1
|
Song A, Liu B, Li W, Chen B, Gui P, Zhang H, Zhu C, Xu Y, Jiang T, Song J. Competitive binding between DDX21 and SIRT7 enhances NAT10-mediated ac 4C modification to promote colorectal cancer metastasis and angiogenesis- DDX21 promotes colorectal cancer metastasis. Cell Death Dis 2025; 16:353. [PMID: 40301349 PMCID: PMC12041575 DOI: 10.1038/s41419-025-07656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
DExD- box helicase 21 (DDX21) is overexpressed in colorectal cancer (CRC) and is positively correlated with poor prognosis and the malignant phenotype of CRC. Functional characterization indicated that DDX21 promotes CRC metastasis and angiogenesis both in vitro and in vivo. N-acetyltransferase 10 (NAT10) is a key regulator of the N4-acetylcytidine (ac4C) modification of mRNA, regulating the stabilization of mRNA via ac4C modification. Here, we identified that DDX21 competitive binding with sirtuin 7 (SIRT7), inducing the overexpression of NAT10. Furthermore, DDX21 upregulates NAT10 expression to enhance ac4C modification and the stability of ATAD2, SOX4 and SNX5 mRNAs, which mediate CRC metastasis and angiogenesis. Overall, the present study revealed a mechanism of DDX21/NAT10-mediated mRNA stability in CRC, laying the foundation for the use of DDX21 as a therapeutic target to overcome metastasis and angiogenesis in CRC. DDX21 competitive binding with sirtuin 7 (SIRT7), inducing the overexpression of NAT10. Furthermore, DDX21 upregulates NAT10 expression to enhance ac4C modification and the stability of ATAD2, SOX4 and SNX5 mRNAs, which mediate CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Angxi Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenjing Li
- Central Laboratory, Xuzhou NO.1 people's hospital, Xuzhou, China
| | - Bingyuan Chen
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Pengkun Gui
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Can Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Donsbach P, Kwas C, Steimer L, Samatanga B, Andreou AZ, Klostermeier D. Inter-domain communication in the dimeric DEAD-box helicase Hera from T. thermophilus and implications for the mechanism of RNA unwinding. Nucleic Acids Res 2025; 53:gkaf080. [PMID: 39995044 PMCID: PMC11850223 DOI: 10.1093/nar/gkaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
The Thermus thermophilus DEAD-box helicase Hera consists of the conserved helicase core, followed by a dimerization domain (DD) and an RNA-binding domain (RBD). The RBD mediates high-affinity binding to an RNA hairpin; the DD mediates formation of a stable dimer. In the dimer, the active sites of the two helicase cores face each other in an ideal configuration to cooperate functionally in RNA unwinding. Here, we dissect the communication between the two RBDs and helicase cores by characterizing dimeric deletion variants with two cores, but two, one, or no RBDs, variants with both RBDs, but two, one, or no functional core, and variants with one core and one RBD, either on the same or opposite protomers. We show that RNA binds to Hera in a two-step mechanism, with an initial interaction between the RBD and a hairpin, followed by the interaction of the core with the flanking single- or double-stranded region. The duplex preferentially interacts with the core on the same protomer in the absence of ATP, but in the presence of ATP, interactions with the other core become possible. Overall, our results point to limited but significant cooperativity between the two protomers in RNA unwinding.
Collapse
Affiliation(s)
- Pascal Donsbach
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Carolin Kwas
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Lenz Steimer
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Brighton Samatanga
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Alexandra Z Andreou
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
3
|
Patrick EM, Yadav R, Senanayake K, Cotter K, Putnam AA, Jankowsky E, Comstock MJ. High-resolution fleezers reveal duplex opening and stepwise assembly by an oligomer of the DEAD-box helicase Ded1p. Nat Commun 2025; 16:1015. [PMID: 39863580 PMCID: PMC11762735 DOI: 10.1038/s41467-024-54955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025] Open
Abstract
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Eric M Patrick
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Rajeev Yadav
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Kasun Senanayake
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Kyle Cotter
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Andrea A Putnam
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western University, Cleveland, OH, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Eckhard Jankowsky
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western University, Cleveland, OH, USA
- Moderna, Cambridge, MA, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Codutti L, Kirkpatrick JP, Zur Lage S, Carlomagno T. Long-range conformational changes in the nucleotide-bound states of the DEAD-box helicase Vasa. Biophys J 2024; 123:3884-3897. [PMID: 39367603 PMCID: PMC11617632 DOI: 10.1016/j.bpj.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
DEAD-box helicases use ATP to unwind short double-stranded RNA (dsRNA). The helicase core consists of two discrete domains, termed RecA_N and RecA_C. The nucleotide binding site is harbored in RecA_N, while both RecA_N and RecA_C are involved in RNA recognition and ATP hydrolysis. In the absence of nucleotides or RNA, RecA_N and RecA_C do not interact ("open" form of the enzyme). In the presence of both RNA and ATP the two domains come together ("closed" form), building the composite RNA binding site and stimulating ATP hydrolysis. Because of the different roles and thermodynamic properties of the ADP-bound and ATP-bound states in the catalytic cycle, the conformations of DEAD-box helicases in complex with ATP and ADP are assumed to be different. However, the available crystal structures do not recapitulate these supposed differences and show identical conformations of DEAD-box helicases independent of the identity of the bound nucleotide. Here, we use NMR to demonstrate that the conformations of the ATP- and ADP-bound forms of the DEAD-box helicase Vasa are indeed different, contrary to the results from x-ray crystallography. These differences do not relate to the populations of the open and closed forms, but are intrinsic to the RecA_N domain. NMR chemical shift analysis reveals the regions of RecA_N where the average conformations of Vasa-ADP and Vasa-ATP are most different and indicates that these differences may contribute to modulating the affinity of the two nucleotide-bound complexes for RNA substrates.
Collapse
Affiliation(s)
- Luca Codutti
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hannover, Germany
| | - John P Kirkpatrick
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Susanne Zur Lage
- Helmholtz Centre for Infection Research, Group of Structural Chemistry, Braunschweig, Germany
| | - Teresa Carlomagno
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
5
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024; 300:107894. [PMID: 39424144 PMCID: PMC11603008 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China.
| |
Collapse
|
6
|
Mukhopadhyay J, Hausner G. Interconnected roles of fungal nuclear- and intron-encoded maturases: at the crossroads of mitochondrial intron splicing. Biochem Cell Biol 2024; 102:351-372. [PMID: 38833723 DOI: 10.1139/bcb-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.
