1
|
Zhang J, Zhou Y, Qiao J, Liu Y. Recent advances in spatiotemporal control of the CRISPR/Cas9 system. Colloids Surf B Biointerfaces 2025; 248:114474. [PMID: 39732069 DOI: 10.1016/j.colsurfb.2024.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.
Collapse
Affiliation(s)
- Junqi Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China; School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China
| | - Yuzi Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Yi Liu
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China.
| |
Collapse
|
2
|
Zhang J, Herzog LK, Corkery DP, Lin TC, Klewer L, Chen X, Xin X, Li Y, Wu YW. Modular Photoswitchable Molecular Glues for Chemo-Optogenetic Control of Protein Function in Living Cells. Angew Chem Int Ed Engl 2025; 64:e202416456. [PMID: 39777946 DOI: 10.1002/anie.202416456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Optogenetic systems using photosensitive proteins and chemically induced dimerization/proximity (CID/CIP) approaches enabled by chemical dimerizers (also termed molecular glues), are powerful tools to elucidate the dynamics of biological systems and to dissect complex biological regulatory networks. Here, we report a versatile chemo-optogenetic system using modular, photoswitchable molecular glues (sMGs) that can undergo repeated cycles of optical control to switch protein function on and off. We use molecular dynamics (MD) simulations to rationally design the sMGs and further expand their scope by incorporating different photoswitches, resulting in sMGs with customizable properties. We demonstrate that this system can be used to reversibly control protein localization, organelle positioning, protein-fragment complementation as well as posttranslational protein levels by light with high spatiotemporal precision. This system enables sophisticated optical manipulation of cellular processes and thus opens up a new avenue for chemo-optogenetics.
Collapse
Affiliation(s)
- Jun Zhang
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Laura K Herzog
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Dale P Corkery
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Tzu-Chen Lin
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
- Current address: Department of Chemistry and Chemical Biology, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Laura Klewer
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
- Current address: The HIT Center for Life Sciences, Harbin Institute of Technology, 150001, Harbin City, China
| | - Xiaoyi Xin
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Yaozong Li
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Department of Biochemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Yao-Wen Wu
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
3
|
Christoffers S, Wichert N, Wiebe E, Torres-Mapa ML, Goblet M, Harre J, Kaiser O, Wahalla MN, Blume H, Heisterkamp A, Warnecke A, Blume C. Blue Light-Induced, Dosed Protein Expression of Active BDNF in Human Cells Using the Optogenetic CRY2/CIB System. Biotechnol J 2024; 19:e202400384. [PMID: 39726067 DOI: 10.1002/biot.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells. Transfection with three plasmids, encoding for the optogenetic system and the target, as well as illumination protocols were optimized with luciferase as a reporter to achieve the highest protein expression in human embryonic kidney cells 293. Illumination was performed either with a light-emitting diode or with a scanning laser setup. The optimized protocols were applied for the production of BDNF. We could demonstrate a 64.7-fold increase of BNDF expression upon light induction compared to the basal level. Light-induced BDNF was biologically active and enhanced survival and neurite growth of spiral ganglion neurons. The optogenetic approach can be transferred to autologous cell systems, such as bone marrow-derived mesenchymal stem cells, and thus represents the first optogenetic neurotrophic therapy for the inner ear.
Collapse
Affiliation(s)
- Sina Christoffers
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Nina Wichert
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Elena Wiebe
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Cluster of Excellence Hearing4all, Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Madeleine Goblet
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Odett Kaiser
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Marc-Nils Wahalla
- Cluster of Excellence Hearing4all, Hannover, Germany
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Blume
- Cluster of Excellence Hearing4all, Hannover, Germany
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Alexander Heisterkamp
- Cluster of Excellence Hearing4all, Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| |
Collapse
|
4
|
Panter S, Wörner J, Chen J, Illarionov B, Bacher A, Fischer M, Weber S. Insights into the photoswitch based on 5-deazaFMN and LOV2 from Avena sativa: a combined absorption and NMR spectroscopy study. Phys Chem Chem Phys 2024; 26:28884-28893. [PMID: 39533958 DOI: 10.1039/d4cp02714k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The LOV2 domain from Avena sativa (As) is a blue light receptor that undergoes adduct formation with the native flavin mononucleotide (FMN) cofactor [Salomon et al., Biochemistry, 2000, 39, 9401]. We report the photochemical changes of AsLOV2 through cofactor exchange with the FMN analogue 5-deazaFMN. Absorption spectroscopy shows that upon illumination a thermodynamically stable adduct is formed. We were able to confirm the structure of the adduct by introducing 13C-labelled 5-deazaFMN isotopologues in solution NMR experiments. Dark-adapted state recovery can be photo-induced, providing a photoswitch that is easy to manipulate. The robust photocycle is repeatable without significant loss. Based on the data presented we propose the system as an alternative to wild-type AsLOV2 for applications in optogenetics.
