1
|
Fabozzi F, Cojal González JD, Severin N, Rabe JP, Hecht S. Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals. ACS NANO 2024; 18:33664-33670. [PMID: 39574317 PMCID: PMC11636263 DOI: 10.1021/acsnano.4c12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Studying molecular materials at the nanoscale allows us to gain a deeper understanding of supramolecular structure formation and serves as the basis for rationally controlling the resulting interfacial properties. Here, we describe the formation of extended Moiré patterns resulting from the assembly of dipolar π-conjugated molecules on highly oriented pyrolytic graphite at the liquid-solid interface as characterized by scanning tunneling microscopy (STM). By switching the bias of the sample and thus the orientation of the external electric field in the vicinity of the STM junction, structural reorganization of the molecular building blocks and the resulting organic 2D crystal is induced and can conveniently be monitored in situ by the appearance and disappearance of the Moiré patterns. Importantly, the formation and loss of the Moiré patterns are fully reversible, providing exquisite control over epitaxial molecular crystals. Our approach provides fundamental insights into the supramolecular organization and resulting superstructure formation of incommensurable 2D lattices upon applying an electric field and enables the rational tuning of Moiré patterns as a key step toward the potential integration of organic 2D crystals in molecular nanodevices.
Collapse
Affiliation(s)
- Filippo
Giovanni Fabozzi
- DWI−Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Department
of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - José D. Cojal González
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Nikolai Severin
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Jürgen P. Rabe
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Stefan Hecht
- DWI−Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Department
of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
2
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Liu P, Zheng Z, Wang H, Wang P, Hu Z, Gao HY. Characterize and Mediate Assembly of Triptycenes on Au(111) Surface. ACS NANO 2024; 18:16248-16256. [PMID: 38861269 DOI: 10.1021/acsnano.4c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Herein, we report the assembly behavior of triptycenes with aldehyde (Trip-1) and amino (Trip-2) groups on pristine and iodine-passivated Au(111) surfaces by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and density functional theory (DFT) calculation. On Au(111) surface, Trip-1 forms long trimer chains and two-dimensional islands via aldehyde-aldehyde hydrogen bonding in one dimension and π-π stacking of adjacent benzene rings in the other dimension. In contrast, Trip-2 lies as individuals or in disorderly stacked islands. Trip-2 and Trip-1 can be mixed in an arbitrary ratio. And Trip-2 molecules disrupt the ordered self-assembly structure of Trip-1 due to the formation of stronger aldehyde-amino hydrogen bonding. DFT, XPS, and Raman spectra confirm the conformational difference of Trip-1 and -2, as well as the aldehyde-amino hydrogen bonding formation in Trip-1 and Trip-2 mixture. On the iodine-passivated Au(111) surface, Trip-1 forms single-molecule chains and a hexagonal closely packed structure due to iodine interlayer mediation. Trip-2 molecules disrupt the hexagonal closely packed structure of Trip-1.
Collapse
Affiliation(s)
- Peizhen Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zichan Zheng
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Hongchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Peichao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhixin Hu
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Hong-Ying Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
El Hasnaoui N, Fatimi A, Benjalal Y. Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review. Int J Mol Sci 2024; 25:6277. [PMID: 38892465 PMCID: PMC11172695 DOI: 10.3390/ijms25116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components driven through non-covalent interactions on the surfaces, such as van der Waals (vdW) interactions, hydrogen bonding (HB), electrostatic interactions, etc., allowing the controlled design of nanostructures that can satisfy the requirements of nanoengineering concepts. In this context, non-covalent interactions present opportunities that have been previously explored in several molecular systems adsorbed on surfaces, primarily due to their highly directional nature which facilitates the formation of well-ordered structures. Herein, we review a series of research works by combining STM (scanning tunneling microscopy) with theoretical calculations, to reveal the processes used in the area of self-assembly driven by molecule Landers equipped with functional groups on the metallic surfaces. Combining these processes is necessary for researchers to advance the self-assembly of supramolecular architectures driven by multiple non-covalent interactions on solid surfaces.
Collapse
Affiliation(s)
- Nadia El Hasnaoui
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco (A.F.)
- Chemical Science and Engineering Research Team (ERSIC), Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco
| | - Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco (A.F.)
- Chemical Science and Engineering Research Team (ERSIC), Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco
| | - Youness Benjalal
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco (A.F.)
- Chemical Science and Engineering Research Team (ERSIC), Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco
| |
Collapse
|
5
|
Ding X, Chen J, Ye G. Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism. Nat Commun 2024; 15:2782. [PMID: 38555300 PMCID: PMC10981757 DOI: 10.1038/s41467-024-47058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Developing supramolecular porous crystalline frameworks with tailor-made architectures from advanced secondary building units (SBUs) remains a pivotal challenge in reticular chemistry. Particularly for hydrogen-bonded organic frameworks (HOFs), construction of geometrical cavities through secondary units has been rarely achieved. Herein, a body-centered cubic HOF (TCA_NH4) with octahedral cages was constructed by a C3-symmetric building block and NH4+ node-assembled cluster (NH4)4(COOH)8(H2O)2 that served as supramolecular secondary building units (SSBUs), akin to the polynuclear SBUs in reticular chemistry. Specifically, the octahedral cages could encapsulate four homogenous haloforms including CHCl3, CHBr3, and CHI3 with truncated octahedron configuration. Crystallographic evidence revealed the cages served as spatially-confined nanoreactors, enabling fast, broadband photochromic effect associated with the reversible photo/thermal transformation between encapsulated CHI3 and I2. Overall, this work provides a strategy by shaping SSBUs to expand the framework topology of HOFs and a prototype of hydrogen-bonded nanoreactors to accommodate reversible photochromic reactions.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Dhibar S, Roy A, Sarkar T, Das P, Karmakar K, Bhattacharjee S, Mondal B, Chatterjee P, Sarkar K, Ray SJ, Saha B. Rapid Semiconducting Supramolecular Mg(II)-Metallohydrogel: Exploring Its Potential in Nonvolatile Resistive Switching Applications and Antiseptic Wound Healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:179-192. [PMID: 38112377 DOI: 10.1021/acs.langmuir.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An effective strategy was employed for the rapid development of a supramolecular metallohydrogel of Mg(II) ion (i.e., Mg@PEHA) using pentaethylenehexamine (PEHA) as a low-molecular-weight gelator in aqueous medium under ambient conditions. The mechanical stability of the synthesized Mg@PEHA metallohydrogel was characterized by using rheological analysis, which showed its robustness across different angular frequencies and oscillator stress levels. The metallohydrogel exhibited excellent thixotropic behavior, which signifies that Mg@PEHA has a self-healing nature. Field emission scanning electron microscopy and transmission electron microscopy images were utilized to explore the rectangular pebble-like hierarchical network of the Mg@PEHA metallohydrogel. Elemental mapping through energy-dispersive X-ray spectroscopy analysis confirmed the presence of primary chemical constituents in the metallohydrogel. Fourier transform infrared spectroscopy spectroscopy provided insights into the possible formation strategy of the metallohydrogel. In this work, Schottky diode structures in a metal-semiconductor-metal geometry based on a magnesium(II) metallohydrogel (Mg@PEHA) were constructed, and the charge transport behavior was observed. Additionally, a resistive random access memory (RRAM) device was developed using Mg@PEHA, which displayed bipolar resistive switching behavior at room temperature. The researchers investigated the switching mechanism, which involved the formation or rupture of conduction filaments, to gain insights into the resistive switching process. The RRAM device demonstrated excellent performance with a high ON/OFF ratio of approximately 100 and remarkable endurance of over 5000 switching cycles. RRAM devices exhibit good endurance, meaning they can endure a large number of read and write cycles without significant degradation in performance. RRAM devices have shown promising reliability in terms of long-term performance and stability, making them suitable for critical applications that require reliable memory solutions. Significant inhibitory activity against the drug-resistant Klebsiella pneumonia strain and its biofilm formation ability was demonstrated by Mg@PEHA. The minimum inhibitory concentration value of the metallohydrogel was determined to be 3 mg/mL when it was dissolved in 1% DMSO. To study the antibiofilm activity, an MTT assay was performed, revealing that biofilm inhibition (60%) commenced at 1 mg/mL of Mg@PEHA when dissolved in 1% DMSO. Moreover, in the mouse excisional wound model, Mg@PEHA played a crucial role in preventing postoperative wound infections and promoting wound healing.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Tuhin Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Priyanka Das
