1
|
Liu J, Hou J, Xiong J, Ren L, Wang M, Tan W, Kappler A. Quantitative Enhancement of Arsenate Immobilization Induced by Vacancy Defects on Various Exposed Lattice Facets of Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2802-2814. [PMID: 39886836 DOI: 10.1021/acs.est.4c11344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified. In this study, hematite samples with various morphologies were pretreated with sodium borohydride (NaBH4) to generate oxygen vacancy defects (OVDs), analyzed quantitatively using extended X-ray absorption fine structure (EXAFS) and thermogravimetric analysis (TG). Batch experiments revealed that the OVDs on different exposed facets showed significant variations in improving arsenate adsorption, i.e., the quantitative enhancement of arsenate adsorption amount per unit OVD concentration (ΔQm/Cdefect) followed the sequence of (110) facet (80.05 μmol/mmoldef) > (001) facet (31.85 μmol/mmoldef) > (012) facet (13.14 μmol/mmoldef). The underlying mechanism by which OVDs affect arsenate adsorption across different exposed facets of hematite was studied. The results reveal that the tremendous improvement of arsenate adsorption caused by OVDs on the (110) facet compared to (001) and (012) facets was attributed to their stronger bonding strength of As to under-coordinated Fe atoms, thus significantly promoting the immobilization of arsenate. The findings of this study enhance our ability to precisely understand the migration and fate of As while also aiding in the design of highly efficient iron mineral materials for mitigating As pollution.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
2
|
Price BD, Sojka A, Maity S, Chavez IM, Starck M, Wilson MZ, Han S, Sherwin MS. Field-domain rapid-scan EPR at 240GHz for studies of protein functional dynamics at room temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 366:107744. [PMID: 39096714 DOI: 10.1016/j.jmr.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
We present field-domain rapid-scan (RS) electron paramagnetic resonance (EPR) at 8.6T and 240GHz. To enable this technique, we upgraded a home-built EPR spectrometer with an FPGA-enabled digitizer and real-time processing software. The software leverages the Hilbert transform to recover the in-phase (I) and quadrature (Q) channels, and therefore the raw absorptive and dispersive signals, χ' and χ'', from their combined magnitude (I2+Q2). Averaging a magnitude is simpler than real-time coherent averaging and has the added benefit of permitting long-timescale signal averaging (up to at least 2.5×106 scans) because it eliminates the effects of source-receiver phase drift. Our rapid-scan (RS) EPR provides a signal-to-noise ratio that is approximately twice that of continuous wave (CW) EPR under the same experimental conditions, after scaling by the square root of acquisition time. We apply our RS EPR as an extension of the recently reported time-resolved Gd-Gd EPR (TiGGER) [Maity et al., 2023], which is able to monitor inter-residue distance changes during the photocycle of a photoresponsive protein through changes in the Gd-Gd dipolar couplings. RS, opposed to CW, returns field-swept spectra as a function of time with 10ms time resolution, and thus, adds a second dimension to the static field transients recorded by TiGGER. We were able to use RS TiGGER to track time-dependent and temperature-dependent kinetics of AsLOV2, a light-activated phototropin domain found in oats. The results presented here combine the benefits of RS EPR with the improved spectral resolution and sensitivity of Gd chelates at high magnetic fields. In the future, field-domain RS EPR at high magnetic fields may enable studies of other real-time kinetic processes with time resolutions that are otherwise difficult to access in the solution state.
Collapse
Affiliation(s)
- Brad D Price
- Department of Physics, University of California, Santa Barbara, 93106, CA, USA; Institute for Terahertz Science and Technology, University of California, Santa Barbara, 93106, CA, USA.
| | - Antonín Sojka
- Department of Physics, University of California, Santa Barbara, 93106, CA, USA; Institute for Terahertz Science and Technology, University of California, Santa Barbara, 93106, CA, USA
| | - Shiny Maity
- Department of Chemistry, University of California, Santa Barbara, 93106, CA, USA; Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, 60208, IL, USA
| | - I Marcelo Chavez
- Department of Chemistry, University of California, Santa Barbara, 93106, CA, USA
| | - Matthieu Starck
- Department of Chemistry, Durham University, Durham, DH13LE, UK
| | - Maxwell Z Wilson
- Department Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, 93106, CA, USA
| | - Songi Han
- Department of Chemistry, University of California, Santa Barbara, 93106, CA, USA; Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, 60208, IL, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, 93106, CA, USA; Institute for Terahertz Science and Technology, University of California, Santa Barbara, 93106, CA, USA.
| |
Collapse
|
3
|
Nir-Arad O, Fialkov AB, Shlomi DH, Manukovsky N, Mentink-Vigier F, Kaminker I. High-field pulsed EPR spectroscopy under magic angle spinning. SCIENCE ADVANCES 2024; 10:eadq6073. [PMID: 39213356 PMCID: PMC11364107 DOI: 10.1126/sciadv.adq6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available. We hereby present our dedicated, homebuilt MAS-EPR probehead and show the pulsed MAS-EPR spectra of P1 center diamond defect recorded at 7 tesla. Our results reveal unique effects of MAS on EPR line shape, intensity, and signal dephasing. Time-domain simulations reproduce the observed changes in the line shapes and the trends in the signal intensity.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | | | - David H. Shlomi
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Nurit Manukovsky
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ilia Kaminker
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| |
Collapse
|
4
|
Claveau EL, Shapiro MA, Temkin RJ. Resonant Ring with a Gain of 36 for Use with a 1 MW 110 GHz Gyrotron. JOURNAL OF INFRARED, MILLIMETER AND TERAHERTZ WAVES 2024; 45:657-671. [PMID: 39421590 PMCID: PMC11485415 DOI: 10.1007/s10762-024-00991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 10/19/2024]
Abstract
A 110 GHz quasi-optical ring resonator, designed for use with a 1 MW pulsed gyrotron, has been built and successfully tested using a 100 mW solid-state source. A low reflectance (2.4%) input coupler and a low-loss, four-mirror ring demonstrated a compression ratio, defined as the ratio of output to input power, of 36. The 6 ns output pulses were generated from the 2 m length ring using a silicon laser-driven semiconductor switch (LDSS). The quasi-optical ring resonator was designed with large waist sizes so that input pulses of up to 1 MW will stay under the 35 kV/cm electric field limit for ionization in ambient air. Maximum compression gain was achieved by matching the input coupling fraction to the round trip loss in the ring, achieving close to critical coupling. The experimental output pulse shape obtained after firing the LDSS was modeled using the reflectance, transmittance, and absorptance of the switch vs. time and vs. laser pulse fluence, with good agreement found with theory. The timing for the peak energy efficiency of 32% was found and the main loss mechanism limiting that efficiency was found to be the absorptance in the silicon wafer.