Collapse
Affiliation(s)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Yellamaty R, Sharma S. Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56. J Mol Biol 2024; 436:168604. [PMID: 38729260 PMCID: PMC11168752 DOI: 10.1016/j.jmb.2024.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
8
|
Toyama Y, Shimada I. NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity. Nat Commun 2024; 15:3303. [PMID: 38664397 PMCID: PMC11045745 DOI: 10.1038/s41467-024-47659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The DEAD-box RNA helicase (DDX) plays a central role in many aspects of RNA metabolism by remodeling the defined structure of RNA molecules. While a number of structural studies have revealed the atomistic details of the interaction between DDX and RNA ligands, the molecular mechanism of how this molecule unwinds a structured RNA into an unstructured single-stranded RNA (ssRNA) has largely remained elusive. This is due to challenges in structurally characterizing the unwinding intermediate state and the lack of thermodynamic details underlying this process. In this study, we use solution nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction of human DDX3X, a member of the DDX family, with various RNA ligands. Our results show that the inherent binding affinity of DDX3X for ssRNA is significantly higher than that for structured RNA elements. This preferential binding, accompanied by the formation of a domain-closed conformation in complex with ssRNA, effectively stabilizes the denatured ssRNA state and thus underlies the unwinding activity of DDX3X. Our results provide a thermodynamic and structural basis for the DDX function, whereby DDX can recognize and remodel a distinct set of structured RNAs to participate in a wide range of physiological processes.
Collapse
Affiliation(s)
- Yuki Toyama
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
9
|
Cruz VE, Weirich CS, Peddada N, Erzberger JP. The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis. Nat Commun 2024; 15:3296. [PMID: 38632236 PMCID: PMC11024185 DOI: 10.1038/s41467-024-47616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.
Collapse
Affiliation(s)
- Victor E Cruz
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- O'Donnell Brain Institute/CAND, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Christine S Weirich
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Nagesh Peddada
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jan P Erzberger
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Patrick EM, Yadav R, Senanayake K, Cotter K, Putnam AA, Jankowsky E, Comstock MJ. High-resolution fleezers reveal duplex opening and stepwise assembly by an oligomer of the DEAD-box helicase Ded1p. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582829. [PMID: 38496418 PMCID: PMC10942383 DOI: 10.1101/2024.02.29.582829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
DEAD-box RNA helicases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box helicases unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.
Collapse
|
11
|
Li G, Li R, Wang W, Sun M, Wang X. DDX27 regulates oral squamous cell carcinoma development through targeting CSE1L. Life Sci 2024; 340:122479. [PMID: 38301874 DOI: 10.1016/j.lfs.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
THE HEADINGS AIMS DEAD-box helicase 27 (DDX27), a member of the DEAD-Box nucleic acid helicase family, holds an elusive role in oral squamous cell carcinoma (OSCC). This study aims to unravel the regulatory functions of DDX27 in OSCC and explore its downstream targets. MATERIALS AND METHODS A commercial oral squamous cell carcinoma (OSCC) tissue microarray (TMA) was utilized. We analyzed differentially expressed genes in OSCC through the GEO database. Target gene silencing was achieved using the shRNA-mediated lentivirus method. Coexpedia analysis identified co-expressed genes associated with DDX27. Additionally, a Co-Immunoprecipitation (Co-IP) experiment confirmed the protein interaction between DDX27 and CSE1L. Xenograft tumor models were employed to evaluate DDX27's role in OSCC tumor formation. KEY FINDINGS Elevated DDX27 expression in OSCC correlated with a higher pathological grade. DDX27 knockdown resulted in decreased cell proliferation, increased apoptosis, inhibited cell migration, and induced G2/M phase cell cycle arrest, as well as impaired tumor outgrowth. Coexpedia analysis identified STAU1, NELFCD, and CSE1L as top co-expressed genes. Lentiviral vectors targeting STAU1, NELFCD, and CSE1L revealed that silencing CSE1L significantly impaired cell growth, indicating it as a downstream target of DDX27. Cell rescue experiments demonstrated that increased DDX27 levels ameliorated cell proliferation, attenuated apoptosis, and CSE1L depletion blocked cell development induced by DDX27 overexpression. SIGNIFICANCES This study highlighted DDX27 as a potential therapeutic target for OSCC treatment, shedding light on its crucial role in OSCC development. Targeting DDX27 or its downstream effector, CSE1L, holds promise for innovative OSCC therapies.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Ran Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Weiyan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
12
|
Marcus K, Huang Y, Subramanian S, Gee CL, Gorday K, Ghaffari-Kashani S, Luo XR, Zheng L, O'Donnell M, Subramaniam S, Kuriyan J. Autoinhibition of a clamp-loader ATPase revealed by deep mutagenesis and cryo-EM. Nat Struct Mol Biol 2024; 31:424-435. [PMID: 38177685 PMCID: PMC10950542 DOI: 10.1038/s41594-023-01177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Clamp loaders are AAA+ ATPases that facilitate high-speed DNA replication. In eukaryotic and bacteriophage clamp loaders, ATP hydrolysis requires interactions between aspartate residues in one protomer, present in conserved 'DEAD-box' motifs, and arginine residues in adjacent protomers. We show that functional defects resulting from a DEAD-box mutation in the T4 bacteriophage clamp loader can be compensated by widely distributed single mutations in the ATPase domain. Using cryo-EM, we discovered an unsuspected inactive conformation of the clamp loader, in which DNA binding is blocked and the catalytic sites are disassembled. Mutations that restore function map to regions of conformational change upon activation, suggesting that these mutations may increase DNA affinity by altering the energetic balance between inactive and active states. Our results show that there are extensive opportunities for evolution to improve catalytic efficiency when an inactive intermediate is involved.
Collapse
Affiliation(s)
- Kendra Marcus
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yongjian Huang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Subu Subramanian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christine L Gee
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kent Gorday
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Sam Ghaffari-Kashani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xiao Ran Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisa Zheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Cruz VE, Weirich CS, Peddada N, Erzberger JP. The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565222. [PMID: 37961218 PMCID: PMC10635065 DOI: 10.1101/2023.11.01.565222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.
Collapse
|
14
|
Yang YZ, Ding S, Liu XY, Xu C, Sun F, Tan BC. The DEAD-box RNA helicase ZmRH48 is required for the splicing of multiple mitochondrial introns, mitochondrial complex biosynthesis, and seed development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2456-2468. [PMID: 37594235 DOI: 10.1111/jipb.13558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA-protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
15
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
16
|
Wurm JP. Structural basis for RNA-duplex unwinding by the DEAD-box helicase DbpA. RNA (NEW YORK, N.Y.) 2023; 29:1339-1354. [PMID: 37221012 PMCID: PMC10573307 DOI: 10.1261/rna.079582.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
DEAD-box RNA helicases are implicated in most aspects of RNA biology, where these enzymes unwind short RNA duplexes in an ATP-dependent manner. During the central step of the unwinding cycle, the two domains of the helicase core form a distinct closed conformation that destabilizes the RNA duplex, which ultimately leads to duplex melting. Despite the importance of this step for the unwinding process no high-resolution structures of this state are available. Here, I used nuclear magnetic resonance spectroscopy and X-ray crystallography to determine structures of the DEAD-box helicase DbpA in the closed conformation, complexed with substrate duplexes and single-stranded unwinding product. These structures reveal that DbpA initiates duplex unwinding by interacting with up to three base-paired nucleotides and a 5' single-stranded RNA duplex overhang. These high-resolution snapshots, together with biochemical assays, rationalize the destabilization of the RNA duplex and are integrated into a conclusive model of the unwinding process.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Khreiss A, Capeyrou R, Lebaron S, Albert B, Bohnsack K, Bohnsack M, Henry Y, Henras A, Humbert O. The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res 2023; 51:744-764. [PMID: 36610750 PMCID: PMC9881158 DOI: 10.1093/nar/gkac1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.