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol 713303 West Bengal, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009 Chhattisgarh, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| |
Collapse
|
7
|
Chowdhury P, Jha A, Bhandary D. Influence of Temperature-Guided SAM Growth on Wetting and Its Mass Transfer Models. J Phys Chem B 2023; 127:8208-8215. [PMID: 37703434 DOI: 10.1021/acs.jpcb.3c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation and growth of self-assembled monolayers (SAMs) composed of amphiphiles have garnered significant attention due to their diverse technical applications. This article reports the findings of molecular dynamics simulations aimed at elucidating the intricate relationship between the wetting behavior of amphiphiles, specifically n-alkanols, and the growth of their SAMs on a mica surface under varying temperature conditions. The investigation quantifies the structural characteristics of the formed SAMs, including density profiles, in-plane radial distribution functions, order parameters, and end-to-end length distributions of n-alkanol molecules within the SAM. Thermodynamic properties, such as the second virial coefficient and excess entropy, are examined in relation to temperature and time. The growth of the SAM is assessed by analyzing characteristic time scales at different temperatures and in-plane diffusion of n-alkanol molecules and utilizing classical theories of mass transfer to quantify the growth rate as a function of temperature. These results are then correlated with changes in the contact angle and spreading coefficient of n-alkanol droplets on the mica surface over time, providing insights into the impact of SAM growth on the wetting behavior and the mass transfer model of such systems.
Collapse
Affiliation(s)
- Prateek Chowdhury
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| | - Ayush Jha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| | - Debdip Bhandary
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| |
Collapse
|
8
|
Peyrot D, Silly F. Toward Two-Dimensional Tessellation through Halogen Bonding between Molecules and On-Surface-Synthesized Covalent Multimers. Int J Mol Sci 2023; 24:11291. [PMID: 37511052 PMCID: PMC10379861 DOI: 10.3390/ijms241411291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The ability to engineer sophisticated two-dimensional tessellation organic nanoarchitectures based on triangular molecules and on-surface-synthesized covalent multimers is investigated using scanning tunneling microscopy. 1,3,5-Tris(3,5-dibromophenyl)benzene molecules are deposited on high-temperature Au(111) surfaces to trigger Ullmann coupling. The self-assembly into a semi-regular rhombitrihexagonal tiling superstructure not only depends on the synthesis of the required covalent building blocks but also depends on their ratio. The organic tessellation nanoarchitecture is achieved when the molecules are deposited on a Au(111) surface at 145 °C. This halogen-bonded structure is composed of triangular domains of intact molecules separated by rectangular rows of covalent dimers. The nearly hexagonal vertices are composed of covalent multimers. The experimental observations reveal that the perfect semi-regular rhombitrihexagonal tiling cannot be engineered because it requires, in addition to the dimers and intact molecules, the synthesis of covalent hexagons. This building block is only observed above 165 °C and does not coexist with the other required organic buildings blocks.
Collapse
Affiliation(s)
| | - Fabien Silly
- CEA, CNRS, SPEC, TITANS, Université Paris-Saclay, F-91191 Gif sur Yvette, France;
| |
Collapse
|
9
|
Preetha Genesh N, Cui D, Dettmann D, MacLean O, Johal TK, Lunchev AV, Grimsdale AC, Rosei F. Selective Self-Assembly and Modification of Herringbone Reconstructions at a Solid-Liquid Interface of Au(111). J Phys Chem Lett 2023; 14:3057-3062. [PMID: 36946688 DOI: 10.1021/acs.jpclett.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The precise control of molecular self-assembly on surfaces presents many opportunities for the creation of complex nanostructures. Within this endeavor, selective patterning by exploiting molecular interactions at the solid-liquid interface would be a beneficial capability. Using scanning tunneling microscopy at the 1,2,4-trichlorobenzene/Au(111) interface, we observed selective self-assembly of 1,3,5-tris(4-methoxyphenyl)benzene (TMPB) molecules in the face-centered cubic (FCC) regions of Au(111). Density functional theory calculations suggest higher adsorption energy of TMPB molecules at FCC regions, explaining the preference for self-assembly. The molecular coverage is found to increase with the concentration of the applied solution, eventually yielding a full monolayer. Moreover, the adsorption of TMPB molecules induces a concentration-dependent lifting of the herringbone reconstruction, observed as an increase in the area of the FCC regions at higher concentrations. Our results represent a simple and cost-effective selective nanoscale patterning method on Au(111), providing a possible avenue to guide the co-adsorption of other functional molecules.
Collapse
Affiliation(s)
- Navathej Preetha Genesh
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Daling Cui
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Oliver MacLean
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, People's Republic of China
| | - Tarnjit Kaur Johal
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Andrey V Lunchev
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Andrew C Grimsdale
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
10
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
11
|
Karmakar K, Dey A, Dhibar S, Sahu R, Bhattacharjee S, Karmakar P, Chatterjee P, Mondal A, Saha B. A novel supramolecular Zn(ii)-metallogel: an efficient microelectronic semiconducting device application. RSC Adv 2023; 13:2561-2569. [PMID: 36741164 PMCID: PMC9844075 DOI: 10.1039/d2ra07374a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
A unique strategy for the synthesis of a supramolecular metallogel employing zinc ions and adipic acid in DMF medium has been established at room temperature. Rheological analysis was used to investigate the mechanical characteristics of the supramolecular Zn(ii)-metallogel. Field emission scanning electron microscopy and transmission electron microscopy were used to analyse the hexagonal shape morphological features of the Zn(ii)-metallogel. Interestingly, the electrical conductivity is observed in the electronic device with Zn(ii)-metallogel based metal-semiconductor (MS) junctions. All aspects of the metallogel's electrical properties were investigated. The electrical conductivity of the metallogel-based thin film device was 7.38 × 10-5 S m-1. The synthesised Zn(ii)-metallogel based device was investigated for its semi-conductive properties, such as its Schottky barrier diode nature.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Arka Dey
- Department of Physics, National Institute of Technology Durgapur Durgapur-713209 West Bengal India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Rajib Sahu
- Max-Plank-Institut für Eisenforschung GmbH Max-Plank-Str. 1 40237 Düsseldorf Germany
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Priya Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan Golapbag Burdwan-713104 West Bengal India
| | - Aniruddha Mondal
- Department of Physics, National Institute of Technology Durgapur Durgapur-713209 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
12
|
Assembly of Sn(IV)-Porphyrin Cation Exhibiting Supramolecular Interactions of Anion···Anion and Anion···π Systems. MOLBANK 2022. [DOI: 10.3390/m1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Trans-diaqua[meso-tetrakis(4-pyridyl)porphyrinato]Sn(IV) dinitrate complexes were assembled in a two-dimensional manner via hydrogen bonding between aqua ligands and pyridyl substituents. Interestingly, this supramolecular assembly was accompanied by unconventional noncovalent interactions, such as anion···anion and anion···π interactions, which were confirmed by X-ray crystallographic analysis. Two nitrate anions close to 2.070 Å were constrained in a confined space surrounded by four hydrogen-bonded Sn(IV)-porphyrin cations. The nitrate anion was also 3.433 Å away from the adjacent pyrrole ring, and the dihedral angle between the two mean planes was estimated to be 7.39°. The preference of the anion···π interaction was related to the electron-deficient π-system owing to the high-valent Sn(IV) center and cationic nature of the porphyrin complex. These two unconventional noncovalent interactions played an important role in the formation of a one-dimensional array with pairs of Sn(IV)-porphyrin cation and nitrate anion.