Collapse
Affiliation(s)
- Elliot L. Claveau
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St, Cambridge, MA 02139, USA
| | - Michael A. Shapiro
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St, Cambridge, MA 02139, USA
| | - Richard J. Temkin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Wilson CB, Qi M, Han S, Sherwin MS. Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields. J Phys Chem Lett 2023; 14:10578-10584. [PMID: 37976425 PMCID: PMC10694812 DOI: 10.1021/acs.jpclett.3c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Favorable relaxation processes, high-field spectral properties, and biological compatibility have made spin-7/2 Gd3+-based spin labels an increasingly popular choice for protein structure studies using high-field electron paramagnetic resonance. However, high-field relaxation and decoherence in ensembles of half-integer high-spin systems, such as Gd3+, remain poorly understood. We report spin-lattice (T1) and phase memory (TM) relaxation times at 8.6 T (240 GHz), and we present the first comprehensive model of high-field, high-spin decoherence accounting for both the electron spin concentration and temperature. The model includes four principal mechanisms driving decoherence: energy-conserving electron spin flip-flops, direct "T1" spin-lattice relaxation-driven electron spin flip processes, indirect T1-driven flips of nearby electron spins, and nuclear spin flip-flops. Mechanistic insight into decoherence can inform the design of experiments making use of Gd3+ as spin probes or relaxivity agents and can be used to measure local average interspin distances as long as 17 nm.
Collapse
Affiliation(s)
- C. Blake Wilson
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, 33615 Bielefeld, Germany
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Mark S. Sherwin
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Sojka A, Price BD, Sherwin MS. Order-of-magnitude SNR improvement for high-field EPR spectrometers via 3D printed quasi-optical sample holders. SCIENCE ADVANCES 2023; 9:eadi7412. [PMID: 37729398 PMCID: PMC10511183 DOI: 10.1126/sciadv.adi7412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Here, we present a rapidly prototyped, cost-efficient, and 3D printed quasi-optical sample holder for improving the signal-to-noise ratio (SNR) in modern, resonator-free, and high-field electron paramagnetic resonance (HFEPR) spectrometers. Such spectrometers typically operate in induction mode: The detected EPR ("cross-polar") signal is polarized orthogonal to the incident ("co-polar") radiation. The sample holder makes use of an adjustable sample positioner that allows for optimizing the sample position to maximize the 240-gigahertz magnetic field B1 and a rooftop mirror that allows for small rotations of the microwave polarization to maximize the cross-polar signal and minimize the co-polar background. When optimally tuned, the sample holder was able to improve co-polar isolation by ≳20 decibels, which is proven beneficial for maximizing the SNR in rapid-scan, pulsed, and continuous-wave EPR experiments. In rapid-scan mode, the improved SNR enabled the recording of entire EPR spectra of a narrow-line radical in millisecond time scales, which, in turn, enabled real-time monitoring of a sample's evolving line shape.
Collapse
Affiliation(s)
- Antonín Sojka
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brad D. Price
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mark S. Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Armstrong CM, Snively EC, Shumail M, Nantista C, Li Z, Tantawi S, Loo BW, Temkin RJ, Griffin RG, Feng J, Dionisio R, Mentgen F, Ayllon N, Henderson MA, Goodman TP. Frontiers in the Application of RF Vacuum Electronics. IEEE TRANSACTIONS ON ELECTRON DEVICES 2023; 70:2643-2655. [PMID: 37250956 PMCID: PMC10216895 DOI: 10.1109/ted.2023.3239841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important applications in health treatment, material and biological science, wireless communication-terrestrial and space, Earth environment remote sensing, and the promise of safe, reliable, and inexhaustible energy. This article highlights some of the exciting application frontiers of vacuum electronics.