Collapse
Affiliation(s)
- Sabrina Panter
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Jakob Wörner
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Jing Chen
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Boris Illarionov
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Adelbert Bacher
- TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Markus Fischer
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Gangemi CG, Janovjak H. Optogenetics in Pancreatic Islets: Actuators and Effects. Diabetes 2024; 73:1566-1582. [PMID: 38976779 PMCID: PMC11417442 DOI: 10.2337/db23-1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
The islets of Langerhans reside within the endocrine pancreas as highly vascularized microorgans that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include Ca2+ waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbation of islet function with near physiological spatiotemporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on controlling hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways, are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christina G. Gangemi
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia, Monash University, Clayton, Victoria, Australia
| | - Harald Janovjak
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Zhang YH, Huang F, Li J, Shen W, Chen L, Feng K, Huang T, Cai YD. Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology. Protein J 2024; 43:477-486. [PMID: 38436837 DOI: 10.1007/s10930-024-10180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/05/2024]
Abstract
Protein-protein interactions (PPIs) involve the physical or functional contact between two or more proteins. Generally, proteins that can interact with each other always have special relationships. Some previous studies have reported that gene ontology (GO) terms are related to the determination of PPIs, suggesting the special patterns on the GO terms of proteins in PPIs. In this study, we explored the special GO term patterns on human PPIs, trying to uncover the underlying functional mechanism of PPIs. The experimental validated human PPIs were retrieved from STRING database, which were termed as positive samples. Additionally, we randomly paired proteins occurring in positive samples, yielding lots of negative samples. A simple calculation was conducted to count the number of positive samples for each GO term pair, where proteins in samples were annotated by GO terms in the pair individually. The similar number for negative samples was also counted and further adjusted due to the great gap between the numbers of positive and negative samples. The difference of the above two numbers and the relative ratio compared with the number on positive samples were calculated. This ratio provided a precise evaluation of the occurrence of GO term pairs for positive samples and negative samples, indicating the latent GO term patterns for PPIs. Our analysis unveiled several nuclear biological processes, including gene transcription, cell proliferation, and nutrient metabolism, as key biological functions. Interactions between major proliferative or metabolic GO terms consistently correspond with significantly reported PPIs in recent literature.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - JiaBo Li
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - WenFeng Shen
- School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, People's Republic of China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
7
|
Harmer Z, Thompson JC, Cole DL, Venturelli OS, Zavala VM, McClean MN. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro. ACS Synth Biol 2024; 13:1424-1433. [PMID: 38684225 PMCID: PMC11106771 DOI: 10.1021/acssynbio.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.
Collapse
Affiliation(s)
- Zachary
P. Harmer
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jaron C. Thompson
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - David L. Cole
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ophelia S. Venturelli
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Victor M. Zavala
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Mathematics
and Computer Science Division, Argonne National
Laboratory, Lemont, Illinois 60439. United States
| | - Megan N. McClean
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Carbone Cancer Center, University
of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
9
|
Kiy Z, Chaud J, Xu L, Brandhorst E, Kamali T, Vargas C, Keller S, Hong H, Specht A, Cambridge S. Towards a Light-mediated Gene Therapy for the Eye using Caged Ethinylestradiol and the Inducible Cre/lox System. Angew Chem Int Ed Engl 2024; 63:e202317675. [PMID: 38127455 DOI: 10.1002/anie.202317675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Increasingly, retinal pathologies are being treated with virus-mediated gene therapies. To be able to target viral transgene expression specifically to the pathological regions of the retina with light, we established an in vivo photoactivated gene expression paradigm for retinal tissue. Based on the inducible Cre/lox system, we discovered that ethinylestradiol is a suitable alternative to Tamoxifen as ethinylestradiol is more amenable to modification with photosensitive protecting compounds, i.e., "caging." Identification of ethinylestradiol as a ligand for the mutated human estradiol receptor was supported by in silico binding studies showing the reduced binding of caged ethinylestradiol. Caged ethinylestradiol was injected into the eyes of double transgenic GFAP-CreERT2 mice with a Cre-dependent tdTomato reporter transgene followed by irradiation with light of 450 nm. Photoactivation significantly increased retinal tdTomato expression compared to controls. We thus demonstrated a first step towards the development of a targeted, light-mediated gene therapy for the eyes.