Collapse
|
13
|
Pang B, Iqbal D, Sarfraz A, Biedermann PU, Erbe A. Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Modification of metal surfaces with complex molecules opens interesting opportunities to build additional functionality into these surfaces. In this work, self assembled monolayers (SAMs) based on the same photoswitchable azobenzene motif but with different head groups have been synthesized and their SAMs on Au(111)/Si substrates have been characterized. 3-[(4-phenylazo)phenoxy]propyl thiol (PAPT) and its acetyl group protected analog, 3-[(4-phenylazo)phenoxy]propyl thioacetate (PAPA), have been synthesized. SAMs from PAPT and PAPA have been characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry and cyclic voltammetry (CV). The SAM-forming units of both SAMs are the same, as confirmed by IR and XPS, and the SAMs have similar surface coverage, as evidenced by analysis of the reductive desorption peaks in CVs. The tilt angle of the azobenzene moiety was ca. 75° with respect to the surface normal as determined by IR spectroscopy, i.e., the molecules are lying quite flat on the gold surface. Despite similar surface coverages, the CVs for PAPT in aqueous perchlorate solution show a typical perchlorate adsorption peak to gold, whereas the corresponding experiments with PAPA show no perchlorate adsorption at all. In conclusion, SAM formation can lead to an increase in the number of electrochemically accessible surface sites on the final, SAM covered surface. Whether the amount of such sites increases or decreases, depends on the precursor. The precursor most likely affects the adsorption mechanism and thus the atomic surface structure of the metal at the metal/SAM interface. Thus, details of the SAM formation mechanism, which is affected by the precursor used, can have quite strong effects on the electrochemical properties, and likely also electrocatalytic properties, of the resulting modified surface.
Collapse
Affiliation(s)
- Beibei Pang
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Danish Iqbal
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Adnan Sarfraz
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - P. Ulrich Biedermann
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Andreas Erbe
- Department of Materials Science and Engineering , NTNU, Norwegian University of Science and Technology , 7491 Trondheim , Norway
| |
Collapse
|
14
|
Yoshimoto S, Ogata H. Molecular planting of a single organothiol into a "gap-site" of a 2D patterned adlayer in an electrochemical environment. Chem Sci 2022; 13:4999-5005. [PMID: 35655888 PMCID: PMC9067580 DOI: 10.1039/d1sc07227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembled inclusion of molecules into two-dimensional (2D) porous networks on surfaces has been extensively studied because 2D functional materials consisting of organic molecules have become an important research topic. However, the isolation of a single molecular thiol remains a challenging goal. Here, we report a method of planting and isolating organothiols onto a 2D patterned organic adlayer at an electrochemical interface. In situ scanning tunneling microscopy revealed that the phase transition of an ovalene adlayer is electrochemically induced and that the gap site created by three ovalene molecules serves as a 2D molecular template to isolate thiol molecules and to standardize the distance between them via the formation of precise selective open spaces, suggesting that electrochemical "molecular planting" opens applications for 2D patterns of isolated single organothiol molecules.
Collapse
Affiliation(s)
- Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Hiroto Ogata
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
15
|
Kawano SI, Nakaya M, Saitow M, Ishiguro A, Yanai T, Onoe J, Tanaka K. Thermally Stable Array of Discrete C 60s on a Two-Dimensional Crystalline Adlayer of Macrocycles both in Vacuo and under Ambient Pressure. J Am Chem Soc 2022; 144:6749-6758. [PMID: 35315659 DOI: 10.1021/jacs.1c13610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A periodic monolayer array of discrete C60s was generated on an atomically flat Au(111) surface with the aid of a template adlayer. The template was a two-dimensional (2D) array of molecular pits prepared on an Au(111) surface through 2D crystallization of shape-persistent macrocycles composed of four carbazole and four salphens/Ni-salphens with a 1 nm hollow. Scanning tunneling microscopy imaging under ultra-high vacuum revealed that the square-shaped macrocycles, with 1.5 nm sides, were arranged with a periodic spacing of approximately 4.0 nm on the Au(111) surface, where the orientation and periodicity of the macrocycles were dependent on their chemical structures. After sublimation of C60s onto the adlayer, a single C60 molecule was entrapped in each pit, and an ordered molecular array of C60s was attained with a pattern similar to that of the macrocycles. The periodic pattern of C60s on the surface was thermally stable up to approximately 200 °C, even under ambient pressure. Scanning tunneling spectroscopy suggested the existence of an electronic interaction between the C60s and the Au(111) surface that was influenced by the macrocycle template on the surface.
Collapse
Affiliation(s)
- Shin-Ichiro Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Masato Nakaya
- Department of Energy Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Atsuki Ishiguro
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jun Onoe
- Department of Energy Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
16
|
Wang Y, Miao X, Deng W, Brisse R, Jousselme B, Silly F. Coronene and Phthalocyanine Trapping Efficiency of a Two-Dimensional Kagomé Host-Nanoarchitecture. NANOMATERIALS 2022; 12:nano12050775. [PMID: 35269261 PMCID: PMC8911898 DOI: 10.3390/nano12050775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022]
Abstract
The trapping of coronene and zinc phthalocyanine (ZnPc) molecules at low concentration by a two-dimensional self-assembled nanoarchitecture of a push–pull dye is investigated using scanning tunneling microscopy (STM) at the liquid–solid interface. The push–pull molecules adopt an L-shaped conformation and self-assemble on a graphite surface into a hydrogen-bonded Kagomé network with porous hexagonal cavities. This porous host-structure is used to trap coronene and ZnPc guest molecules. STM images reveal that only 11% of the Kagomé network cavities are filled with coronene molecules. In addition, these guest molecules are not locked in the host-network and are desorbing from the surface. In contrast, STM results reveal that the occupancy of the Kagomé cavities by ZnPc evolves linearly with time until 95% are occupied and that the host structure cavities are all occupied after few hours.
Collapse
Affiliation(s)
- Yi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.W.); (W.D.)
| | - Xinrui Miao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.W.); (W.D.)