Collapse
Affiliation(s)
| | - Emma C Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | | | | | - Zenghai Li
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Sami Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Bill W Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Richard J Temkin
- Department of Physics and the Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert G Griffin
- Department of Chemistry and the Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jinjun Feng
- Beijing Vacuum Electronics Research Institute, Beijing 100015, China
| | - Roberto Dionisio
- RF Equipment and Technologies Section, European Space Agency (ESA), NL-2200 AG Noordwijk, The Netherlands
| | - Felix Mentgen
- RF Equipment and Technologies Section, European Space Agency (ESA), NL-2200 AG Noordwijk, The Netherlands
| | - Natanael Ayllon
- RF Equipment and Technologies Section, European Space Agency (ESA), NL-2200 AG Noordwijk, The Netherlands
| | - Mark A Henderson
- United Kingdom Atomic Energy Authority, Culham Science Centre, OX14 3DB Abingdon, U.K
| | - Timothy P Goodman
- Swiss Plasma Center, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
9
|
Chen J, Maly T. Compact, tunable polarization transforming reflector for quasi-optical devices used in terahertz science. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:013102. [PMID: 35104994 DOI: 10.1063/5.0036292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
We describe the design, fabrication, and characterization of a compact polarization transforming reflector (PTR). The device can be easily tuned over a broad frequency range, has very little insertion losses, and can easily be integrated into quasi-optical systems that are based on a half-cube design. By varying the distance between the wire grid and a flat mirror, the polarization state of an arbitrary polarized Gaussian incident beam can be set to an output Gaussian beam in either linear or circular polarization. In addition, by varying the orientation of the wire grid, the PTR can be used as a universal polarizer, a property that has not been discussed or demonstrated in the literature. The ability to control the electric field polarization at Terahertz (THz) frequencies is essential for many applications, such as THz spectroscopy and high-field electron paramagnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Jeson Chen
- Bridge12 Technologies, 37 Loring Drive, Framingham, Massachusetts 01702, USA
| | - Thorsten Maly
- Bridge12 Technologies, 37 Loring Drive, Framingham, Massachusetts 01702, USA
| |
Collapse
|
10
|
Schaub SC, Cohick ZW, Hoff BW. Laser requirements for the design of fast laser-driven semiconductor switches for THz and mm-waves. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:113106. [PMID: 34852508 DOI: 10.1063/5.0062711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
A reduced parameter model of fast laser-driven semiconductor switches of THz and mm-waves has been developed. The model predicts peak reflectivity and minimum transmissivity of switches, showing good agreement with experimental data, while requiring fewer inputs than published models. This simplification facilitated a systematic survey of laser parameters required for efficient switching. Laser energy density requirements are presented as a function of laser wavelength, laser pulse width, switched frequency, reflection angle, and semiconductor material (silicon or gallium arsenide). Analytical expressions have been derived to explain the dependence of laser requirements on switch parameters and to derive practical minima of required laser energy density. Diffusion is shown to quickly negate the shallow absorption advantage of laser wavelengths shorter than about 500 nm in silicon or 800 nm in gallium arsenide. Decreasing laser pulse width, to a derived limit, and switching S-polarized THz or mm-wave signals are shown to be means of lowering required laser energy. This is an especially useful result for devices operating at high power levels or THz frequencies, where extended switches are used in quasioptical systems.
Collapse
Affiliation(s)
- S C Schaub
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87123, USA
| | - Z W Cohick
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87123, USA
| | - B W Hoff
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87123, USA
| |
Collapse
|
11
|
Equbal A, Jain SK, Li Y, Tagami K, Wang X, Han S. Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:1-16. [PMID: 34852921 DOI: 10.1016/j.pnmrs.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Kumar Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Xiaoling Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
12
|
Fataftah MS, Bayliss SL, Laorenza DW, Wang X, Phelan BT, Wilson CB, Mintun PJ, Kovos BD, Wasielewski MR, Han S, Sherwin MS, Awschalom DD, Freedman DE. Trigonal Bipyramidal V 3+ Complex as an Optically Addressable Molecular Qubit Candidate. J Am Chem Soc 2020; 142:20400-20408. [PMID: 33210910 DOI: 10.1021/jacs.0c08986] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure. To mimic the electronic structure of optically addressable defect sites, we designed the spin-triplet, V3+ complex, (C6F5)3trenVCNtBu (1). We measured the static spin properties as well as the spin coherence time of 1 demonstrating coherent control of this spin qubit with a 240 GHz electron paramagnetic resonance spectrometer powered by a free electron laser. We found that 1 exhibited narrow, near-infrared photoluminescence (PL) from a spin-singlet excited state. Using variable magnetic field PL spectroscopy, we resolved emission into each of the ground-state spin sublevels, a crucial component for spin-selective optical initialization and readout. This work demonstrates that trigonally symmetric, heteroleptic V3+ complexes are candidates for optical spin addressability.
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sam L Bayliss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel W Laorenza
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaoling Wang
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Brian T Phelan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- The Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - C Blake Wilson
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter J Mintun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Berk D Kovos
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- The Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Mark S Sherwin
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Wilson CB, Edwards DT, Clayton JA, Han S, Sherwin MS. Dressed Rabi Oscillation in a Crystalline Organic Radical. PHYSICAL REVIEW LETTERS 2020; 124:047201. [PMID: 32058731 DOI: 10.1103/physrevlett.124.047201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Free electron laser-powered pulsed electron paramagnetic resonance experiments performed at 240 GHz/8.56 T on the crystalline organic radical 1,3-bisdiphenylene-2-phenylallyl reveal a tip-angle dependent resonant frequency. Frequency shifts as large as 11 MHz (45 ppm) are observed during a single Rabi oscillation. We attribute the frequency shifts to a "dressing" of the nutation by spin-spin interactions. A nonlinear semiclassical model which includes a temperature- and sample-geometry-dependent demagnetizing field reproduces experimental results. Because experiments are performed without a cavity, radiation damping, the most common nonlinear interaction in magnetic resonance, is negligible in our experiments.