Collapse
Affiliation(s)
- Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Yves Henry
- Correspondence may also be addressed to Yves Henry. Tel: +33 5 61 33 59 53; Fax: +33 5 61 33 58 86;
| | - Anthony K Henras
- Correspondence may also be addressed to Anthony Henras. Tel: +33 5 61 33 59 55; Fax: +33 5 61 33 58 86;
| | - Odile Humbert
- To whom correspondence should be addressed. Tel: +33 5 61 33 59 52; Fax: +33 5 61 33 58 86;
| |
Collapse
|
18
|
Ma Z, Song J, Hua Y, Wang Y, Cao W, Wang H, Hou L. The role of DDX46 in breast cancer proliferation and invasiveness: A potential therapeutic target. Cell Biol Int 2023; 47:283-291. [PMID: 36200534 DOI: 10.1002/cbin.11930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/24/2022] [Indexed: 01/19/2023]
Abstract
DDX46, a member of DEAD-box (DDX) proteins, is associated with various cancers, while its involvement in the pathogenesis of breast cancer hasn't been reported so far. The study demonstrated the overexpression of DDX46 in human breast cancer cells and tissue samples, and correlated with high histological grade and lymph node metastasis. Downregulation of DDX46 in the breast cancer cell lines inhibited their proliferation and invasiveness in vitro. Furthermore, the growth of MDA-MB-231 xenografts was suppressed in nude mice by DDX46 knockingdown. Taken together, our findings suggest that DDX46 is an oncogenic factor in human breast cancer, and a potential therapeutic target.
Collapse
Affiliation(s)
- Zhongliang Ma
- Department of Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinlian Song
- Department of Laboratory, Qingdao University Affiliated Qingdao Women and Childrens Hospital, Qingdao, China
| | - Yanan Hua
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Wang
- Department of Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihong Cao
- Department of Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Wang
- Department of Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Qingdao University Medical College
| |
Collapse
|
19
|
Cruz VE, Sekulski K, Peddada N, Sailer C, Balasubramanian S, Weirich CS, Stengel F, Erzberger JP. Sequence-specific remodeling of a topologically complex RNP substrate by Spb4. Nat Struct Mol Biol 2022; 29:1228-1238. [PMID: 36482249 PMCID: PMC10680166 DOI: 10.1038/s41594-022-00874-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
DEAD-box ATPases are ubiquitous enzymes essential in all aspects of RNA biology. However, the limited in vitro catalytic activities described for these enzymes are at odds with their complex cellular roles, most notably in driving large-scale RNA remodeling steps during the assembly of ribonucleoproteins (RNPs). We describe cryo-EM structures of 60S ribosomal biogenesis intermediates that reveal how context-specific RNA unwinding by the DEAD-box ATPase Spb4 results in extensive, sequence-specific remodeling of rRNA secondary structure. Multiple cis and trans interactions stabilize Spb4 in a post-catalytic, high-energy intermediate that drives the organization of the three-way junction at the base of rRNA domain IV. This mechanism explains how limited strand separation by DEAD-box ATPases is leveraged to provide non-equilibrium directionality and ensure efficient and accurate RNP assembly.
Collapse
Affiliation(s)
- Victor Emmanuel Cruz
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, Dallas, TX, USA
| | - Kamil Sekulski
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, Dallas, TX, USA
| | - Nagesh Peddada
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, Dallas, TX, USA
| | - Carolin Sailer
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Department of Biomedical Sciences, University of Copenhagen, København, Denmark
| | - Sahana Balasubramanian
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, Dallas, TX, USA
- Cell Biology & Molecular Physiology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine S Weirich
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, Dallas, TX, USA
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jan P Erzberger
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, Dallas, TX, USA.
| |
Collapse
|
20
|
Serfecz JC, Hong Y, Gay LA, Shekhar R, Turner PC, Renne R. DExD/H Box Helicases DDX24 and DDX49 Inhibit Reactivation of Kaposi's Sarcoma Associated Herpesvirus by Interacting with Viral mRNAs. Viruses 2022; 14:2083. [PMID: 36298642 PMCID: PMC9609691 DOI: 10.3390/v14102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that is the causative agent of primary effusion lymphoma and Kaposi's sarcoma. In healthy carriers, KSHV remains latent, but a compromised immune system can lead to lytic viral replication that increases the probability of tumorigenesis. RIG-I-like receptors (RLRs) are members of the DExD/H box helicase family of RNA binding proteins that recognize KSHV to stimulate the immune system and prevent reactivation from latency. To determine if other DExD/H box helicases can affect KSHV lytic reactivation, we performed a knock-down screen that revealed DHX29-dependent activities appear to support viral replication but, in contrast, DDX24 and DDX49 have antiviral activity. When DDX24 or DDX49 are overexpressed in BCBL-1 cells, transcription of all lytic viral genes and genome replication were significantly reduced. RNA immunoprecipitation of tagged DDX24 and DDX49 followed by next-generation sequencing revealed that the helicases bind to mostly immediate-early and early KSHV mRNAs. Transfection of expression plasmids of candidate KSHV transcripts, identified from RNA pull-down, demonstrated that KSHV mRNAs stimulate type I interferon (alpha/beta) production and affect the expression of multiple interferon-stimulated genes. Our findings reveal that host DExD/H box helicases DDX24 and DDX49 recognize gammaherpesvirus transcripts and convey an antiviral effect in the context of lytic reactivation.