- Correspondence: (X.M.); (F.S.)
| | - Wenli Deng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.W.); (W.D.)
| | - Romain Brisse
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, F-91191 Gif sur Yvette, France; (R.B.); (B.J.)
| | - Bruno Jousselme
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, F-91191 Gif sur Yvette, France; (R.B.); (B.J.)
| | - Fabien Silly
- Université Paris-Saclay, CEA, CNRS, SPEC, TITANS, F-91191 Gif sur Yvette, France
- Correspondence: (X.M.); (F.S.)
| |
Collapse
|
17
|
Yu B, Geng S, Wang H, Zhou W, Zhang Z, Chen B, Jiang J. A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogen‐Bonded Organic Framework for Propyne/Propylene Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Shubo Geng
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhou
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Zhenjie Zhang
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249-0698 USA
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
18
|
Yu B, Geng S, Wang H, Zhou W, Zhang Z, Chen B, Jiang J. A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogen-Bonded Organic Framework for Propyne/Propylene Separation. Angew Chem Int Ed Engl 2021; 60:25942-25948. [PMID: 34499385 DOI: 10.1002/anie.202110057] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Indexed: 11/09/2022]
Abstract
Self-assembly of N,N,N',N'-tetrakis(4-carboxyphenyl)-1,4-phenylenediamine with the help of different solvents provides isostructural hydrogen-bonded organic frameworks (HOF-30). Single-crystal X-ray diffraction (SCXRD) analysis reveals HOF-30 possesses 3D ten-fold interpenetrated dia nets connected by two kinds of hydrogen bonds, namely solvent-bridged carboxyl dimers and carboxyl⋅⋅⋅carboxyl dimers. Degassing treatment for HOF-30 yields HOF-30a with 3D ten-fold interpenetrated dia nets but linked with sole carboxyl⋅⋅⋅carboxyl dimers. Reversible hydrogen-bond-to-hydrogen-bond transformation between solvent-bridged carboxyl dimers in HOF-30 and carboxyl⋅⋅⋅carboxyl dimers in HOF-30a has been unveiled by single-crystal and powder X-ray diffraction. In addition, HOF-30a enables the selective adsorption of propyne over propylene according to single-component sorption and breakthrough experiments. The preferred propyne location in HOF has also been identified by SCXRD test.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shubo Geng
- Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Zhenjie Zhang
- Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249-0698, USA
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
19
|
Das S, Nascimbeni G, de la Morena RO, Ishiwari F, Shoji Y, Fukushima T, Buck M, Zojer E, Zharnikov M. Porous Honeycomb Self-Assembled Monolayers: Tripodal Adsorption and Hidden Chirality of Carboxylate Anchored Triptycenes on Ag. ACS NANO 2021; 15:11168-11179. [PMID: 34125529 PMCID: PMC8320238 DOI: 10.1021/acsnano.1c03626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Molecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures. A pronounced polymorphism is observed, with the formation of distinctly different structures depending on preparation conditions. Besides hexagonal molecular arrangements, the occurrence of a honeycomb structure is particularly intriguing as such an open structure is unusual for SAMs consisting of upright-standing molecules. Advanced spectroscopic tools reveal an equivalent bonding of all carboxylic acid anchoring groups. Notably, density functional theory calculations predict a chiral arrangement of the molecules in the honeycomb network, which, surprisingly, is not apparent in experimental scanning tunneling microscopy (STM) images. This seeming discrepancy between theory and experiment can be resolved by considering the details of the actual electronic structure of the adsorbate layer. The presented results represent an exemplary showcase for the intricacy of interpreting STM images of complex molecular films. They are also further evidence for the potential of triptycenes as basic building blocks for generating well-defined layers with unusual structural motifs.
Collapse
Affiliation(s)
- Saunak Das
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Giulia Nascimbeni
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | | | - Fumitaka Ishiwari
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Manfred Buck
- EaStCHEM
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Michael Zharnikov
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Ge S, Samanta S, Tress M, Li B, Xing K, Dieudonné-George P, Genix AC, Cao PF, Dadmun M, Sokolov AP. Critical Role of the Interfacial Layer in Associating Polymers with Microphase Separation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Martin Tress
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig 04103, Germany
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kunyue Xing
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095 Montpellier, France
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
21
|
Wu T, Xue N, Wang Z, Li J, Li Y, Huang W, Shen Q, Hou S, Wang Y. Surface self-assembly involving the interaction between S and N atoms. Chem Commun (Camb) 2021; 57:1328-1331. [DOI: 10.1039/d0cc07931f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of the self-assembly nanostructures by recruiting the electrostatic interaction between S and N atoms.
Collapse
Affiliation(s)
- Tianhao Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Na Xue
- Central Laboratory
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants
- The Fifth Central Hospital of Tianjin
- Tianjin 300450
- China
| | - Zhichao Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yaru Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
- Shanxi Institute of Flexible Electronics (SIFE)
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| |
Collapse
|
22
|
Liebl S, Werner D, Apaydin DH, Wielend D, Geistlinger K, Portenkirchner E. Perylenetetracarboxylic Diimide as Diffusion-Less Electrode Material for High-Rate Organic Na-Ion Batteries. Chemistry 2020; 26:17559-17566. [PMID: 32767398 PMCID: PMC7839514 DOI: 10.1002/chem.202003624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/17/2023]
Abstract
In this work 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) is investigated as electrode material for organic Na-ion batteries. Since PTCDI is a widely used industrial pigment, it may turn out to be a cost-effective, abundant, and environmentally benign cathode material for secondary Na-ion batteries. Among other carbonyl pigments, PTCDI is especially interesting due to its high Na-storage capacity in combination with remarkable high rate capabilities. The detailed analysis of cyclic voltammetry measurements reveals a diffusion-less mechanism, suggesting that Na-ion storage in the PTCDI film allows for exceptionally fast charging/discharging rates. This finding is further corroborated by galvanostatic sodiation measurements at high rates of 17 C (2.3 A g-1 ), showing that 57 % of the theoretically possible capacity of PTCDI, or 78 mAh g-1 , are attained in only 3.5 min charging time.
Collapse
Affiliation(s)
- Sebastian Liebl
- Institute of Physical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Daniel Werner
- Institute of Physical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Dogukan H. Apaydin
- Institute of Materials ChemistryVienna University of Technology1060ViennaAustria
- Linz Institute for Organic Solar Cell (LIOS)Institute of Physical ChemistryJohannes Kepler University Linz4040LinzAustria
| | - Dominik Wielend
- Linz Institute for Organic Solar Cell (LIOS)Institute of Physical ChemistryJohannes Kepler University Linz4040LinzAustria
| | - Katharina Geistlinger
- Institute for Ion Physics and Applied PhysicsUniversity of Innsbruck6020InnsbruckAustria
| | | |
Collapse
|
23
|
Kosmala T, Blanco M, Granozzi G, Wandelt K. Porphyrin bi-layer formation induced by a surface confined reduction on an iodine-modified Au(100) electrode surface. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Deng C, Liu Z, Ma C, Zhang H, Chi L. Dynamic Supramolecular Template: Multiple Stimuli-Controlled Size Adjustment of Porous Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5510-5516. [PMID: 32356994 DOI: 10.1021/acs.langmuir.0c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamically switchable porous networks offer exciting potential in functionalizing surfaces. The structure and morphology of the networks can be controlled by applying external stimuli. Here, a dynamic supramolecular template assembled by 1,3,5-tris(4-carboxyphenyl)benzene (BTB) is successfully achieved at the liquid-solid interface by applying two external stimuli simultaneously. Upon varying the concentration of BTB solution together with switching the polarity of the sample bias, self-assembled monolayers (SAMs) undergo phase transitions twice: an immediate transition from a compact structure to a macroporous (honeycomb) structure as a response to the change in the electric field and a fast-changing transition from the macroporous to a microporous (oblique) structure. With saturated BTB solution, however, the initial compact structure can only transform into the oblique structure after switching the polarity of the sample bias without the appearance of a honeycomb structure. The different phase transitions suggest that the dynamic supramolecular template can only survive at a specific concentration range and is obtainable by performing multiple stimuli simultaneously. Interestingly, introducing a guest molecule to the system can adjust the phase transition process and effectively stabilize the honeycomb structure of BTB. The flexibility associated with the porous networks renders it a dynamic supramolecular template for guest binding.