Collapse
Affiliation(s)
- C Blake Wilson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Devin T Edwards
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jessica A Clayton
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Songi Han
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
14
|
Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 2020; 578:70-74. [PMID: 31988510 DOI: 10.1038/s41586-020-1950-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022]
Abstract
Spin dynamics in antiferromagnets has much shorter timescales than in ferromagnets, offering attractive properties for potential applications in ultrafast devices1-3. However, spin-current generation via antiferromagnetic resonance and simultaneous electrical detection by the inverse spin Hall effect in heavy metals have not yet been explicitly demonstrated4-6. Here we report sub-terahertz spin pumping in heterostructures of a uniaxial antiferromagnetic Cr2O3 crystal and a heavy metal (Pt or Ta in its β phase). At 0.240 terahertz, the antiferromagnetic resonance in Cr2O3 occurs at about 2.7 tesla, which excites only right-handed magnons. In the spin-canting state, another resonance occurs at 10.5 tesla from the precession of induced magnetic moments. Both resonances generate pure spin currents in the heterostructures, which are detected by the heavy metal as peaks or dips in the open-circuit voltage. The pure-spin-current nature of the electrically detected signals is unambiguously confirmed by the reversal of the voltage polarity observed under two conditions: when switching the detector metal from Pt to Ta, reversing the sign of the spin Hall angle7-9, and when flipping the magnetic-field direction, reversing the magnon chirality4,5. The temperature dependence of the electrical signals at both resonances suggests that the spin current contains both coherent and incoherent magnon contributions, which is further confirmed by measurements of the spin Seebeck effect and is well described by a phenomenological theory. These findings reveal the unique characteristics of magnon excitations in antiferromagnets and their distinctive roles in spin-charge conversion in the high-frequency regime.
Collapse
|
15
|
Chen PH, Gao C, Barnes AB. Perspectives on microwave coupling into cylindrical and spherical rotors with dielectric lenses for magic angle spinning dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106518. [PMID: 31345770 DOI: 10.1016/j.jmr.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Continuous wave dynamic nuclear polarization (DNP) increases the sensitivity of NMR, yet intense microwave fields are required to transition magic angle spinning (MAS) DNP to the time domain. Here we describe and analyze Teflon lenses for cylindrical and spherical MAS rotors that focus microwave power and increase the electron Rabi frequency, ν1s. Using a commercial simulation package, we solve the Maxwell equations and determine the propagation and focusing of millimeter waves (198 GHz). We then calculate the microwave intensity in a time-independent fashion to compute the ν1s. With a nominal microwave power input of 5 W, the average ν1s is 0.38 MHz within a 22 μL sample volume in a 3.2 mm outer diameter (OD) cylindrical rotor without a Teflon lens. Decreasing the sample volume to 3 μL and focusing the microwave beam with a Teflon lens increases the ν1s to 1.5 MHz. Microwave polarization and intensity perturbations associated with diffraction through the radiofrequency coil, losses from penetration through the rotor wall, and mechanical limitations of the separation between the lens and sample are significant challenges to improving microwave coupling in MAS DNP instrumentation. To overcome these issues, we introduce a novel focusing strategy using dielectric microwave lenses installed within spinning rotors. One such 9.5 mm OD cylindrical rotor assembly implements a Teflon focusing lens to increase the ν1s to 2.7 MHz within a 2 μL sample. Further, to access high spinning frequencies while also increasing ν1s, we analyze microwave coupling into MAS spheres. For 9.5 mm OD spherical rotors, we compute a ν1s of 0.36 MHz within a sample volume of 161 μL, and 2.5 MHz within a 3 μL sample placed at the focal point of a novel double lens insert. We conclude with an analysis and discussion of sub-millimeter diamond spherical rotors for time domain DNP at spinning frequencies >100 kHz. Sub-millimeter spherical rotors better overlap a tightly focused microwave beam, resulting in a ν1s of 2.2 MHz. Lastly, we propose that sub-millimeter dielectric spherical microwave resonators will provide a means to substantially improve electron spin control in the future.
Collapse
Affiliation(s)
- Pin-Hui Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chukun Gao
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
16
|
Cebulka R, Del Barco E. Sub-Kelvin (100 mK) time resolved electron paramagnetic resonance spectroscopy for studies of quantum dynamics of low-dimensional spin systems at low frequencies and magnetic fields. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:085106. [PMID: 31472653 DOI: 10.1063/1.5097563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This article presents a time-resolved electron paramagnetic resonance spectrometry setup designed to work at frequencies below 20 GHz and temperatures down to 50 mK. The setup consists of an on-chip microstrip resonator (Q < 100) placed in a dilution cryostat located within a superconducting 3D vector magnet. A housemade spin echo circuitry controlled by a microwave network analyzer, a pulse pattern generator, and an oscilloscope connects to the microstrip through a series of copper, stainless steel, and superconducting semirigid coaxial lines which are thermally anchored to the different cooling stages of the fridge by means of power attenuators, circulators, and a cryogenic amplifier. Spin echo experiments were performed at a 0.5-T magnetic field on a spin 1 2 paramagnetic coal marker sample mounted on a 15 GHz microstrip resonator at temperatures ranging from 100 to 800 mK. The results show an increase in echo signal intensity as temperature is decreased until saturation as theoretically expected in reaching 99% spin polarization at 100 mK. Our technique allows tuning of the spin system in the pure-state regime and minimizing dipolar fluctuations, which are the main contribution to decoherence in solid-state samples of single-molecule magnets (SMMs) - molecular spin systems that are currently being tested for applications in quantum computation. The achievement of full spin polarization at 100 mK will allow for coherent control over the time evolution of spin systems without the need for large magnetic fields (commonly used to polarize the dipolar bath at higher temperatures) and high frequencies.