Collapse
Affiliation(s)
- Jacquelyn C. Serfecz
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yuan Hong
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Bohnsack KE, Kanwal N, Bohnsack MT. Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Nucleic Acids Res 2022; 50:9012-9022. [PMID: 35993807 PMCID: PMC9458436 DOI: 10.1093/nar/gkac687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Dynamic regulation of RNA folding and structure is critical for the biogenesis and function of RNAs and ribonucleoprotein (RNP) complexes. Through their nucleotide triphosphate-dependent remodelling functions, RNA helicases are key modulators of RNA/RNP structure. While some RNA helicases are dedicated to a specific target RNA, others are multifunctional and engage numerous substrate RNAs in different aspects of RNA metabolism. The discovery of such multitasking RNA helicases raises the intriguing question of how these enzymes can act on diverse RNAs but also maintain specificity for their particular targets within the RNA-dense cellular environment. Furthermore, the identification of RNA helicases that sit at the nexus between different aspects of RNA metabolism raises the possibility that they mediate cross-regulation of different cellular processes. Prominent and extensively characterized multifunctional DEAH/RHA-box RNA helicases are DHX15 and its Saccharomyces cerevisiae (yeast) homologue Prp43. Due to their central roles in key cellular processes, these enzymes have also served as prototypes for mechanistic studies elucidating the mode of action of this type of enzyme. Here, we summarize the current knowledge on the structure, regulation and cellular functions of Prp43/DHX15, and discuss the general concept and implications of RNA helicase multifunctionality.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Correspondence may also be addressed to Katherine E. Bohnsack. Tel: +49 551 3969305; Fax: +49 551 395960;
| | - Nidhi Kanwal
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- To whom correspondence should be addressed. Tel: +49 551 395968; Fax: +49 551 395960;
| |
Collapse
|
22
|
Maul-Newby HM, Amorello AN, Sharma T, Kim JH, Modena MS, Prichard BE, Jurica MS. A model for DHX15 mediated disassembly of A-complex spliceosomes. RNA (NEW YORK, N.Y.) 2022; 28:583-595. [PMID: 35046126 PMCID: PMC8925973 DOI: 10.1261/rna.078977.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A critical step of pre-mRNA splicing is the recruitment of U2 snRNP to the branch point sequence of an intron. U2 snRNP conformation changes extensively during branch helix formation, and several RNA-dependent ATPases are implicated in the process. However, the molecular mechanisms involved remain to be fully dissected. We took advantage of the differential nucleotide triphosphates requirements for DExD/H-box enzymes to probe their contributions to in vitro spliceosome assembly. Both ATP and GTP hydrolysis support the formation of A-complex, indicating the activity of a DEAH-enzyme because DEAD-enzymes are selective for ATP. We immunodepleted DHX15 to assess its involvement, and although splicing efficiency decreases with reduced DHX15, A-complex accumulation incongruently increases. DHX15 depletion also results in the persistence of the atypical ATP-independent interaction between U2 snRNP and a minimal substrate that is otherwise destabilized in the presence of either ATP or GTP. These results lead us to hypothesize that DHX15 plays a quality control function in U2 snRNP's engagement with an intron. In efforts to identify the RNA target of DHX15, we determined that an extended polypyrimidine tract is not necessary for disruption of the atypical interaction between U2 snRNP and the minimal substrate. We also examined U2 snRNA by RNase H digestion and identified nucleotides in the branch binding region that become accessible with both ATP and GTP hydrolysis, again implicating a DEAH-enzyme. Together, our results demonstrate that multiple ATP-dependent rearrangements are likely involved in U2 snRNP addition to the spliceosome and that DHX15 may have an expanded role in maintaining splicing fidelity.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Angela N Amorello
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Turvi Sharma
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - John H Kim
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Matthew S Modena
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Beth E Prichard
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
23
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
24
|
Expression of the DeaD RNA helicase is regulated at multiple levels through its long mRNA 5' untranslated region. J Bacteriol 2022; 204:e0061321. [PMID: 35041499 DOI: 10.1128/jb.00613-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DEAD-box proteins (DBPs) are a prominent class of RNA remodeling proteins that alter RNA structure, a process they typically perform through an ATP-dependent RNA helicase activity. Although many DBPs have been characterized at the structural and functional level in detail, much less is known about how they are regulated. We previously showed that the messenger RNA (mRNA) for the Escherichia coli (E. coli) DeaD DBP contains an unusually long 5' untranslated region (5' UTR) of 838 nucleotides (nts) and that it is the primary RNA determinant of DeaD autoregulation. We speculated that such a long and complex 5' UTR might regulate deaD expression in additional ways. Here we show that the deaD mRNA 5' UTR regulates deaD expression at two additional levels: temperature dependent expression and through a stem-loop structure overlapping the start codon. These results support the hypothesis that a long 5' UTR can regulate gene expression through multiple mechanisms. Importance The expression of genes is frequently regulated by determinants with the 5' UTR. Although many different regulatory mechanisms that operate via the 5' UTR have been described, the functional relevance of genes with long UTRs is less clear. Here, we show that the 838 nt long 5' UTR in the deaD mRNA regulates the expression of DeaD at multiple levels. We propose that long UTRs originate to provide precise control of gene expression through multiple regulatory mechanisms, and they are indicators of the importance of their associated gene products for cellular adaptation to different environments.
Collapse
|
25
|
Jarmoskaite I, Helmers AE, Russell R. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins. Methods Enzymol 2022; 673:53-76. [PMID: 35965018 PMCID: PMC10040262 DOI: 10.1016/bs.mie.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA helicase proteins perform coupled reactions in which cycles of ATP binding and hydrolysis are used to drive local unwinding of double-stranded RNA (dsRNA). For some helicases in the ubiquitous DEAD-box family, these local unwinding events are integral to folding transitions in structured RNAs, and thus these helicases function as RNA chaperones. An important measure of the efficiency of the helicase-catalyzed reaction is the ATP utilization value, which represents the average number of ATP molecules hydrolyzed during RNA unwinding or a chaperone-assisted RNA structural rearrangement. Here we outline procedures that can be used to measure the ATP utilization value in RNA unwinding or folding transitions. As an example of an RNA folding transition, we focus on the refolding of the Tetrahymena thermophila group I intron ribozyme from a long-lived misfolded structure to its native structure, and we outline strategies for adapting this assay to other RNA folding transitions. For a simple dsRNA unwinding event, the ATP utilization value provides a measure of the coupling between the ATPase and RNA unwinding activities, and for a complex RNA structural transition it can give insight into the scope of the rearrangement and the efficiency with which the helicase uses the energy from ATPase cycles to promote the rearrangement.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Anna E Helmers
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
26
|
De Colibus L, Stunnenberg M, Geijtenbeek TB. DDX3X structural analysis: Implications in the pharmacology and innate immunity. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:100-109. [PMID: 35647523 PMCID: PMC9133689 DOI: 10.1016/j.crimmu.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The human DEAD-Box Helicase 3 X-Linked (DDX3X) is an ATP-dependent RNA helicase involved in virtually every step of RNA metabolism, ranging from transcription regulation in the nucleus to translation initiation and stress granule (SG) formation, and plays crucial roles in innate immunity, as well as tumorigenesis and viral infections. This review discusses latest advances in DDX3X biology and structure-function relationship, including the implications of the recent DDX3X crystal structure in complex with double stranded RNA for RNA metabolism, DDX3X involvement in the cross-talk between innate immune responses and cell stress adaptation, and the roles of DDX3X in controlling cell fate. The human DDX3X, an ATP-dependent RNA helicase, plays a central role in a variety of cellular processes involving RNA. DDX3X is implicated in antiviral signalling pathways. DDX3X interacts with full-length NLRP3 and its NACHT domain. The recent crystal structure of DDX3X in complex with dsRNA offers a model for understanding its binding to the HIV-1 TAR hairpin sequence.