Collapse
Affiliation(s)
- Chenfang Deng
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Ma
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
25
|
Tahara K, Kubo Y, Hashimoto S, Ishikawa T, Kaneko H, Brown A, Hirsch BE, Feyter SD, Tobe Y. Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces. J Am Chem Soc 2020; 142:7699-7708. [DOI: 10.1021/jacs.0c02979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Kubo
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Toru Ishikawa
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiromasa Kaneko
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Anton Brown
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Brandon E. Hirsch
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
26
|
Hieulle J, Silly F. Two-Dimensional Hydrogen-Bonded Nanoarchitecture Composed of Rectangular 3,4,9,10-Perylenetetracarboxylic Diimide and Boomerang-Shaped Molecules Resulting from the Dissociation of 1,3,5-Tris(4-aminophenyl)benzene. ACS OMEGA 2020; 5:3964-3968. [PMID: 32149223 PMCID: PMC7057330 DOI: 10.1021/acsomega.9b03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The self-assembly of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) with the star-shaped 1,3,5-tris(4-aminophenyl)benzene (TAPB) on Au(111) is investigated using scanning tunneling microscopy. PTCDI forms a compact canted arrangement on the gold surface. When TAPB is sublimated at a high temperature, the molecule dissociates into a 4-aminophenyl group and a boomerang-shaped compound. The boomerang molecule self-assembles with PTCDI to create a two-dimensional (2D) nanoarchitecture stabilized by N-H···O-C hydrogen bonds between the dissociated TAPB and PTCDI. The molecular ratio of this multicomponent structure is 1:1.
Collapse
Affiliation(s)
| | - Fabien Silly
- E-mail: . Phone: +33(0)169088019. Fax: +33(0)169088446
| |
Collapse
|
27
|
She Z, Narouz MR, Smith CA, MacLean A, Loock HP, Kraatz HB, Crudden CM. N-Heterocyclic carbene and thiol micropatterns enable the selective deposition and transfer of copper films. Chem Commun (Camb) 2020; 56:1275-1278. [PMID: 31903463 DOI: 10.1039/c9cc08919e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microcontact printed patterns of N-heterocyclic carbenes (NHCs) and thiols were prepared on gold substrates and utilized as templates for the creation of metallic Cu structures using electroplating. The presence of the NHC in the pattern is essential to enable the transfer of the resulting copper microstructures to a second substrate.
Collapse
Affiliation(s)
- Zhe She
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fonseca ER, Mendoza CI. Self-assembly of core-corona particles confined in a circular box. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:015101. [PMID: 31505470 DOI: 10.1088/1361-648x/ab42fc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using Monte Carlo simulations, we study the assembly of colloidal particles interacting via isotropic core-corona potentials in two dimensions and confined in a circular box. We explore the structural variety at low temperatures as function of the number of particles (N) and the size of the confining box and find a rich variety of patterns that are not observed in unconfined flat space. For a small number of particles [Formula: see text], we identify the zero-temperature minimal energy configurations at a given box size. When the number of particles is large ([Formula: see text]), we distinguish different regimes that appear in route towards close packing configurations as the box size decreases. These regimes are characterized by the increase in the number of branching points and their coordination number. Interestingly, we obtain anisotropic open structures with unexpected variety of rotational symmetries that can be controlled by changing the model parameters, and some of the structures have chirality, in spite of the isotropy of the interactions and of the confining box. For arbitrary temperatures, we employ Monte Carlo integration to obtain the average energy and the configurational entropy of the system, which are then used to construct a phase diagram as function of temperature and box radius. Our findings show that confined core-corona particles can be a suitable system to engineer particles with highly complex internal structure that may serve as building blocks in hierarchical assembly.
Collapse
Affiliation(s)
- Erik R Fonseca
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 CdMx, Mexico
| | | |
Collapse
|
29
|
Araki Y, Arai N. Dissociation effect of non-covalent bond for morphological behavior of triblock copolymers: a dissipative particle dynamics study. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1680369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yusuke Araki
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
30
|
Cojal González JD, Li J, Stöhr M, Kivala M, Palma CA, Rabe JP. Edge Phonon Excitations in a Chiral Self-Assembled Supramolecular Nanoribbon. J Phys Chem Lett 2019; 10:5830-5835. [PMID: 31535863 DOI: 10.1021/acs.jpclett.9b02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By design, coupled mechanical oscillators offer a playground for the study of crystalline topology and related properties. Particularly, non-centrosymmetric, supramolecular nanocrystals feature a complex phonon spectrum where edge modes may evolve. Here we show, employing classical atomistic calculations, that the edges of a chiral supramolecular nanoribbon can host defined edge phonon states. We suggest that the topology of several edge modes in the phonon spectrum is nontrivial and thermally insulated from bulk states. By means of molecular dynamics, we excite a supramolecular bond to launch a directional excitation along the edge without considerable bulk or back-propagation. Our results suggest that supramolecular monolayers can be employed to engineer phonon states that are robust against backscattering, toward supramolecular thermal waveguides, diodes, and logics.
Collapse
Affiliation(s)
- José D Cojal González
- Department of Physics & IRIS Adlershof , Humboldt-Universität zu Berlin , Newtonstr. 15 , 12489 Berlin , Germany
| | - Juan Li
- Institute of Physics , Chinese Academy of Sciences , 10090 Beijing , P.R. China
- Advanced Research Institute of Multidisciplinary Science , Beijing Institute of Technology , 100081 Beijing , P.R. China
| | - Meike Stöhr
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Milan Kivala
- Organisch-Chemisches Institut & Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 & 225 , 69120 Heidelberg , Germany
| | - Carlos-Andres Palma
- Department of Physics & IRIS Adlershof , Humboldt-Universität zu Berlin , Newtonstr. 15 , 12489 Berlin , Germany
- Institute of Physics , Chinese Academy of Sciences , 10090 Beijing , P.R. China
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof , Humboldt-Universität zu Berlin , Newtonstr. 15 , 12489 Berlin , Germany
| |
Collapse
|
31
|
Thanasekaran P, Luo T, Kao Y, Lin C, Yang C, Lu K. Self‐assembly: An intriguing relationship between structures of metal complexes and shapes of ancient Chinese characters. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Ya‐Chuan Kao
- Institute of ChemistryAcademia Sinica Taipei Taiwan
| | | | - Chen‐I Yang
- Department of ChemistryTunghai University Taichung Taiwan
| | | |
Collapse
|
32
|
Phan TH, Van Gorp H, Li Z, Trung Huynh TM, Fujita Y, Verstraete L, Eyley S, Thielemans W, Uji-I H, Hirsch BE, Mertens SFL, Greenwood J, Ivasenko O, De Feyter S. Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals. ACS NANO 2019; 13:5559-5571. [PMID: 31013051 DOI: 10.1021/acsnano.9b00439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45-130 nm) and surface density (20-125 corrals/μm2) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated.