Collapse
Affiliation(s)
- Zoe Kiy
- Heidelberg University, 69120, Heidelberg, Germany
| | - Juliane Chaud
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, 67000, Strasbourg, France
| | - Liang Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Eric Brandhorst
- Sektion Endokrinologie, Medizinische Fakultät Mannheim, 68167, Mannheim, Germany
| | - Tschackad Kamali
- Heidelberg Engineering GmbH, Max-Jarecki-Straße 8, 69115, Heidelberg, Germany
| | - Carolyn Vargas
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Alexandre Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, 67000, Strasbourg, France
| | - Sidney Cambridge
- Heidelberg University, 69120, Heidelberg, Germany
- Institute for Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt am Main, 60590, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Sun Y, Chen Q, Cheng Y, Wang X, Deng Z, Zhou F, Sun Y. Design and Engineering of Light-Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305311. [PMID: 38039441 PMCID: PMC10837352 DOI: 10.1002/advs.202305311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Base editors, which enable targeted locus nucleotide conversion in genomic DNA without double-stranded breaks, have been engineered as powerful tools for biotechnological and clinical applications. However, the application of base editors is limited by their off-target effects. Continuously expressed deaminases used for gene editing may lead to unwanted base alterations at unpredictable genomic locations. In the present study, blue-light-activated base editors (BLBEs) are engineered based on the distinct photoswitches magnets that can switch from a monomer to dimerization state in response to blue light. By fusing the N- and C-termini of split DNA deaminases with photoswitches Magnets, efficient A-to-G and C-to-T base editing is achieved in response to blue light in prokaryotic and eukaryotic cells. Furthermore, the results showed that BLBEs can realize precise blue light-induced gene editing across broad genomic loci with low off-target activity at the DNA- and RNA-level. Collectively, these findings suggest that the optogenetic utilization of base editing and optical base editors may provide powerful tools to promote the development of optogenetic genome engineering.
Collapse
Affiliation(s)
- Yangning Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Qi Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yanbing Cheng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Xi Wang
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Zixin Deng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuhui Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| |
Collapse
|
11
|
Harmer ZP, Thompson JC, Cole DL, Zavala VM, McClean MN. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572411. [PMID: 38187522 PMCID: PMC10769237 DOI: 10.1101/2023.12.19.572411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive spit transcription factors in the budding yeast, Saccharomyces cerevisiae . We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering. Graphical abstract
Collapse
|
12
|
Harmer Z, McClean MN. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit. ACS Synth Biol 2023; 12:1943-1951. [PMID: 37434272 PMCID: PMC10368012 DOI: 10.1021/acssynbio.3c00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 07/13/2023]
Abstract
Optogenetic systems use genetically encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light; however, these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae. We expand the yeast optogenetic toolkit to include variants of the cryptochromes and enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to the high-throughput characterization of optogenetic systems across a range of biological systems and applications.
Collapse
Affiliation(s)
- Zachary
P. Harmer
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Megan N. McClean
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Carbone Cancer Center, University
of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Nagasawa Y, Ueda HH, Kawabata H, Murakoshi H. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics. Biophys Physicobiol 2023; 20:e200027. [PMID: 38496236 PMCID: PMC10941968 DOI: 10.2142/biophysico.bppb-v20.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 03/19/2024] Open
Abstract
Optogenetic techniques offer a high spatiotemporal resolution to manipulate cellular activity. For instance, Channelrhodopsin-2 with global light illumination is the most widely used to control neuronal activity at the cellular level. However, the cellular scale is much larger than the diffraction limit of light (<1 μm) and does not fully exploit the features of the "high spatial resolution" of optogenetics. For instance, until recently, there were no optogenetic methods to induce synaptic plasticity at the level of single synapses. To address this, we developed an optogenetic tool named photoactivatable CaMKII (paCaMKII) by fusing a light-sensitive domain (LOV2) to CaMKIIα, which is a protein abundantly expressed in neurons of the cerebrum and hippocampus and essential for synaptic plasticity. Combining photoactivatable CaMKII with two-photon excitation, we successfully activated it in single spines, inducing synaptic plasticity (long-term potentiation) in hippocampal neurons. We refer to this method as "Local Optogenetics", which involves the local activation of molecules and measurement of cellular responses. In this review, we will discuss the characteristics of LOV2, the recent development of its derivatives, and the development and application of paCaMKII.