Collapse
Affiliation(s)
- Rebecca Cebulka
- Physics Department, University of Central Florida, Orlando, Florida 32816, USA
| | - Enrique Del Barco
- Physics Department, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
17
|
Picard JF, Schaub SC, Rosenzweig G, Stephens JC, Shapiro MA, Temkin RJ. Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron. APPLIED PHYSICS LETTERS 2019; 114:164102. [PMID: 32127718 PMCID: PMC7043829 DOI: 10.1063/1.5093639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 06/10/2023]
Abstract
A laser-driven semiconductor switch (LDSS) employing silicon (Si) and gallium arsenide (GaAs) wafers has been used to produce nanosecond-scale pulses from a 3 μs, 110 GHz gyrotron at the megawatt power level. Photoconductivity was induced in the wafers using a 532 nm laser, which produced 6 ns, 230 mJ pulses. Irradiation of a single Si wafer by the laser produced 110 GHz RF pulses with a 9 ns width and >70% reflectance. Under the same conditions, a single GaAs wafer yielded 24 ns 110 GHz RF pulses with >78% reflectance. For both semiconductor materials, a higher value of reflectance was observed with increasing 110 GHz beam intensity. Using two active wafers, pulses of variable length down to 3 ns duration were created. The switch was tested at incident 110 GHz RF power levels up to 600 kW. A 1-D model is presented that agrees well with the experimentally observed temporal pulse shapes obtained with a single Si wafer. The LDSS has many potential uses in high power millimeter-wave research, including testing of high-gradient accelerator structures.
Collapse
Affiliation(s)
- Julian F Picard
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Samuel C Schaub
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Guy Rosenzweig
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jacob C Stephens
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael A Shapiro
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard J Temkin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Scott FJ, Sesti EL, Choi EJ, Laut AJ, Sirigiri JR, Barnes AB. Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:831-835. [PMID: 29672916 DOI: 10.1002/mrc.4744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 05/05/2023]
Abstract
We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ωr /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection.
Collapse
Affiliation(s)
- Faith J Scott
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Erika L Sesti
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Eric J Choi
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Alexander J Laut
- Bridge 12 Technologies, Inc., 37 Loring Drive, Framingham, MA, 01702, USA
| | | | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| |
Collapse
|
19
|
Wilson CB, Aronson S, Clayton JA, Glaser SJ, Han S, Sherwin MS. Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer. Phys Chem Chem Phys 2018; 20:18097-18109. [PMID: 29938285 DOI: 10.1039/c8cp01876f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer. Phase shifts are introduced by modifying the optical path length of a 240 GHz pulse with precision-machined dielectric plates in a procedure we call phase cycling with optomechanical phase shifters (POPS), while numerical receiver phase cycling is implemented in post-processing. The POPS scheme was successfully used to reduce experimental dead times, enabling pulsed EPR of fast-relaxing spin systems such as gadolinium complexes at temperatures above 190 K. Coherence transfer pathway selection with POPS was used to perform spin echo relaxation experiments to measure the phase memory time of P1 centers in diamond in the presence of a strong unwanted FID signal in the background. The large excitation bandwidth of FEL-EPR, together with phase cycling, enabled the quantitative measurement of instantaneous electron spectral diffusion, from which the P1 center concentration was estimated to within 10%. Finally, phase cycling enabled saturation-recovery measurements of T1 in a trityl-water solution at room temperature - the first FEL-EPR measurement of electron T1.
Collapse
Affiliation(s)
- C Blake Wilson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Clayton JA, Keller K, Qi M, Wegner J, Koch V, Hintz H, Godt A, Han S, Jeschke G, Sherwin MS, Yulikov M. Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Phys Chem Chem Phys 2018; 20:10470-10492. [PMID: 29617015 DOI: 10.1039/c7cp08507a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The magnetic properties of paramagnetic species with spin S > 1/2 are parameterized by the familiar g tensor as well as "zero-field splitting" (ZFS) terms that break the degeneracy between spin states even in the absence of a magnetic field. In this work, we determine the mean values and distributions of the ZFS parameters D and E for six Gd(iii) complexes (S = 7/2) and critically discuss the accuracy of such determination. EPR spectra of the Gd(iii) complexes were recorded in glassy frozen solutions at 10 K or below at Q-band (∼34 GHz), W-band (∼94 GHz) and G-band (240 GHz) frequencies, and simulated with two widely used models for the form of the distributions of the ZFS parameters D and E. We find that the form of the distribution of the ZFS parameter D is bimodal, consisting roughly of two Gaussians centered at D and -D with unequal amplitudes. The extracted values of D (σD) for the six complexes are, in MHz: Gd-NO3Pic, 485 ± 20 (155 ± 37); Gd-DOTA/Gd-maleimide-DOTA, -714 ± 43 (328 ± 99); iodo-(Gd-PyMTA)/MOMethynyl-(Gd-PyMTA), 1213 ± 60 (418 ± 141); Gd-TAHA, 1361 ± 69 (457 ± 178); iodo-Gd-PCTA-[12], 1861 ± 135 (467 ± 292); and Gd-PyDTTA, 1830 ± 105 (390 ± 242). The sign of D was adjusted based on the Gaussian component with larger amplitude. We relate the extracted P(D) distributions to the structure of the individual Gd(iii) complexes by fitting them to a model that superposes the contribution to the D tensor from each coordinating atom of the ligand. Using this model, we predict D, σD, and E values for several additional Gd(iii) complexes that were not measured in this work. The results of this paper may be useful as benchmarks for the verification of quantum chemical calculations of ZFS parameters, and point the way to designing Gd(iii) complexes for particular applications and estimating their magnetic properties a priori.
Collapse
Affiliation(s)
- Jessica A Clayton
- University of California, Santa Barbara, Department of Physics, Santa Barbara, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prokopiou G, Lee MD, Collauto A, Abdelkader EH, Bahrenberg T, Feintuch A, Ramirez-Cohen M, Clayton J, Swarbrick JD, Graham B, Otting G, Goldfarb D. Small Gd(III) Tags for Gd(III)–Gd(III) Distance Measurements in Proteins by EPR Spectroscopy. Inorg Chem 2018; 57:5048-5059. [DOI: 10.1021/acs.inorgchem.8b00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgia Prokopiou
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elwy H. Abdelkader
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marie Ramirez-Cohen
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jessica Clayton
- Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Veber SL, Tumanov SV, Fursova EY, Shevchenko OA, Getmanov YV, Scheglov MA, Kubarev VV, Shevchenko DA, Gorbachev II, Salikova TV, Kulipanov GN, Ovcharenko VI, Fedin MV. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:11-22. [PMID: 29360045 DOI: 10.1016/j.jmr.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.