Collapse
Affiliation(s)
- Thanh Hai Phan
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Department of Physics , Quy Nhon University , 170 An Duong Vuong , Quy Nhon , Vietnam
| | - Hans Van Gorp
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Zhi Li
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Thi Mien Trung Huynh
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Department of Chemistry , Quy Nhon University , 170 An Duong Vuong , Quy Nhon , Vietnam
| | - Yasuhiko Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Lander Verstraete
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Samuel Eyley
- Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk , KU Leuven , Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk , KU Leuven , Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Brandon E Hirsch
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Stijn F L Mertens
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Department of Chemistry , Lancaster University , Lancaster LA1 4YB , United Kingdom
| | - John Greenwood
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Oleksandr Ivasenko
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| |
Collapse
|
33
|
Xing L, Peng Z, Li W, Wu K. On Controllability and Applicability of Surface Molecular Self-Assemblies. Acc Chem Res 2019; 52:1048-1058. [PMID: 30896918 DOI: 10.1021/acs.accounts.9b00002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular self-assembly (MSA) refers to spontaneous arrangement of molecular building blocks into ordered structures governed by weak interactions. Due to its high versatility and reversibility, MSA has been widely employed as a robust bottom-up approach to fabricating low-dimensional functional nanostructures, which are used in various applications in nanoscience and technology. To date, tremendous effort has been devoted to constructing various MSAs at surfaces, ranging from self-assembled monolayers and two-dimensional (2D) nanoporous networks to complex 2D quasicrystals and Sierpiński triangle fractals. However, precise control of the assembled structures and efficient achievement of their full applicability remain two major challenges in the MSA field. As another widely employed bottom-up approach to fabricating nanostructures, on-surface reaction (OSR) refers to a reaction that occurs on the surface and is two-dimensionally confined. OSR offers the possibility to synthesize compounds that may not be feasibly achieved in solution chemistry. Compared with MSA based on weak intermolecular interactions, OSR-based structures possess high thermal and chemical stabilities due to internal strong covalent bonds. In this Account, we briefly overview recent achievements of MSAs on single crystal metal surfaces with a focus on their controllability and applicability in tweaking the properties of the molecular building blocks involved. Emphasis will be particularly placed upon mediation of OSRs with the MSA strategy. To explore surface MSAs, on the one hand, scanning tunneling microscopy and spectroscopy have been routinely employed as the experimental tools to probe the intermolecular interactions as well as geometric and electronic structures of the assemblies at the atomic and molecular levels. On the other hand, density functional theory and molecular dynamics have been theoretically applied to model and calculate the assembling systems, furthering our understanding of the experimental results. In principle, MSA is primarily balanced by molecule-molecule and molecule-substrate interactions under vacuum conditions. In terms of the assembling methodologies, people have been attempting to achieve rational design, accurate prediction, and controllable construction of assembled molecular nanostructures, namely, tentative design of specific backbones and functional groups of the molecular building blocks, and careful control of the assembling parameters including substrate lattice, temperature, coverage, and external environment as well. An obvious goal for the development of these methodologies lies in the ultimate applications of these MSAs. MSA can retrospectively affect the properties of the assembling molecules. For instance, self-assembled structures not only can serve as secondary templates to host guest molecules but also can stabilize surface metal adatoms. In fact, the electronics, magnetism, and optics of MSAs have been successfully explored. In surface chemistry, the MSA strategy can be further applied to mediate OSRs in at least three aspects: tweaking reaction selectivity, changing reaction pathway, and restricting reaction site. The governing principle lies in that the self-assembled molecules are confined in the assemblies so that the pre-exponential factors and the energy barriers in the Arrhenius equation of the involved reactions could be substantially varied because the subtle reaction mechanisms may change upon assembling. In this sense, the MSA strategy can be efficiently exploited to tune the properties of the assembling molecules and mediate OSRs in surface chemistry.
Collapse
Affiliation(s)
- Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wentao Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Hurtado Salinas D, Cometto F, Stel B, Kern K, Lingenfelder M. 2-D assembly of supramolecular nanoarchitectures on Mg(0001). Chem Commun (Camb) 2019; 55:1793-1796. [PMID: 30667016 DOI: 10.1039/c8cc08565j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, a Mg(0001) single crystal is used as a novel template to grow 2D supramolecular nano-architectures. By using scanning tunnelling microscopy (STM) and high-resolution X-ray photoemission spectroscopy (HR-XPS), the formation of either a homo-molecular or metal-organic network is reported for carboxylic or amino functionalized molecules, respectively.
Collapse
Affiliation(s)
- D Hurtado Salinas
- Max Planck-EPFL Laboratory for Molecular Nanoscience, and Institut de Physique, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Zeng L, Wu Y, Xu JF, Wang S, Zhang X. Supramolecular Switching Surface for Antifouling and Bactericidal Activities. ACS APPLIED BIO MATERIALS 2019; 2:638-643. [DOI: 10.1021/acsabm.8b00831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lingda Zeng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yukun Wu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
36
|
Rusch TR, Hammerich M, Herges R, Magnussen OM. Molecular platforms as versatile building blocks for multifunctional photoswitchable surfaces. Chem Commun (Camb) 2019; 55:9511-9514. [DOI: 10.1039/c9cc04528g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structurally well-defined arrangements of multiple functional groups can be prepared by self-assembly of mixed monolayers based on molecular platforms.
Collapse
Affiliation(s)
- Talina R. Rusch
- Institute of Experimental and Applied Physics
- Kiel University
- Kiel
- Germany
| | | | - Rainer Herges
- Otto Diels Institute of Organic Chemistry
- Kiel University
- Kiel
- Germany
| | - Olaf M. Magnussen
- Institute of Experimental and Applied Physics
- Kiel University
- Kiel
- Germany
| |
Collapse
|
37
|
Tahara K, Ishikawa T, Hirsch BE, Kubo Y, Brown A, Eyley S, Daukiya L, Thielemans W, Li Z, Walke P, Hirose S, Hashimoto S, De Feyter S, Tobe Y. Self-Assembled Monolayers as Templates for Linearly Nanopatterned Covalent Chemical Functionalization of Graphite and Graphene Surfaces. ACS NANO 2018; 12:11520-11528. [PMID: 30387985 DOI: 10.1021/acsnano.8b06681] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An approach for nanoscale covalent functionalization of graphite surfaces employing self-assembled molecular monolayers of n-alkanes as templating masks is presented. Linearly aligned aryl groups with a lateral periodicity of 5 or 7 nm are demonstrated utilizing molecular templates of different lengths. The key feature of this approach is the use of a phase separated solution double layer consisting of a thin organic layer containing template molecules topped by an aqueous layer containing aryldiazonium molecules capable of electrochemical reduction to generate aryl radicals which bring about surface grafting. Upon sweeping of the potential, lateral displacement dynamics at the n-alkane terminal edges acts in conjunction with electrochemical diffusion to result in templated covalent bond formation in a linear fashion. This protocol was demonstrated to be applicable to linear grafting of graphene. The present processing described herein is useful for the realization of rationally designed nanoscale materials.