Collapse
|
27
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
28
|
Analysis of the conformational space and dynamics of RNA helicases by single-molecule FRET in solution and on surfaces. Methods Enzymol 2022; 673:251-310. [DOI: 10.1016/bs.mie.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res 2021; 309:198658. [PMID: 34929216 DOI: 10.1016/j.virusres.2021.198658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
DEAD/H-box RNA helicases make the prominent family of helicases super family-2 which take part in almost all RNA-related processes, from initiation of transcription to RNA decay pathways. In addition to these RNA-related activities, in recent years a certain number of these helicases are reported to play important roles in anti-viral immunity through various ways. Along with RLHs, endosomal TLRs, and cytosolic DNA receptors, many RNA helicases including DDX3, DHX9, DDX6, DDX41, DHX33, DDX60, DHX36 and DDX1-DDX21-DHX36 complex act as viral nucleic acid sensors or co-sensors. These helicases mostly follow RLHs-MAVS and STING mediated signaling cascades to trigger induction of type-I interferons and pro-inflammatory cytokines. Many of them also function as downstream adaptor molecules (DDX3), segments of stress and processing bodies (DDX3 and DDX6) or negative regulators (DDX19, DDX24, DDX25, DDX39A and DDX46). On the contrary, many studies indicated that several DEAD/H-box helicases such as DDX1, DDX3, DDX6, DDX24, and DHX9 could be exploited by viruses to evade innate immune responses, suggesting that these helicases seem to have a dual function as anti-viral innate immune mediators and viral replication cofactors. In this review, we summarized the current knowledge on several representative DEAD/H-box helicases, with an emphasis on their functions in innate immunity responses, involved in their anti-viral and pro-viral roles.
Collapse
|
30
|
Xiaoqian W, Bing Z, Yangwei L, Yafei Z, Tingting Z, Yi W, Qingjun L, Suxia L, Ling Z, Bo W, Peng Z. DEAD-box Helicase 27 Promotes Hepatocellular Carcinoma Progression Through ERK Signaling. Technol Cancer Res Treat 2021; 20:15330338211055953. [PMID: 34855554 PMCID: PMC8649435 DOI: 10.1177/15330338211055953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction: DEAD-box helicase 27 (DDX27) belongs to DEAD-Box nucleic acid helicase family. The function of DDX27 in hepatocellular carcinoma (HCC) remain enigmatic. In light of this, we tried to investigate the regulatory role and underlying mechanism of DDX27 in HCC. Materials and methods: DDX27 expression levels were detected by qRT-PCR, Western blot and immunohistochemistry assays in HCC tissues and cells. Colony formation, CCK-8, growth curve, wound healing and transwell assays were conducted to investigate the effect of DDX27 on the proliferation and metastasis of HCC cells. RNA-sequencing was performed to detect the effect of DDX27 on downstream signaling pathway. The effect of DDX27 on HCC progression was evaluated using in vivo murine xenograft model. Results: we found an increased expression of DDX27 in HCC tissues with comparison to its para-tumor tissues. The high expression levels of DDX27 were associated with poor prognosis in HCC patients. DDX27 upregulation promoted cell metastasis. Mechanistic studies suggested that DDX27 overexpression induces the major vault protein (MVP) expression and enhances the phosphorylation levels of ERK1/2. Inhibition of ERK pathway impaired the cellular metastastic abilities induced by DDX27. The induction of DDX27 in HCC progression was further confirmed from tumors in mouse model. Conclusion: our results disclose a novel mechanism by which DDX27 enhances ERK signaling during HCC progression. DDX27 might be used in targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Wang Xiaoqian
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Bing
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yangwei
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Yafei
- 377327China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhang Tingting
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Yi
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Qingjun
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luo Suxia
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Ling
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Bo
- 12476Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Zheng Peng
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Specific Interaction of DDX6 with an RNA Hairpin in the 3' UTR of the Dengue Virus Genome Mediates G 1 Phase Arrest. J Virol 2021; 95:e0051021. [PMID: 34132569 DOI: 10.1128/jvi.00510-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extent to which viral genomic RNAs interact with host factors and contribute to host response and disease pathogenesis is not well known. Here, we report that the human RNA helicase DDX6 specifically binds to the viral most conserved RNA hairpin in the A3 element in the dengue 3' UTR, with nanomolar affinities. DDX6 CLIP confirmed the interaction in HuH-7 cells infected by dengue virus serotype 2. This interaction requires three conserved residues-Lys307, Lys367, and Arg369-as well as the unstructured extension in the C-terminal domain of DDX6. Interestingly, alanine substitution of these three basic residues resulted in RNA-independent ATPase activity, suggesting a mechanism by which RNA-binding and ATPase activities are coupled in DEAD box helicases. Furthermore, we applied a cross-omics gene enrichment approach to suggest that DDX6 is functionally related to cell cycle regulation and viral pathogenicity. Indeed, infected cells exhibited cell cycle arrest in G1 phase and a decrease in the early S phase. Exogenous expression of intact DDX6, but not A3-binding-deficient mutants, alleviated these effects by rescue of the DNA preinitiation complex expression. Disruption of the DDX6-binding site was found in dengue and Zika live-attenuated vaccine strains. Our results suggested that dengue virus has evolved an RNA aptamer against DDX6 to alter host cell states and defined DDX6 as a new regulator of G1/S transition. IMPORTANCE Dengue virus (DENV) is transmitted by mosquitoes to humans, infecting 390 million individuals per year globally. About 20% of infected patients shows a spectrum of clinical manifestation, ranging from a mild flu-like syndrome, to dengue fever, to life-threatening severe dengue diseases, including dengue hemorrhagic fever and dengue shock syndrome. There is currently no specific treatment for dengue diseases, and the molecular mechanism underlying dengue pathogenesis remains poorly understood. In this study, we combined biochemical, bioinformatics, high-content analysis and RNA sequencing approaches to characterize a highly conserved interface of the RNA genome of DENV with a human factor named DDX6 in infected cells. The significance of our research is in identifying the mechanism for a viral strategy to alter host cell fates, which conceivably allows us to generate a model for live-attenuated vaccine and the design of new therapeutic reagent for dengue diseases.
Collapse
|
32
|
Donsbach P, Klostermeier D. Regulation of RNA helicase activity: principles and examples. Biol Chem 2021; 402:529-559. [PMID: 33583161 DOI: 10.1515/hsz-2020-0362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for non-sequence-specific interaction with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.
Collapse
Affiliation(s)
- Pascal Donsbach
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| |
Collapse
|
33
|
Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol Chem 2021; 402:561-579. [PMID: 33857358 DOI: 10.1515/hsz-2020-0338] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
34
|
Abstract
RNA helicases are ubiquitous, highly conserved RNA-binding enzymes that use the energy derived from the hydrolysis of nucleoside triphosphate to modify the structure of RNA molecules and/or the functionality of ribonucleoprotein complexes. Ultimately, the action of RNA helicases results in changes in gene expression that allow the cell to perform crucial functions. In this chapter, we review established and emerging concepts for DEAD-box and DExH-box RNA helicases. We mention examples from both eukaryotic and prokaryotic systems, in order to highlight common themes and specific actions.