Collapse
Affiliation(s)
- Sergey L Veber
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Sergey V Tumanov
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena Yu Fursova
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia
| | - Oleg A Shevchenko
- Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia
| | | | | | - Vitaly V Kubarev
- Novosibirsk State University, Novosibirsk 630090, Russia; Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia
| | | | | | | | | | | | - Matvey V Fedin
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
23
|
Twig Y, Sorkin A, Cristea D, Feintuch A, Blank A. Surface loop-gap resonators for electron spin resonance at W-band. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:123901. [PMID: 29289191 DOI: 10.1063/1.5000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electron spin resonance (ESR) is a spectroscopic method used to detect paramagnetic materials, reveal their structure, and also image their position in a sample. ESR makes use of a large static magnetic field to split the energy levels of the electron magnetic moment of the paramagnetic species. A strong microwave magnetic field is applied to excite the spins, and subsequently the ESR system detects their faint microwave signal response. The sensitivity of an ESR system is greatly influenced by the magnitude of the static field and the properties of the microwave resonator used to detect the spin signal. In general terms, the higher the static field (microwave frequency) and the smaller the resonator, the more sensitive the system will be. Previous work aimed at high-sensitivity ESR was focused on the development and testing of very small resonators operating at moderate magnetic fields in the range of ∼0.1-1.2 T (maximum frequency of ∼35 GHz). Here, we describe the design, construction, and testing of recently developed miniature surface loop-gap resonators used in ESR and operating at a much higher frequency of ∼95 GHz (W-band, corresponding to a field of ∼3.4 T). Such resonators can greatly enhance the sensitivity of ESR and also improve the resulting spectral resolution due to the higher static field employed. A detailed description of the resonator's design and coupling mechanism, as well as the supporting probe head, is provided. We also discuss the production method of the resonators and probe head and, in the end, provide preliminary experimental results that show the setup's high spin sensitivity and compare it to theoretical predictions.
Collapse
Affiliation(s)
- Ygal Twig
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Anton Sorkin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Cristea
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
24
|
Nehrkorn J, Holldack K, Bittl R, Schnegg A. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:10-19. [PMID: 28579095 DOI: 10.1016/j.jmr.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique.
Collapse
Affiliation(s)
- Joscha Nehrkorn
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraβe 5, 12489 Berlin, Germany; Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, United States
| | - Karsten Holldack
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Robert Bittl
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Alexander Schnegg
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraβe 5, 12489 Berlin, Germany.
| |
Collapse
|
25
|
Clayton JA, Qi M, Godt A, Goldfarb D, Han S, Sherwin MS. Gd 3+-Gd 3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Phys Chem Chem Phys 2017; 19:5127-5136. [PMID: 28139788 PMCID: PMC5394103 DOI: 10.1039/c6cp07119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA-spacer-Gd-PyMTA, with Gd-Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |-1/2〉 → |1/2〉 transition occurs at 30 K for Gd-Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/r3 dependence for the electron-electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron-electron dipolar interactions with a neighboring S = 7/2 spin.
Collapse
Affiliation(s)
- Jessica A Clayton
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Songi Han
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
26
|
Baierl S, Mentink JH, Hohenleutner M, Braun L, Do TM, Lange C, Sell A, Fiebig M, Woltersdorf G, Kampfrath T, Huber R. Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide. PHYSICAL REVIEW LETTERS 2016; 117:197201. [PMID: 27858446 DOI: 10.1103/physrevlett.117.197201] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 06/06/2023]
Abstract
Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism-information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching.
Collapse
Affiliation(s)
- S Baierl
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - J H Mentink
- Radboud University, Institute of Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - M Hohenleutner
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - L Braun
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - T-M Do
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - C Lange
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - A Sell
- Department of Physics, University of Konstanz and TOPTICA Photonics AG, Lochhamer Schlag 19, 82166 Gräfelfing, Germany
| | - M Fiebig
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - G Woltersdorf
- Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - T Kampfrath
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - R Huber
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Ren Z, Yang X. Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs. Acta Crystallogr D Struct Biol 2016; 72:871-82. [PMID: 27377384 PMCID: PMC6688658 DOI: 10.1107/s2059798316008573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Abstract
X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.
Collapse
Affiliation(s)
- Zhong Ren
- Renz Research Inc., Westmont, IL 60559, USA
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
28
|
Siaw TA, Leavesley A, Lund A, Kaminker I, Han S. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:131-153. [PMID: 26920839 PMCID: PMC4770585 DOI: 10.1016/j.jmr.2015.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 05/12/2023]
Abstract
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.
Collapse
Affiliation(s)
- Ting Ann Siaw
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Alisa Leavesley
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Alicia Lund
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Ilia Kaminker
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
29
|
Krzystek J, Telser J. Measuring giant anisotropy in paramagnetic transition metal complexes with relevance to single-ion magnetism. Dalton Trans 2016; 45:16751-16763. [DOI: 10.1039/c6dt01754a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
“Giant magnetic anisotropy” is a phenomenon identified in certain coordination complexes of nd- and nf-block ions. The strengths and weaknesses of multiple methods used to measure it are evaluated.