Collapse
Affiliation(s)
- Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
- Department of Applied Chemistry, School of Science and Technology , Meiji University , 1-1-1 Higashimita, Tama-ku , Kawasaki , Kanagawa 214-8571 , Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8, Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Toru Ishikawa
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Brandon E Hirsch
- Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Yuki Kubo
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Anton Brown
- Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Samuel Eyley
- Renewable Materials and Nanotechnology Group, Department of Chemical Engineering , KU Leuven, Campus Kortrijk , Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | - Lakshya Daukiya
- Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Wim Thielemans
- Renewable Materials and Nanotechnology Group, Department of Chemical Engineering , KU Leuven, Campus Kortrijk , Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | - Zhi Li
- Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Peter Walke
- Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Shingo Hirose
- Department of Applied Chemistry, School of Science and Technology , Meiji University , 1-1-1 Higashimita, Tama-ku , Kawasaki , Kanagawa 214-8571 , Japan
| | - Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology , Meiji University , 1-1-1 Higashimita, Tama-ku , Kawasaki , Kanagawa 214-8571 , Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
- The Institute of Scientific and Industrial Research , Osaka University , Ibaraki , Osaka 567-0047 , Japan
| |
Collapse
|
38
|
Zheng Q, Shao H. Influence of intermolecular H-bonding on the acid-base interfacial properties of -COOH and ferrocene terminated SAM. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Goronzy DP, Ebrahimi M, Rosei F, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS NANO 2018; 12:7445-7481. [PMID: 30010321 DOI: 10.1021/acsnano.8b03513] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how molecules interact to form large-scale hierarchical structures on surfaces holds promise for building designer nanoscale constructs with defined chemical and physical properties. Here, we describe early advances in this field and highlight upcoming opportunities and challenges. Both direct intermolecular interactions and those that are mediated by coordinated metal centers or substrates are discussed. These interactions can be additive, but they can also interfere with each other, leading to new assemblies in which electrical potentials vary at distances much larger than those of typical chemical interactions. Earlier spectroscopic and surface measurements have provided partial information on such interfacial effects. In the interim, scanning probe microscopies have assumed defining roles in the field of molecular organization on surfaces, delivering deeper understanding of interactions, structures, and local potentials. Self-assembly is a key strategy to form extended structures on surfaces, advancing nanolithography into the chemical dimension and providing simultaneous control at multiple scales. In parallel, the emergence of graphene and the resulting impetus to explore 2D materials have broadened the field, as surface-confined reactions of molecular building blocks provide access to such materials as 2D polymers and graphene nanoribbons. In this Review, we describe recent advances and point out promising directions that will lead to even greater and more robust capabilities to exploit designer surfaces.
Collapse
Affiliation(s)
- Dominic P Goronzy
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Maryam Ebrahimi
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
- Institute for Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yuan Fang
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Chen Wang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Peter H Beton
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dmitrii F Perepichka
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| |
Collapse
|
40
|
Kerfoot J, Korolkov VV, Nizovtsev AS, Jones R, Taniguchi T, Watanabe K, Lesanovsky I, Olmos B, Besley NA, Besley E, Beton PH. Substrate-induced shifts and screening in the fluorescence spectra of supramolecular adsorbed organic monolayers. J Chem Phys 2018; 149:054701. [DOI: 10.1063/1.5041418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James Kerfoot
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Vladimir V. Korolkov
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Anton S. Nizovtsev
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue 3, 630090 Novosibirsk, Russian Federation
| | - Ryan Jones
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Beatriz Olmos
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Elena Besley
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Peter H. Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
41
|
Shayakhmetova RK, Khamitov EM, Mustafin AG. Modeling the Self-Assembly of 5-Hydroxy-6-methyluracil within Electrostatic Potential Approach. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s003602441808023x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Exploring triazine and heptazine based self assembled molecular materials through first principles investigations. J Mol Model 2018; 24:217. [PMID: 30051287 DOI: 10.1007/s00894-018-3741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Two-dimensional materials formed from the molecular self assembly of monomers through noncovalent interactions are of great importance in designing complex nanostructures with desired properties. The carbon nitride based heterocyclic systems, triazine and heptazine, are found to be promising candidates for generating various self assembled materials through (N....H) hydrogen bonding. Here, we explored graphyne and graphdiyne-like self assembled structures for carbon nitride materials using the density functional theory calculations. We systematically investigated the monolayer structures, stacked structures in different configurations, as well as the surface assembled structures on the Au(111) surface. In all four different monolayer structures, the monomers interact through the N...H hydrogen bonding. The electronic structure results indicate that the electronic properties in these structures can be tuned through the variation in the length of the acetylinic unit. The minimum energy stacked bilayer structure of triazine based material exactly matches with the experimentally reported structure. Surface assembled studies of the triazine based system show strong interaction between the Au(111) surface and the carbon nitride monolayer. Graphical abstract Self assembled two-dimensional molecular materials as well as the surface assemblies of triazine and heptazine based precursors are computationally investigated.
Collapse
|
43
|
Potential Driven Non-Reactive Phase Transitions of Ordered Porphyrin Molecules on Iodine-Modified Au(100): An Electrochemical Scanning Tunneling Microscopy (EC-STM) Study. SURFACES 2018. [DOI: 10.3390/surfaces1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The modelling of long-range ordered nanostructures is still a major issue for the scientific community. In this work, the self-assembly of redox-active tetra(N-methyl-4-pyridyl)-porphyrin cations (H2TMPyP) on an iodine-modified Au(100) electrode surface has been studied by means of Cyclic Voltammetry (CV) and in-situ Electrochemical Scanning Tunneling Microscopy (EC-STM) with submolecular resolution. While the CV measurements enable conclusions about the charge state of the organic species, in particular, the potentio-dynamic in situ STM results provide new insights into the self-assembly phenomena at the solid-liquid interface. In this work, we concentrate on the regime of positive electrode potentials in which the adsorbed molecules are not reduced yet. In this potential regime, the spontaneous adsorption of the H2TMPyP molecules on the anion precovered surface yields the formation of up to five different potential-dependent long-range ordered porphyrin phases. Potentio-dynamic STM measurements, as a function of the applied electrode potential, show that the existing ordered phases are the result of a combination of van der Waals and electrostatic interactions.
Collapse
|
44
|
Chen Y, Jiahui W, Xu H, Qianqian L, Jing J. Facial one-pot synthesis of D 3h symmetric bicyclocalix[2]arene[2]triazines and their layered comb self-assembly. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Zhu W, Li J, Lei J, Li Y, Chen T, Duan T, Yao W, Zhou J, Yu Y, Liu Y. Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydr Polym 2018; 197:253-259. [PMID: 30007611 DOI: 10.1016/j.carbpol.2018.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/23/2018] [Accepted: 06/02/2018] [Indexed: 11/19/2022]
Abstract
Artificial nacre-like konjac glucomannan-Montmorillonite (KGM-MTM) composite films with 'brick and mortar' microstructures have been fabricated based on using KGM-MTM hybrid nanosheets as building blocks. In the designed fabrication procedure, we assembled hybrid building blocks with a thin layer of KGM coating on the MTM nanosheets to form KGM-MTM composite film via vacuum filtration. The nacre-like microstructures enhanced the light transmission performance and mechanical properties (Tensile strength: 116 MPa) of KGM-MTM composite films. Additionally, Ag nanoparticles (Ag NPs) can be incorporated into the layered structures of KGM-MTM composite films via an in situ reduced method. It was found that KGM-MTM-Ag composite films significantly suppress bacterial growth, which makes them potentially applicable as antimicrobial films in the biomedical field.