Collapse
Affiliation(s)
- Yutaro Nagasawa
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hiromi H Ueda
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Haruka Kawabata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
14
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. Nat Methods 2023; 20:908-917. [PMID: 37188954 PMCID: PMC10539039 DOI: 10.1038/s41592-023-01880-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joleen S Cheah
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Boxuan Zhao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heegwang Roh
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Christina K Kim
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Neuroscience and Department of Neurology, University of California, Davis, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Amgen Research, South San Francisco, CA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
16
|
Harmer ZP, McClean MN. Lustro: High-throughput optogenetic experiments enabled by automation and a yeast optogenetic toolkit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536078. [PMID: 37066312 PMCID: PMC10104134 DOI: 10.1101/2023.04.07.536078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Optogenetic systems use genetically-encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light, however these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae . We expand the yeast optogenetic toolkit to include variants of the cryptochromes and Enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized Enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to high-throughput characterization of optogenetic systems across a range of biological systems and applications.
Collapse
|
17
|
Park R, Ongpipattanakul C, Nair SK, Bowers AA, Kuhlman B. Designer installation of a substrate recruitment domain to tailor enzyme specificity. Nat Chem Biol 2023; 19:460-467. [PMID: 36509904 PMCID: PMC10065947 DOI: 10.1038/s41589-022-01206-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Promiscuous enzymes that modify peptides and proteins are powerful tools for labeling biomolecules; however, directing these modifications to desired substrates can be challenging. Here, we use computational interface design to install a substrate recognition domain adjacent to the active site of a promiscuous enzyme, catechol O-methyltransferase. This design approach effectively decouples substrate recognition from the site of catalysis and promotes modification of peptides recognized by the recruitment domain. We determined the crystal structure of this novel multidomain enzyme, SH3-588, which shows that it closely matches our design. SH3-588 methylates directed peptides with catalytic efficiencies exceeding the wild-type enzyme by over 1,000-fold, whereas peptides lacking the directing recognition sequence do not display enhanced efficiencies. In competition experiments, the designer enzyme preferentially modifies directed substrates over undirected substrates, suggesting that we can use designed recruitment domains to direct post-translational modifications to specific sequence motifs on target proteins in complex multisubstrate environments.
Collapse
Affiliation(s)
- Rodney Park
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Qian Y, Li T, Zhou S, Chen X, Yang Y. A Single-Component Optogenetic Gal4-UAS System Allows Stringent Control of Gene Expression in Zebrafish and Drosophila. ACS Synth Biol 2023; 12:664-671. [PMID: 36891673 PMCID: PMC10029753 DOI: 10.1021/acssynbio.2c00410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 03/10/2023]
Abstract
The light-regulated Gal4-UAS system has offered new ways to control cellular activities with precise spatial and temporal resolution in zebrafish and Drosophila. However, the existing optogenetic Gal4-UAS systems suffer from having multiple protein components and a dependence on extraneous light-sensitive cofactors, which increase the technical complexity and limit the portability of these systems. To overcome these limitations, we herein describe the development of a novel optogenetic Gal4-UAS system (ltLightOn) for both zebrafish and Drosophila based on a single light-switchable transactivator, termed GAVPOLT, which dimerizes and binds to gene promoters to activate transgene expression upon blue light illumination. The ltLightOn system is independent of exogenous cofactors and exhibits a more than 2400-fold ON/OFF gene expression ratio, allowing quantitative, spatial, and temporal control of gene expression. We further demonstrate the usefulness of the ltLightOn system in regulating zebrafish embryonic development by controlling the expression of lefty1 by light. We believe that this single-component optogenetic system will be immensely useful in understanding the gene function and behavioral circuits in zebrafish and Drosophila.