Collapse
Affiliation(s)
- J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Joshua Telser
- Department of Biological
- Chemical and Physical Sciences
- Roosevelt University
- Chicago
- USA
| |
Collapse
|
30
|
230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy. Methods Enzymol 2015; 563:95-118. [PMID: 26478483 DOI: 10.1016/bs.mie.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electron paramagnetic resonance (EPR) and double electron-electron resonance (DEER) spectroscopies are powerful and versatile tools for studying local structures and dynamic properties of biological molecules. Similar to nuclear magnetic resonance (NMR) spectroscopy, EPR/DEER spectroscopies become more advantageous at higher frequencies and higher magnetic fields because of better spectral resolution as well as higher spin polarization. Here, we describe development of a high-frequency (HF) EPR/DEER spectrometer operating in the frequency range of 107-120 and 215-240 GHz and in the magnetic field range of 0-12.1 T, which has unique experimental capabilities such as enabling the complete spin polarization and wide-band DEER spectroscopy. Emphasis is given on the application of HF EPR/DEER techniques, and specific examples of HF EPR spectroscopy to drastically increase spin coherence in nanodiamonds as well as HF DEER spectroscopy to extract spin concentration in a diamond crystal are presented.
Collapse
|
31
|
Nehrkorn J, Schnegg A, Holldack K, Stoll S. General magnetic transition dipole moments for electron paramagnetic resonance. PHYSICAL REVIEW LETTERS 2015; 114:010801. [PMID: 25615456 DOI: 10.1103/physrevlett.114.010801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 06/04/2023]
Abstract
We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.
Collapse
Affiliation(s)
- Joscha Nehrkorn
- Berlin Joint EPR Laboratory, Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Alexander Schnegg
- Berlin Joint EPR Laboratory, Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
32
|
Cho FH, Stepanov V, Takahashi S. A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, multi-frequency, and multi-phase pulsed measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:075110. [PMID: 25085176 DOI: 10.1063/1.4889873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe instrumentation for a high-frequency electron paramagnetic resonance (EPR) and pulsed electron-electron double resonance (PELDOR) spectroscopy. The instrumentation is operated in the frequency range of 107-120 GHz and 215-240 GHz and in the magnetic field range of 0-12.1 T. The spectrometer consisting of a high-frequency high-power solid-state source, a quasioptical system, a phase-sensitive detection system, a cryogenic-free superconducting magnet, and a (4)He cryostat enables multi-frequency continuous-wave EPR spectroscopy as well as pulsed EPR measurements with a few hundred nanosecond pulses. Here we discuss the details of the design and the pulsed EPR sensitivity of the instrumentation. We also present performance of the instrumentation in unique experiments including PELDOR spectroscopy to probe correlations in an insulating electronic spin system and application of dynamical decoupling techniques to extend spin coherence of electron spins in an insulating solid-state system.
Collapse
Affiliation(s)
- F H Cho
- Department of Physics, University of Southern California, Los Angeles, California 90089, USA
| | - V Stepanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - S Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
33
|
Walker SA, Edwards DT, Siaw TA, Armstrong BD, Han S. Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys Chem Chem Phys 2014; 15:15106-20. [PMID: 23925724 DOI: 10.1039/c3cp51628h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to facilitate versatile applications with high field dynamic nuclear polarization (DNP), it is important to be able to optimize the DNP performance, i.e. reach high nuclear hyperpolarization within a short signal build up time. Given that the solid-state DNP process is strongly temperature-dependent, it is important to benchmark the temperature dependence of various DNP and electron paramagnetic resonance (EPR) parameters that can then be used to test and develop theories and models for high field DNP mechanisms. However, DNP and EPR experiments at high fields and cryogenic temperatures below 20 Kelvin usually require home built instrumentation, and therefore even basic experimental observations are lacking in the literature. DNP and EPR experiments at 7 T (197 GHz) and 8.5 T (240 GHz), respectively, were conducted at temperatures between 35 K and 3.7 K where the electron thermal polarization changes from 13.4% to 85.6%, respectively. The samples are frozen solutions of 15 mM OX063Me trityl radicals in various mixtures of [1-(13)C]pyruvic acid, glycerol, and Gd(3+)-chelates. For all sample mixtures, the trityl EPR lines are found to be inhomogeneously broadened and the dominant DNP mechanism is shown to be the cross effect (CE). A 20%, 11%, and 6.77% (13)C polarization is achieved at 3.7 K with a [1-(13)C]pyruvic-glycerol-H2O sample, the addition of 2 mM of Gd(3+)-chelates, and pure [1-(13)C]pyruvic acid, respectively. When T1n is sufficiently long, our results seem to suggest T1e is a key variable in the DNP process, where longer T1e values correlate with larger DNP enhancements (εDNP). The experimental data reported here on the temperature dependence of T1n, T1e, Tm (electron phase memory time), the EPR linewidth, TDNP and ε(DNP) at high fields will be helpful for testing the mechanism and theory of DNP processes.
Collapse
Affiliation(s)
- Shamon A Walker
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
34
|
High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry. J Biol Inorg Chem 2014; 19:297-318. [DOI: 10.1007/s00775-013-1084-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
|
35
|
Siaw TA, Fehr M, Lund A, Latimer A, Walker SA, Edwards DT, Han SI. Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance. Phys Chem Chem Phys 2014; 16:18694-706. [DOI: 10.1039/c4cp02013h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimum integral EPR saturation, determined by electron T1e and electron spin flip-flop rate, maximizes solid-state DNP performance using nitroxide radicals.