Collapse
Affiliation(s)
- Martina Valentini
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Patrick Linder
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland.
| |
Collapse
|
35
|
Marcaida MJ, Kauzlaric A, Duperrex A, Sülzle J, Moncrieffe MC, Adebajo D, Manley S, Trono D, Dal Peraro M. The Human RNA Helicase DDX21 Presents a Dimerization Interface Necessary for Helicase Activity. iScience 2020; 23:101811. [PMID: 33313488 PMCID: PMC7721647 DOI: 10.1016/j.isci.2020.101811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Members of the DEAD-box helicase family are involved in all fundamental processes of RNA metabolism, and as such, their malfunction is associated with various diseases. Currently, whether and how oligomerization impacts their biochemical and biological functions is not well understood. In this work, we show that DDX21, a human DEAD-box helicase with RNA G-quadruplex resolving activity, is dimeric and that its oligomerization state influences its helicase activity. Solution small-angle X-ray scattering (SAXS) analysis uncovers a flexible multi-domain protein with a central dimerization domain. While the Arg/Gly rich C termini, rather than dimerization, are key to maintaining high affinity for RNA substrates, in vitro helicase assays indicate that an intact dimer is essential for both DDX21 ATP-dependent double-stranded RNA unwinding and ATP-independent G-quadruplex remodeling activities. Our results suggest that oligomerization plays a key role in regulating RNA DEAD-box helicase activity. The human RNA DEAD-box helicase DDX21 is dimeric DDX21 dimerization is mediated by a hydrophobic central core domain SAXS-based modeling reveals that DDX21 is intrinsically flexible Dimerization and C-terminal domains mediate G-quadruplex and dsRNA unwinding
Collapse
Affiliation(s)
- Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Annamaria Kauzlaric
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Alice Duperrex
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Jenny Sülzle
- Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Martin C Moncrieffe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Damilola Adebajo
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Suliana Manley
- Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Didier Trono
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| |
Collapse
|
36
|
Russon MP, Westerhouse KM, Tran EJ. Transcription, translation, and DNA repair: new insights from emerging noncanonical substrates of RNA helicases. Biol Chem 2020; 402:637-644. [PMID: 33857360 DOI: 10.1515/hsz-2020-0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022]
Abstract
RNA helicases are enzymes that exist in all domains of life whose canonical functions include ATP-dependent remodeling of RNA structures and displacement of proteins from ribonucleoprotein complexes (RNPs). These enzymes play roles in virtually all processes of RNA metabolism, including pre-mRNA splicing, rRNA processing, nuclear mRNA export, translation and RNA decay. Here we review emerging noncanonical substrates of RNA helicases including RNA-DNA hybrids (R-loops) and RNA and DNA G-quadruplexes and discuss their biological significance.
Collapse
Affiliation(s)
- Matthew P Russon
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Kirsten M Westerhouse
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN, 47907, USA.,Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
37
|
Jarmoskaite I, Tijerina P, Russell R. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. J Biol Chem 2020; 296:100132. [PMID: 33262215 PMCID: PMC7948464 DOI: 10.1074/jbc.ra120.015029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
DEAD-box helicase proteins perform ATP-dependent rearrangements of structured RNAs throughout RNA biology. Short RNA helices are unwound in a single ATPase cycle, but the ATP requirement for more complex RNA structural rearrangements is unknown. Here we measure the amount of ATP used for native refolding of a misfolded group I intron ribozyme by CYT-19, a Neurospora crassa DEAD-box protein that functions as a general chaperone for mitochondrial group I introns. By comparing the rates of ATP hydrolysis and ribozyme refolding, we find that several hundred ATP molecules are hydrolyzed during refolding of each ribozyme molecule. After subtracting nonproductive ATP hydrolysis that occurs in the absence of ribozyme refolding, we find that approximately 100 ATPs are hydrolyzed per refolded RNA as a consequence of interactions specific to the misfolded ribozyme. This value is insensitive to changes in ATP and CYT-19 concentration and decreases with decreasing ribozyme stability. Because of earlier findings that ∼90% of global ribozyme unfolding cycles lead back to the kinetically preferred misfolded conformation and are not observed, we estimate that each global unfolding cycle consumes ∼10 ATPs. Our results indicate that CYT-19 functions as a general RNA chaperone by using a stochastic, energy-intensive mechanism to promote RNA unfolding and refolding, suggesting an evolutionary convergence with protein chaperones.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Pilar Tijerina
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
38
|
Schuller SK, Schuller JM, Prabu JR, Baumgärtner M, Bonneau F, Basquin J, Conti E. Structural insights into the nucleic acid remodeling mechanisms of the yeast THO-Sub2 complex. eLife 2020; 9:e61467. [PMID: 33191913 PMCID: PMC7744097 DOI: 10.7554/elife.61467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
The yeast THO complex is recruited to active genes and interacts with the RNA-dependent ATPase Sub2 to facilitate the formation of mature export-competent messenger ribonucleoprotein particles and to prevent the co-transcriptional formation of RNA:DNA-hybrid-containing structures. How THO-containing complexes function at the mechanistic level is unclear. Here, we elucidated a 3.4 Å resolution structure of Saccharomyces cerevisiae THO-Sub2 by cryo-electron microscopy. THO subunits Tho2 and Hpr1 intertwine to form a platform that is bound by Mft1, Thp2, and Tex1. The resulting complex homodimerizes in an asymmetric fashion, with a Sub2 molecule attached to each protomer. The homodimerization interfaces serve as a fulcrum for a seesaw-like movement concomitant with conformational changes of the Sub2 ATPase. The overall structural architecture and topology suggest the molecular mechanisms of nucleic acid remodeling during mRNA biogenesis.
Collapse
Affiliation(s)
- Sandra K Schuller
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - J Rajan Prabu
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Marc Baumgärtner
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| |
Collapse
|
39
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
40
|
Chen Z, Li Z, Hu X, Xie F, Kuang S, Zhan B, Gao W, Chen X, Gao S, Li Y, Wang Y, Qian F, Ding C, Gan J, Ji C, Xu X, Zhou Z, Huang J, He HH, Li J. Structural Basis of Human Helicase DDX21 in RNA Binding, Unwinding, and Antiviral Signal Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000532. [PMID: 32714761 PMCID: PMC7375243 DOI: 10.1002/advs.202000532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Indexed: 05/20/2023]
Abstract
RNA helicase DDX21 plays vital roles in ribosomal RNA biogenesis, transcription, and the regulation of host innate immunity during virus infection. How DDX21 recognizes and unwinds RNA and how DDX21 interacts with virus remain poorly understood. Here, crystal structures of human DDX21 determined in three distinct states are reported, including the apo-state, the AMPPNP plus single-stranded RNA (ssRNA) bound pre-hydrolysis state, and the ADP-bound post-hydrolysis state, revealing an open to closed conformational change upon RNA binding and unwinding. The core of the RNA unwinding machinery of DDX21 includes one wedge helix, one sensor motif V and the DEVD box, which links the binding pockets of ATP and ssRNA. The mutant D339H/E340G dramatically increases RNA binding activity. Moreover, Hill coefficient analysis reveals that DDX21 unwinds double-stranded RNA (dsRNA) in a cooperative manner. Besides, the nonstructural (NS1) protein of influenza A inhibits the ATPase and unwinding activity of DDX21 via small RNAs, which cooperatively assemble with DDX21 and NS1. The structures illustrate the dynamic process of ATP hydrolysis and RNA unwinding for RNA helicases, and the RNA modulated interaction between NS1 and DDX21 generates a fresh perspective toward the virus-host interface. It would benefit in developing therapeutics to combat the influenza virus infection.