Collapse
Affiliation(s)
- Yajie Qian
- Optogenetics
& Synthetic Biology Interdisciplinary Research Center, State Key
Laboratory of Bioreactor Engineering, East
China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Ting Li
- Optogenetics
& Synthetic Biology Interdisciplinary Research Center, State Key
Laboratory of Bioreactor Engineering, East
China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Siyu Zhou
- Optogenetics
& Synthetic Biology Interdisciplinary Research Center, State Key
Laboratory of Bioreactor Engineering, East
China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xianjun Chen
- Optogenetics
& Synthetic Biology Interdisciplinary Research Center, State Key
Laboratory of Bioreactor Engineering, East
China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yi Yang
- Optogenetics
& Synthetic Biology Interdisciplinary Research Center, State Key
Laboratory of Bioreactor Engineering, East
China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
19
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531939. [PMID: 36945504 PMCID: PMC10028978 DOI: 10.1101/2023.03.09.531939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.
Collapse
|
20
|
Jiang T, Song J, Zhang Y. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. Int J Mol Sci 2023; 24:ijms24065074. [PMID: 36982148 PMCID: PMC10049153 DOI: 10.3390/ijms24065074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin–luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Collapse
Affiliation(s)
- Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Correspondence: (T.J.); (Y.Z.)
| | - Jingwen Song
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (T.J.); (Y.Z.)
| |
Collapse
|
21
|
Li CY, Wu T, Zhao XJ, Yu CP, Wang ZX, Zhou XF, Li SN, Li JD. A glucose-blue light AND gate-controlled chemi-optogenetic cell-implanted therapy for treating type-1 diabetes in mice. Front Bioeng Biotechnol 2023; 11:1052607. [PMID: 36845170 PMCID: PMC9954140 DOI: 10.3389/fbioe.2023.1052607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Exogenous insulin therapy is the mainstay treatment for Type-1 diabetes (T1D) caused by insulin deficiency. A fine-tuned insulin supply system is important to maintain the glucose homeostasis. In this study, we present a designed cell system that produces insulin under an AND gate control, which is triggered only in the presence of both high glucose and blue light illumination. The glucose-sensitive GIP promoter induces the expression of GI-Gal4 protein, which forms a complex with LOV-VP16 in the presence of blue light. The GI-Gal4:LOV-VP16 complex then promotes the expression of UAS-promoter-driven insulin. We transfected these components into HEK293T cells, and demonstrated the insulin was secreted under the AND gate control. Furthermore, we showed the capacity of the engineered cells to improve the blood glucose homeostasis through implantation subcutaneously into Type-1 diabetes mice.
Collapse
Affiliation(s)
- Chi-Yu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Ting Wu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Xing-Jun Zhao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Cheng-Ping Yu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Zi-Xue Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Xiao-Fang Zhou
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Shan-Ni Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China,*Correspondence: Jia-Da Li,
| |
Collapse
|
22
|
Nagasaki SC, Fukuda TD, Yamada M, Suzuki YIII, Kakutani R, Guy AT, Imayoshi I. Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells. Cell Struct Funct 2023; 48:31-47. [PMID: 36529516 PMCID: PMC10721950 DOI: 10.1247/csf.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid.
Collapse
Affiliation(s)
- Shinji C. Nagasaki
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori D. Fukuda
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Mayumi Yamada
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Cell Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke III Suzuki
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Kakutani
- Laboratory of Cell Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Adam T. Guy
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Science Communication, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Itaru Imayoshi
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
23
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
24
|
Piccinini L, Iacopino S, Cazzaniga S, Ballottari M, Giuntoli B, Licausi F. A synthetic switch based on orange carotenoid protein to control blue-green light responses in chloroplasts. PLANT PHYSIOLOGY 2022. [PMID: 35289909 DOI: 10.1101/2021.01.27.428448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Synthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains. Since Arabidopsis (Arabidopsis thaliana) does not possess the prosthetic group needed for the assembly of the OCP2 complex, we first implemented the carotenoid biosynthetic pathway with a bacterial β-carotene ketolase enzyme (crtW) to generate keto-carotenoid-producing plants. The photoswitch was tested and characterized in Arabidopsis protoplasts and stably transformed plants with experiments aimed to uncover its regulation by a range of light intensities, wavelengths, and its conversion dynamics. Finally, we applied the OCP-based photoswitch to control transcriptional responses in chloroplasts in response to green light illumination by fusing the two OCP fragments with the plastidial SIGMA FACTOR 2 and bacteriophage T4 anti-sigma factor AsiA. This pioneering study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses upon exposure to specific light spectra.