Collapse
Affiliation(s)
- Ting Ann Siaw
- Department of Chemical Engineering
- University of California Santa Barbara
- Santa Barbara, USA
| | - Matthias Fehr
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara, USA
| | - Alicia Lund
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara, USA
| | - Allegra Latimer
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara, USA
| | - Shamon A. Walker
- Department of Chemical Engineering
- University of California Santa Barbara
- Santa Barbara, USA
| | - Devin T. Edwards
- Department of Physics
- University of California Santa Barbara
- Santa Barbara, USA
| | - Song-I Han
- Department of Chemical Engineering
- University of California Santa Barbara
- Santa Barbara, USA
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
| |
Collapse
|
36
|
Edwards DT, Zhang Y, Glaser SJ, Han S, Sherwin MS. Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer. Phys Chem Chem Phys 2013; 15:5707-19. [PMID: 23474874 DOI: 10.1039/c3cp44492a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) powered by a free electron laser (FEL) has been shown to dramatically expand the capabilities of EPR at frequencies above ~100 GHz, where other high-power sources are unavailable. High-power pulses are necessary to achieve fast (<10 ns) spin rotations in order to alleviate the limited excitation bandwidth and time resolution that typically hamper pulsed EPR at these high frequencies. While at these frequencies, an FEL is the only source that provides ~1 kW of power and can be tuned continuously up to frequencies above 1 THz, it has only recently been implemented for one- and two-pulse EPR, and the capabilities of the FEL as an EPR source are still being expanded. This manuscript presents phase cycling of two pulses in an FEL-EPR spectrometer operating at 240 GHz. Given that the FEL, unlike amplifiers, cannot be easily phase-locked to a reference source, we instead apply retrospective data processing to measure the relative phase of each FEL pulse in order to correct the signal phase accordingly. This allows the measured signal to be averaged coherently, and the randomly changing phase of the FEL pulse results in a stochastic phase cycle, which, in the limit of many pulses, efficiently cancels artifacts and improves sensitivity. Further, the relative phase between the first and second pulse, which originates from the difference in path length traversed by each pulse, can be experimentally measured without phase-sensitive detection. We show that the relative phase of the two pulses can be precisely tuned, as well as distinctly switched by a fixed amount, with the insertion of a dielectric material into the quasi-optical path of one of the pulses. Taken together, these techniques offer many of the advantages of arbitrary phase control, and allow application of phase cycling to dramatically enhance signal quality in pulsed EPR experiments utilizing high-power sources that cannot be phase-locked.
Collapse
Affiliation(s)
- Devin T Edwards
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA.
| | | | | | | | | |
Collapse
|
37
|
Edwards DT, Ma Z, Meade TJ, Goldfarb D, Han S, Sherwin MS. Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields. Phys Chem Chem Phys 2013; 15:11313-26. [PMID: 23732863 PMCID: PMC4142211 DOI: 10.1039/c3cp43787f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interspin distances between 0.8 nm and 2.0 nm can be measured through the dipolar broadening of the continuous wave (cw) EPR spectrum of nitroxide spin labels at X-band (9.4 GHz, 0.35 T). We introduce Gd(3+) as a promising alternative spin label for distance measurements by cw EPR above 7 Tesla, where the |-1/2〉 to |1/2〉 transition narrows below 1 mT and becomes extremely sensitive to dipolar broadening. To estimate the distance limits of cw EPR with Gd(3+), we have measured spectra of frozen solutions of GdCl3 at 8.6 T (240 GHz) and 10 K at concentrations ranging from 50 mM to 0.1 mM, covering a range of average interspin distances. These experiments show substantial dipolar broadening at distances where line broadening cannot be observed with nitroxides at X-band. This data, and its agreement with calculated dipolar-broadened lineshapes, show Gd(3+) to be sensitive to distances as long as ∼3.8 nm. Further, the linewidth of a bis-Gd(3+) complex with a flexible ∼1.6 nm bridge is strongly broadened as compared to the mono-Gd(3+) complex, demonstrating the potential for application to pairwise distances. Gd-DOTA-based chelates that can be functionalized to protein surfaces display linewidths narrower than aqueous GdCl3, implying they should be even more sensitive to dipolar broadening. Therefore, we suggest that the combination of tailored Gd(3+) labels and high magnetic fields can extend the longest interspin distances measurable by cw EPR from 2.0 nm to 3.8 nm. cw EPR data at 260 K demonstrate that the line broadening remains clear out to similar average interspin distances, offering Gd(3+) probes as promising distance rulers at temperatures higher than possible with conventional pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Devin T. Edwards
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Zhidong Ma
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Thomas J. Meade
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Molecular Biosciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Neurobiology & Physiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Institute for Terahertz Science and Technology, Santa Barbara, California 93106, USA
| | - Mark S. Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Institute for Terahertz Science and Technology, Santa Barbara, California 93106, USA
| |
Collapse
|
38
|
Doll A, Pribitzer S, Tschaggelar R, Jeschke G. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:27-39. [PMID: 23434533 DOI: 10.1016/j.jmr.2013.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 05/12/2023]
Abstract
We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small.
Collapse
Affiliation(s)
- Andrin Doll
- ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
Barros Silva R, Santos NAG, Martins NM, Ferreira DAS, Barbosa F, Oliveira Souza VC, Kinoshita A, Baffa O, Del-Bel E, Santos AC. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats. Neuroscience 2013; 233:86-94. [PMID: 23291456 DOI: 10.1016/j.neuroscience.2012.12.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 01/13/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- R Barros Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Edwards DT, Takahashi S, Sherwin MS, Han S. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:198-206. [PMID: 22975249 DOI: 10.1016/j.jmr.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (T(M)) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of T(M) to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r(3), which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n(32) for nitroxides tethered to a quasi two-dimensional surface of large (Ø∼200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.
Collapse
Affiliation(s)
- Devin T Edwards
- Department of Physics, University of California, Santa Barbara, CA 93106, United States
| | | | | | | |
Collapse
|