Collapse
Affiliation(s)
- Zijun Chen
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Zhengyang Li
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Xiaojian Hu
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Feiyan Xie
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Siyun Kuang
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Bowen Zhan
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Wenqing Gao
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Xiangjun Chen
- Department of NeurologyHuashan HospitalFudan UniversityShanghai200040China
| | - Siqi Gao
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yang Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yongming Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Feng Qian
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Jianhua Gan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Chaoneng Ji
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Xue‐Wei Xu
- Key Laboratory of Marine Ecosystem DynamicsMinistry of Natural Resources & Second Institute of OceanographyMinistry of Natural ResourcesHangzhou310012China
| | - Zheng Zhou
- China Novartis Institutes for Biomedical Research Co. LtdShanghai201203China
| | - Jinqing Huang
- Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina
| | - Housheng Hansen He
- Department of Medical BiophysicsUniversity of Toronto, and Princess Margaret Cancer CenterUniversity Health NetworkTorontoM5G 1L7, OntarioCanada
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| |
Collapse
|
41
|
Fan Y, Chen Y, Zhang J, Yang F, Hu Y, Zhang L, Zeng C, Xu Q. Protective Role of RNA Helicase DEAD-Box Protein 5 in Smooth Muscle Cell Proliferation and Vascular Remodeling. Circ Res 2020; 124:e84-e100. [PMID: 30879402 DOI: 10.1161/circresaha.119.314062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE RNA helicases, highly conserved enzymes, are currently believed to be not only involved in RNA modulation, but also in other biological processes. We recently reported that RNA helicase DDX (DEAD-box protein)-5 is required for maintaining the homeostasis of vascular smooth muscle cells (SMCs). However, the expression and function of RNA helicase in vascular physiology and disease is unknown. OBJECTIVE To investigate the role of RNA helicase in vascular diseases. METHODS AND RESULTS We showed here that DDX-5 was the most abundant DEAD-box protein expressed in human and rodent artery, which mainly located in SMCs. It was demonstrated that DDX-5 levels were reduced in cytokine-stimulated SMCs and vascular lesions. DDX-5 knocking down or deficiency increased SMC proliferation and migration, whereas overexpression of DDX-5 prevented aberrant proliferation and migration of SMCs. Mechanistic studies revealed transcription factor GATA (GATA-binding protein)-6 as a novel downstream target of DDX-5, which directly interacted with GATA-6 and protected it from MDM (mouse double minute)-2-mediated degradation. Our ChIP assay identified a previously unreported binding of p27Kip1 promoter to GATA-6. DDX-5 increased the recruitment of GATA-6 to p27Kip1 promoter, which enhanced p27Kip1 expression and maintained SMC quiescence. Finally, we showed exacerbated neointima formation in DDX-5 SMC-deficient mice after femoral artery injury, whereas overexpression of DDX-5 potently inhibited vascular remodeling in balloon-injured rat carotid artery. CONCLUSIONS These findings provide the first evidence for a role of RNA helicase DDX-5 in the protection against SMC proliferation, migration, and neointimal hyperplasia. Our data extend the fundamental role of RNA helicase beyond RNA modulation, which provides the basic information for new therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Ye Fan
- From the Department of Respiratory Disease, Xinqiao Hospital (Y.F., J.Z.), Third Military Medical University, Chongqing, China
| | - Yikuan Chen
- Department of Vascular Surgery, Second Affiliated Hospital, Chongqing Medical University, China (Y.C.)
| | - Jing Zhang
- From the Department of Respiratory Disease, Xinqiao Hospital (Y.F., J.Z.), Third Military Medical University, Chongqing, China
| | - Feng Yang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.)
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, United Kingdom (Y.H., Q.X.)
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital (C.Z.), Third Military Medical University, Chongqing, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.).,School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, United Kingdom (Y.H., Q.X.)
| |
Collapse
|
42
|
Iost I, Jain C. A DEAD-box protein regulates ribosome assembly through control of ribosomal protein synthesis. Nucleic Acids Res 2019; 47:8193-8206. [PMID: 31188443 PMCID: PMC6736130 DOI: 10.1093/nar/gkz502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
DEAD-box proteins (DBPs) comprise a large family of proteins that most commonly have been identified as regulators of ribosome assembly. The Escherichia coli DBP, SrmB, represents a model bacterial DBP whose absence impairs formation of the large ribosomal subunit (LSU). To define the basis for SrmB function, suppressors of the ribosomal defect of ΔsrmB strains were isolated. The major class of suppressors was found to map to the 5′ untranslated region (UTR) of the rplM-rpsI operon, which encodes the ribosomal proteins (r-proteins) L13 and S9. An analysis of protein abundance indicated that both r-proteins are under-produced in the ΔsrmB strain, but are increased in these suppressors, implicating r-protein underproduction as the molecular basis for the observed ribosomal defects. Reduced r-protein synthesis was determined to be caused by intrinsic transcription termination within the rplM 5′ UTR that is abrogated by SrmB. These results reveal a specific mechanism for DBP regulation of ribosomal assembly, indirectly mediated through its effects on r-protein expression.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
43
|
Song H, Ji X. The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X. Nat Commun 2019; 10:3085. [PMID: 31300642 PMCID: PMC6626043 DOI: 10.1038/s41467-019-11083-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/16/2019] [Indexed: 12/02/2022] Open
Abstract
DEAD-box helicases (DDXs) regulate RNA processing and metabolism by unwinding short double-stranded (ds) RNAs. Sharing a helicase core composed of two RecA-like domains (D1D2), DDXs function in an ATP-dependent, non-processive manner. As an attractive target for cancer and AIDS treatment, DDX3X and its orthologs are extensively studied, yielding a wealth of biochemical and biophysical data, including structures of apo-D1D2 and post-unwound D1D2:single-stranded RNA complex, and the structure of a D2:dsRNA complex that is thought to represent a pre-unwound state. However, the structure of a pre-unwound D1D2:dsRNA complex remains elusive, and thus, the mechanism of DDX action is not fully understood. Here, we describe the structure of a D1D2 core in complex with a 23-base pair dsRNA at pre-unwound state, revealing that two DDXs recognize a 2-turn dsRNA, each DDX mainly recognizes a single RNA strand, and conformational changes induced by ATP binding unwinds the RNA duplex in a cooperative manner.