Collapse
Affiliation(s)
- Wenkun Zhu
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China; Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Jiwei Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, PR China.
| | - Jia Lei
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yi Li
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tao Chen
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tao Duan
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China; Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Weitang Yao
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China; Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jian Zhou
- Biomass Materials Laboratory, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yang Yu
- Mianyang City people's Hospital, Mianyang, 621000, PR China
| | - Yan Liu
- Institue of Materials, China Academe of Engineering Physics, Mianyang, Sichuan, 621907, PR China
| |
Collapse
|
46
|
Hillmann R, Viefhues M, Goett-Zink L, Gilzer D, Hellweg T, Gölzhäuser A, Kottke T, Anselmetti D. Characterization of Robust and Free-Standing 2D-Nanomembranes of UV-Polymerized Diacetylene Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3256-3263. [PMID: 29485886 DOI: 10.1021/acs.langmuir.7b03403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Free-standing lipid membranes are promising as artificial functional membrane systems for application in separation, filtration, and nanopore sensing. To improve the mechanical properties of lipid membranes, UV-polymerized lipids have been introduced. We investigated free-standing as well as substrate-supported monolayers of 1-palmitoyl-2-(10,12-tricosadiynoyl)- sn-glycero-3-phosphoethanolamine (PTPE) and 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DiynePC) and characterized them with respect to their structure, morphology, and stability. Using helium ion microscopy (HIM), we were able to visualize the integrity of the lipid 2D-nanomembranes spanning micrometer-sized voids under high-vacuum conditions. Atomic force microscopy (AFM) investigations under ambient conditions revealed formation of intact and robust pore-spanning 2D-nanomembranes up to 8 × 2 μm2 in size. Analysis by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) verified a distinct reduction of signal at 2143 cm-1 from diacetylene groups in the 2D-nanomembranes after UV-polymerization. Further high-resolution AFM investigations of unpolymerized lipid monolayers revealed a well-ordered two-dimensional network, when deposited on highly oriented pyrolytic graphite (HOPG). These structures were inhibited for polymerized adlayers. Structural models for the molecular arrangement of the adlayers are proposed and discussed.
Collapse
|
47
|
Zhou X, Dai J, Wu K. Steering on-surface reactions with self-assembly strategy. Phys Chem Chem Phys 2018; 19:31531-31539. [PMID: 29171852 DOI: 10.1039/c7cp06177c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The control of assembly structures that subsequently help achieve viable functionalities has been one of the key motivations for the exploration of surface molecular assembly. In terms of its functionality and applicability, the assembly is explored as a strategy to steer on-surface reactions primarily by two methods: assembly-assisted and assembly-involved reactions. The functions of the self-assembly strategy are threefold: tweaking reaction selectivities, steering reaction pathways, and directing reaction sites. The governing principle herein is that the assembly strategy can apply a surface confinement effect that affects the energy barrier and pre-exponential factor of the Arrhenius equation for the dynamics of the target reaction. Development of such a strategy may reveal new routes to steer on-surface reactions and even single molecule properties in surface chemistry.
Collapse
Affiliation(s)
- Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
48
|
Teyssandier J, Feyter SD, Mali KS. Host-guest chemistry in two-dimensional supramolecular networks. Chem Commun (Camb) 2018; 52:11465-11487. [PMID: 27709179 DOI: 10.1039/c6cc05256h] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoporous supramolecular networks physisorbed on solid surfaces have been extensively used to immobilize a variety of guest molecules. Host-guest chemistry in such two-dimensional (2D) porous networks is a rapidly expanding field due to potential applications in separation technology, catalysis and nanoscale patterning. Diverse structural topologies with high crystallinity have been obtained to capture molecular guests of different sizes and shapes. A range of non-covalent forces such as hydrogen bonds, van der Waals interactions, coordinate bonds have been employed to assemble the host networks. Recent years have witnessed a surge in the activity in this field with the implementation of rational design strategies for realizing controlled and selective guest capture. In this feature article, we review the development in the field of surface-supported host-guest chemistry as studied by scanning tunneling microscopy (STM). Typical host-guest architectures studied on solid surfaces, both under ambient conditions at the solution-solid interface as well as those formed at the ultrahigh vacuum (UHV)-solid interface, are described. We focus on isoreticular host networks, hosts functionalized pores and dynamic host-guest systems that respond to external stimuli.
Collapse
Affiliation(s)
- Joan Teyssandier
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| |
Collapse
|
49
|
Feng Z, Kladnik G, Comelli G, Dri C, Cossaro A. Growth of regular nanometric molecular arrays on a functional 2D template based on a chemical guest-host approach. NANOSCALE 2018; 10:2067-2072. [PMID: 29323391 DOI: 10.1039/c7nr08017d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A regular 2D array of crown molecules, which would spontaneously self-assemble into disordered molecular clusters, is obtained by exploiting a guest-host process, based on the chemical affinity between amino and carboxylic groups on a gold surface. First a carboxylic organic template is formed, which then serves as a host for amino-functionalized crown molecules. The amino-carboxylic interaction thereby drives the formation of a monolayer of guest molecules, regularly distributed at the nanometer scale, preventing their aggregation in unordered clusters observed on a bare gold surface. This method, which can be applied to other guest molecules, represents a novel route to overcome the shape-matching requirements of the standard guest-host architectures. Furthermore, it is intrinsically selective, due to the chemical nature of the anchoring process.
Collapse
Affiliation(s)
- Zhijing Feng
- Dipartimento di Fisica, Universitá di Trieste, via A. Valerio 2, I-34127 Trieste, Italy
| | | | | | | | | |
Collapse
|
50
|
Hou XS, Zhu GL, Ren LJ, Huang ZH, Zhang RB, Ungar G, Yan LT, Wang W. Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters. J Am Chem Soc 2017; 140:1805-1811. [PMID: 29156881 DOI: 10.1021/jacs.7b11324] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Honeycomb structure endows graphene with extraordinary properties. But could a honeycomb monolayer superlattice also be generated via self-assembly of colloids or nanoparticles? Here we report the construction of mono- and multilayer molecular films with honeycomb structure that can be regarded as self-assembled artificial graphene (SAAG). We construct fan-shaped molecular building blocks by covalently connecting two kinds of clusters, one polyoxometalate and four polyhedral oligomeric silsesquioxanes. The precise shape control enables these complex molecules to self-assemble into a monolayer 2D honeycomb superlattice that mirrors that of graphene but on the mesoscale. The self-assembly of the SAAG was also reproduced via coarse-grained molecular simulations of a fan-shaped building block. It revealed a hierarchical process and the key role of intermediate states in determining the honeycomb structure. Experimental images also show a diversity of bi- and trilayer stacking modes. The successful creation of SAAG and its stacks opens up prospects for the preparation of novel self-assembled nanomaterials with unique properties.
Collapse
Affiliation(s)
- Xue-Sen Hou
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Guo-Long Zhu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Li-Jun Ren
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Zi-Han Huang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Rui-Bin Zhang
- Physics, Zhejiang Sci-Tech University , Xiasha College Park, Hangzhou 310018, China.,Department of Materials Science and Engineering, University of Sheffield , Sheffield S1 3JD, U.K
| | - Goran Ungar
- Physics, Zhejiang Sci-Tech University , Xiasha College Park, Hangzhou 310018, China.,Department of Materials Science and Engineering, University of Sheffield , Sheffield S1 3JD, U.K
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| |
Collapse
|