Collapse
Affiliation(s)
- Luca Piccinini
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Sergio Iacopino
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56127, Italy
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Department of Biology, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
25
|
Piccinini L, Iacopino S, Cazzaniga S, Ballottari M, Giuntoli B, Licausi F. A synthetic switch based on orange carotenoid protein to control blue-green light responses in chloroplasts. PLANT PHYSIOLOGY 2022; 189:1153-1168. [PMID: 35289909 PMCID: PMC9157063 DOI: 10.1093/plphys/kiac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/20/2022] [Indexed: 05/11/2023]
Abstract
Synthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains. Since Arabidopsis (Arabidopsis thaliana) does not possess the prosthetic group needed for the assembly of the OCP2 complex, we first implemented the carotenoid biosynthetic pathway with a bacterial β-carotene ketolase enzyme (crtW) to generate keto-carotenoid-producing plants. The photoswitch was tested and characterized in Arabidopsis protoplasts and stably transformed plants with experiments aimed to uncover its regulation by a range of light intensities, wavelengths, and its conversion dynamics. Finally, we applied the OCP-based photoswitch to control transcriptional responses in chloroplasts in response to green light illumination by fusing the two OCP fragments with the plastidial SIGMA FACTOR 2 and bacteriophage T4 anti-sigma factor AsiA. This pioneering study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses upon exposure to specific light spectra.
Collapse
Affiliation(s)
- Luca Piccinini
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Sergio Iacopino
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Department of Biology, University of Pisa, Pisa 56126, Italy
- Author for correspondence:
| |
Collapse
|
26
|
Guan N, Gao X, Ye H. Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology. ENGINEERING BIOLOGY 2022; 6:35-49. [PMID: 36969102 PMCID: PMC9996731 DOI: 10.1049/enb2.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xianyun Gao
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
27
|
Mazraeh D, Di Ventura B. Synthetic microbiology applications powered by light. Curr Opin Microbiol 2022; 68:102158. [PMID: 35660240 DOI: 10.1016/j.mib.2022.102158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.
Collapse
Affiliation(s)
- Daniel Mazraeh
- Signaling Research Centres BIOSS and CIBSS, and Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Di Ventura
- Signaling Research Centres BIOSS and CIBSS, and Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
Erdenee E, Ting AY. A Dual-Purpose Real-Time Indicator and Transcriptional Integrator for Calcium Detection in Living Cells. ACS Synth Biol 2022; 11:1086-1095. [PMID: 35254056 PMCID: PMC10395047 DOI: 10.1021/acssynbio.1c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium is a ubiquitous second messenger in eukaryotes, correlated with neuronal activity and T-cell activation among other processes. Real-time calcium indicators such as GCaMP have recently been complemented by newer calcium integrators that convert transient calcium activity into stable gene expression. Here we introduce LuCID, a dual-purpose real-time calcium indicator and transcriptional calcium integrator that combines the benefits of both calcium detection technologies. We show that the calcium-dependent split luciferase component of LuCID provides a real-time bioluminescence readout of calcium dynamics in cells, while the GI/FKF1 split GAL4 component of LuCID converts calcium-generated bioluminescence into stable gene expression. We also show that LuCID's modular design enables it to read out other cellular events such as protein-protein interactions. LuCID adds to the arsenal of tools for studying cells and cell populations that utilize calcium for signaling.
