gene cluster in serotonergic neurons disrupts local axonal tiling and global assembly of serotonergic circuitries and results in depression-like behaviors. Genetic dissection and expression profiling revealed that this role is specifically mediated by Pcdhαc2, which is the only Pcdhα isoform expressed in serotonergic neurons. We conclude that, in contrast to neurite self-avoidance, which requires single-cell identity mediated by Pcdh diversity, a single cell-type identity mediated by the common C-type Pcdh isoform is required for axonal tiling and assembly of serotonergic circuitries.
Collapse
Affiliation(s)
- Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York, NY 10032, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Michael A Rieger
- Departments of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Mountoufaris
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Amy Kirner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Joseph D Dougherty
- Departments of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York, NY 10032, USA
- Departments of Neuroscience and Pharmacology, Columbia University, New York, NY 10032, USA
| | - Qiang Wu
- Center for Comparative Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
45
|
Liu L, Tian Y, Zhang XY, Zhang X, Li T, Xie W, Han J. Neurexin Restricts Axonal Branching in Columns by Promoting Ephrin Clustering. Dev Cell 2017; 41:94-106.e4. [PMID: 28366281 DOI: 10.1016/j.devcel.2017.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 11/18/2022]
Abstract
Columnar restriction of neurites is critical for forming nonoverlapping receptive fields and preserving spatial sensory information from the periphery in both vertebrate and invertebrate nervous systems, but the underlying molecular mechanisms remain largely unknown. Here, we demonstrate that Drosophila homolog of α-neurexin (DNrx) plays an essential role in columnar restriction during L4 axon branching. Depletion of DNrx from L4 neurons resulted in misprojection of L4 axonal branches into neighboring columns due to impaired ephrin clustering. The proper ephrin clustering requires its interaction with the intracellular region of DNrx. Furthermore, we find that Drosophila neuroligin 4 (DNlg4) in Tm2 neurons binds to DNrx and initiates DNrx clustering in L4 neurons, which subsequently induces ephrin clustering. Our study demonstrates that DNrx promotes ephrin clustering and reveals that ephrin/Eph signaling from adjacent L4 neurons restricts axonal branches of L4 neurons in columns.
Collapse
Affiliation(s)
- Lina Liu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xiao-Yan Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xinwang Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Tao Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Wei Xie
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
46
|
Kolodkin AL, Hiesinger PR. Wiring visual systems: common and divergent mechanisms and principles. Curr Opin Neurobiol 2017; 42:128-135. [PMID: 28064004 PMCID: PMC5316370 DOI: 10.1016/j.conb.2016.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
The study of visual systems has a rich history, leading to the discovery and understanding of basic principles underlying the elaboration of neuronal connectivity. Recent work in model organisms such as fly, fish and mouse has yielded a wealth of new insights into visual system wiring. Here, we consider how axonal and dendritic patterning in columns and laminae influence synaptic partner selection in these model organisms. We highlight similarities and differences among disparate visual systems with the goal of identifying common and divergent principles for visual system wiring.
Collapse
Affiliation(s)
- Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - P Robin Hiesinger
- Division of Neurobiology of the Institute for Biology, Free University Berlin, Germany.
| |
Collapse
|
47
|
Pindyurin AV. Genome-Wide Cell Type-Specific Mapping of In Vivo Chromatin Protein Binding Using an FLP-Inducible DamID System in Drosophila. Methods Mol Biol 2017; 1654:99-124. [PMID: 28986785 DOI: 10.1007/978-1-4939-7231-9_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.
Collapse
Affiliation(s)
- Alexey V Pindyurin
- Laboratory of Cell Division, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
48
|
Abstract
The modular reiterative pattern of the fly visual system makes it an ideal model to study axon guidance and synaptogenesis. In this issue of Neuron, Tadros et al. (2016) show that Dscam2/4 promote the anchoring of dendrites to their targets.
Collapse
|
49
|
Tadros W, Xu S, Akin O, Yi CH, Shin GJE, Millard SS, Zipursky SL. Dscam Proteins Direct Dendritic Targeting through Adhesion. Neuron 2016; 89:480-93. [PMID: 26844831 DOI: 10.1016/j.neuron.2015.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/11/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022]
Abstract
Cell recognition molecules are key regulators of neural circuit assembly. The Dscam family of recognition molecules in Drosophila has been shown to regulate interactions between neurons through homophilic repulsion. This is exemplified by Dscam1 and Dscam2, which together repel dendrites of lamina neurons, L1 and L2, in the visual system. By contrast, here we show that Dscam2 directs dendritic targeting of another lamina neuron, L4, through homophilic adhesion. Through live imaging and genetic mosaics to dissect interactions between specific cells, we show that Dscam2 is required in L4 and its target cells for correct dendritic targeting. In a genetic screen, we identified Dscam4 as another regulator of L4 targeting which acts with Dscam2 in the same pathway to regulate this process. This ensures tiling of the lamina neuropil through heterotypic interactions. Thus, different combinations of Dscam proteins act through distinct mechanisms in closely related neurons to pattern neural circuits.
Collapse
Affiliation(s)
- Wael Tadros
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuwa Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline H Yi
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Grace Ji-Eun Shin
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Petrovic M, Schmucker D. Axonal wiring in neural development: Target-independent mechanisms help to establish precision and complexity. Bioessays 2015; 37:996-1004. [DOI: 10.1002/bies.201400222] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Milan Petrovic
- Neuronal Wiring Laboratory; VIB; Leuven Belgium
- Department of Oncology, School of Medicine; University of Leuven; Leuven Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory; VIB; Leuven Belgium
- Department of Oncology, School of Medicine; University of Leuven; Leuven Belgium
| |
Collapse
|