Collapse
Affiliation(s)
- He Song
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
44
|
Charenton C, Wilkinson ME, Nagai K. Mechanism of 5' splice site transfer for human spliceosome activation. Science 2019; 364:362-367. [PMID: 30975767 DOI: 10.1126/science.aax3289] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The prespliceosome, comprising U1 and U2 small nuclear ribonucleoproteins (snRNPs) bound to the precursor messenger RNA 5' splice site (5'SS) and branch point sequence, associates with the U4/U6.U5 tri-snRNP to form the fully assembled precatalytic pre-B spliceosome. Here, we report cryo-electron microscopy structures of the human pre-B complex captured before U1 snRNP dissociation at 3.3-angstrom core resolution and the human tri-snRNP at 2.9-angstrom resolution. U1 snRNP inserts the 5'SS-U1 snRNA helix between the two RecA domains of the Prp28 DEAD-box helicase. Adenosine 5'-triphosphate-dependent closure of the Prp28 RecA domains releases the 5'SS to pair with the nearby U6 ACAGAGA-box sequence presented as a mobile loop. The structures suggest that formation of the 5'SS-ACAGAGA helix triggers remodeling of an intricate protein-RNA network to induce Brr2 helicase relocation to its loading sequence in U4 snRNA, enabling Brr2 to unwind the U4/U6 snRNA duplex to allow U6 snRNA to form the catalytic center of the spliceosome.
Collapse
Affiliation(s)
| | | | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
45
|
From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem 2019; 11:1357-1381. [PMID: 30816053 DOI: 10.4155/fmc-2018-0451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DDX3X is an ATPase/RNA helicase of the DEAD-box family and one of the most multifaceted helicases known up to date, acting in RNA metabolism, cell cycle control, apoptosis, stress response and innate immunity. Depending on the virus or the viral cycle stage, DDX3X can act either in a proviral fashion or as an antiviral factor. Similarly, in different cancer types, it can act either as an oncogene or a tumor-suppressor gene. Accumulating evidence indicated that DDX3X can be considered a promising target for anticancer and antiviral chemotherapy, but also that its exploitation requires a deeper understanding of the molecular mechanisms underlying its dual role in cancer and viral infections. In this Review, we will summarize the known roles of DDX3X in different tumor types and viral infections, and the different inhibitors available, illustrating the possible advantages and potential caveats of their use as anticancer and antiviral drugs.
Collapse
|
46
|
Roles of DDX5 in the tumorigenesis, proliferation, differentiation, metastasis and pathway regulation of human malignancies. Biochim Biophys Acta Rev Cancer 2019; 1871:85-98. [DOI: 10.1016/j.bbcan.2018.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
|
47
|
Hashemi V, Masjedi A, Hazhir-Karzar B, Tanomand A, Shotorbani SS, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Anvari E, Baradaran B, Jadidi-Niaragh F. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol 2018; 234:5478-5487. [PMID: 30417346 DOI: 10.1002/jcp.26912] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
RNA helicase p68 or DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) is a unique member of the highly conserved protein family, which is involved in a broad spectrum of biological processes, including transcription, translation, precursor messenger RNA processing or alternative splicing, and microRNA (miRNA) processing. It has been shown that p68 is necessary for cell growth and participates in the early development and maturation of some organs. Interestingly, p68 is a transcriptional coactivator of numerous oncogenic transcription factors, including nuclear factor-κβ (NF-κβ), estrogen receptor α (ERα), β-catenin, androgen receptor, Notch transcriptional activation complex, p53 and signal transducer, and activator of transcription 3 (STAT3). Recent studies on the role of p68 (DDX5) in multiple dysregulated cellular processes in various cancers and its abnormal expression indicate the importance of this factor in tumor development. Discussion of the precise role of p68 in cancer is complex and depends on the cellular microenvironment and interacting factors. In terms of the deregulated expression of p68 in breast cancer and the high prevalence of this cancer among women, it can be informative to review the precise function of this factor in the breast cancer. Therefore, an attempt will be made in this review to clarify the tumorigenic function of p68 in association with its targeting potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Hazhir-Karzar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 2018; 34:3-32. [PMID: 29742983 DOI: 10.1080/02648725.2018.1467146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses hijack the host cell machinery and recruit host proteins to aid their replication. Several host proteins also play vital roles in inhibiting viral replication. Emerging class of host proteins central to both of these processes are the DEAD-box helicases: a highly conserved family of ATP-dependent RNA helicases, bearing a common D-E-A-D (Asp-Glu-Ala-Asp) motif. They play key roles in numerous cellular processes, including transcription, splicing, miRNA biogenesis and translation. Though their sequences are highly conserved, these helicases have quite diverse roles in the cell. Interestingly, often these helicases display contradictory actions in terms of the support and/or clearance of invading viruses. Increasing evidence highlights the importance of these enzymes, however, little is known about the structural basis of viral RNA recognition by the members of the DEAD-box family. This review summarizes the current knowledge in the field for selected DEAD-box helicases and highlights their diverse actions upon viral invasion of the host cell. We anticipate that through a better understanding of how these helicases are being utilized by viral RNAs and proteins to aid viral replication, it will be possible to address the urgent need to develop novel therapeutic approaches to combat viral infections.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tyler Mrozowich
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Mimi Pham
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Faculty of Medicine & Dentistry, DiscoveryLab , University of Alberta , Edmonton , Canada
| |
Collapse
|
49
|
Zhou D, Zhu X, Zheng S, Tan D, Dong MQ, Ye K. Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. Protein Cell 2018; 10:120-130. [PMID: 29557065 PMCID: PMC6340896 DOI: 10.1007/s13238-018-0526-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/04/2018] [Indexed: 11/25/2022] Open
Abstract
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half-assembled subunit. Domains I, II and VI of 25S/5.8S rRNA pack tightly into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.
Collapse
Affiliation(s)
- Dejian Zhou
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Xing Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Keqiong Ye
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Abstract
Copy number alterations (CNAs) are crucial for colorectal cancer (CRC) development. In this study, DEAD box polypeptide 27 (DDX27) was identified to be highly amplified in both TCGA CRC (474/615) and primary CRC (47/103), which was positively correlated with its mRNA overexpression. High DDX27 mRNA (N = 199) and protein expression (N = 260) predicted poor survival in CRC patients. Ectopic expression of DDX27 increased CRC cells proliferation, migration and invasion, but suppressed apoptosis. Conversely, silencing of DDX27 exerted opposite effects in vitro and significantly inhibited murine xenograft tumor growth and lung metastasis in vivo. Up-regulation of DDX27 enhanced and prolonged TNF-α-mediated NF-κB signaling. Nucleophosmin (NPM1) was identified as a binding partner of DDX27. DDX27 increased nuclear NPM1 and NF-κB-p65 interaction to enhance DNA binding activity of NF-κB. Silencing NPM1 abrogated DDX27-activating NF-κB signaling and its tumor-promoting function. Together, DDX27 is overexpressed and plays a pivotal oncogenic role in CRC.
Collapse
|