Collapse
Affiliation(s)
- Elbegduuren Erdenee
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Alice Y. Ting
- Department of Biology, Stanford University, Stanford, California 94305, United States
- Department of Genetics, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
29
|
Zhou Y, Kong D, Wang X, Yu G, Wu X, Guan N, Weber W, Ye H. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat Biotechnol 2022; 40:262-272. [PMID: 34608325 DOI: 10.1038/s41587-021-01036-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Optogenetic technologies have transformed our ability to precisely control biological processes in time and space. Yet, current eukaryotic optogenetic systems are limited by large or complex optogenetic modules, long illumination times, low tissue penetration or slow activation and deactivation kinetics. Here, we report a red/far-red light-mediated and miniaturized Δphytochrome A (ΔPhyA)-based photoswitch (REDMAP) system based on the plant photoreceptor PhyA, which rapidly binds the shuttle protein far-red elongated hypocotyl 1 (FHY1) under illumination with 660-nm light with dissociation occurring at 730 nm. We demonstrate multiple applications of REDMAP, including dynamic on/off control of the endogenous Ras/Erk mitogen-activated protein kinase (MAPK) cascade and control of epigenetic remodeling using a REDMAP-mediated CRISPR-nuclease-deactivated Cas9 (CRISPR-dCas9) (REDMAPcas) system in mice. We also demonstrate the utility of REDMAP tools for in vivo applications by activating the expression of transgenes delivered by adeno-associated viruses (AAVs) or incorporated into cells in microcapsules implanted into mice, rats and rabbits illuminated by light-emitting diodes (LEDs). Further, we controlled glucose homeostasis in type 1 diabetic (T1D) mice and rats using REDMAP to trigger insulin expression. REDMAP is a compact and sensitive tool for the precise spatiotemporal control of biological activities in animals with applications in basic biology and potentially therapy.
Collapse
Affiliation(s)
- Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyi Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guiling Yu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
30
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
31
|
Bourke AM, Kennedy MJ. Spatial and Temporal Control of Protein Secretion with Light. Methods Mol Biol 2022; 2473:29-45. [PMID: 35819757 PMCID: PMC10907983 DOI: 10.1007/978-1-0716-2209-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How newly synthesized integral membrane proteins and secreted factors are sorted and trafficked to the appropriate location in different cell types remains an important problem in cell biology. One powerful approach for elucidating the trafficking route of a specific protein is to sequester it following synthesis in the endoplasmic reticulum and trigger its release with an externally applied cue. Combined with fluorescent probes, this approach can be used to directly visualize each trafficking step as cargo molecules progress through the different organelles of the secretory network. Here, we discuss design strategies and practical implementation of an inducible protein secretion system we recently developed (zapalog mediated ER trap: zapERtrap) that allows one to use light to initiate secretory trafficking from targeted cells or subcellular domains. We provide detailed protocols for experiments using this approach to visualize protein trafficking from the endoplasmic reticulum to the plasma membrane in fibroblast cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Ashley M Bourke
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
32
|
Directed evolution approaches for optogenetic tool development. Biochem Soc Trans 2021; 49:2737-2748. [PMID: 34783342 DOI: 10.1042/bst20210700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022]
Abstract
Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
Collapse
|
33
|
Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 2021; 18:1027-1037. [PMID: 34446923 DOI: 10.1038/s41592-021-01240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
34
|
Wichert N, Witt M, Blume C, Scheper T. Clinical applicability of optogenetic gene regulation. Biotechnol Bioeng 2021; 118:4168-4185. [PMID: 34287844 DOI: 10.1002/bit.27895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.
Collapse
Affiliation(s)
- Nina Wichert
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Martin Witt
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Cornelia Blume
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| |
Collapse
|
35
|
Zhao J, Li Z, Shao Y, Hu W, Li L. Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021; 60:17937-17941. [PMID: 34117823 DOI: 10.1002/anie.202105696] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) functions are tightly regulated by their sub-compartmental location in living cells, and the ability to imaging of mitochondrial miRNAs (mitomiRs) is essential for understanding of the related pathological processes. However, most existing DNA-based methods could not be used for this purpose. Here, we report the development of a DNA nanoreporter technology for imaging of mitomiRs in living cells through near-infrared (NIR) light-controlled DNA strand displacement reactions. The sensing function of the DNA nanoreporters are silent (OFF) during the delivery process, but can be photoactivated (ON) with NIR light after targeted mitochondrial localization, enabling spatially-restricted imaging of two types of cancer-related mitomiRs with improved detection accuracy. Furthermore, we demonstrate imaging of mitomiRs in vivo through spatiotemporally-controlled delivery and activation. Therefore, this study illustrates a simple methodology that may be broadly applicable for investigating the mitomiRs-associated physiological events.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
36
|
Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
38
|
Cavanaugh KE, Oakes PW, Gardel ML. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry. ACTA ACUST UNITED AC 2021; 86:e102. [PMID: 32031760 DOI: 10.1002/cpcb.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spatiotemporal localization of protein function is essential for physiological processes from subcellular to tissue scales. Genetic and pharmacological approaches have played instrumental roles in isolating molecular components necessary for subcellular machinery. However, these approaches have limited capabilities to reveal the nature of the spatiotemporal regulation of subcellular machineries like those of cytoskeletal organelles. With the recent advancement of optogenetic probes, the field now has a powerful tool to localize cytoskeletal stimuli in both space and time. Here, we detail the use of tunable light-controlled interacting protein tags (TULIPs) to manipulate RhoA signaling in vivo. This is an optogenetic dimerization system that rapidly, reversibly, and efficiently directs a cytoplasmic RhoGEF to the plasma membrane for activation of RhoA using light. We first compare this probe to other available optogenetic systems and outline the engineering logic for the chosen recruitable RhoGEFs. We also describe how to generate the cell line, spatially control illumination, confirm optogenetic control of RhoA, and mechanically induce cell-cell junction deformation in cultured tissues. Together, these protocols detail how to probe the mechanochemical circuitry downstream of RhoA signaling. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of a stable cell line expressing TULIP constructs Basic Protocol 2: Preparation of collagen substrate for imaging Basic Protocol 3: Transient transfection for visualization of downstream effectors Basic Protocol 4: Calibration of spatial illumination Basic Protocol 5: Optogenetic activation of a region of interest.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Margaret L Gardel
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
39
|
Huang D, Li R, Ren J, Luo H, Wang W, Zhou C. Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration. Stem Cell Res Ther 2021; 12:339. [PMID: 34112263 PMCID: PMC8194135 DOI: 10.1186/s13287-021-02412-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spatiotemporal regulation of essential genes is crucial for controlling the growth and differentiation of cells in a precise manner during regeneration. Recently, optogenetics was considered as a potent technology for sophisticated regulation of target genes, which might be a promising tool for regenerative medicine. In this study, we used an optogenetic control system to precisely regulate the expression of Lhx8 to promote efficient bone regeneration. METHODS Quantitative real-time PCR and western blotting were used to detect the expression of Lhx8 and osteogenic marker genes. Alkaline phosphatase staining and alizarin red staining were used to detect alkaline phosphatase activity and calcium nodules. A customized optogenetic expression system was constructed to regulate Lhx8, of which the expression was activated in blue light but not in dark. We also used a critical calvarial defect model for the analysis of bone regeneration in vivo. Moreover, micro-computed tomography (micro-CT), three-dimensional reconstruction, quantitative bone measurement, and histological and immunohistochemistry analysis were performed to investigate the formation of new bone in vivo. RESULTS During the osteogenic differentiation of BMSCs, the expression levels of Lhx8 increased initially but then decreased thereafter. Lhx8 promoted the early proliferation of BMSCs but inhibited subsequent osteogenic differentiation. The optogenetic activation of Lhx8 in BMSCs in the early stages of differentiation by blue light stimulation led to a significant increase in cell proliferation, thus allowing a sufficient number of differentiating BMSCs to enter the later osteogenic differentiation stage. Analysis of the critical calvarial defect model revealed that the pulsed optogenetic activation of Lhx8 in transplanted BMSCs over a 5-day period led to a significant increase in the generation of bone in vivo. CONCLUSIONS Lhx8 plays a critical role in balancing proliferation and osteogenic differentiation in BMSCs. The optogenetic activation of Lhx8 expression at early stage of BMSCs differentiation led to better osteogenesis, which would be a promising strategy for precise bone regeneration.
Collapse
Affiliation(s)
- Delan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Jianhan Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China.
| |
Collapse
|
40
|
A LexA-based yeast two-hybrid system for studying light-switchable interactions of phytochromes with their interacting partners. ABIOTECH 2021; 2:105-116. [PMID: 36304755 PMCID: PMC9590525 DOI: 10.1007/s42994-021-00034-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
Phytochromes are a family of photoreceptors in plants that perceive the red (R) and far-red (FR) components of their light environment. Phytochromes exist in vivo in two forms, the inactive Pr form and the active Pfr form, that are interconvertible by treatments with R or FR light. It is believed that phytochromes transduce light signals by interacting with their signaling partners. A GAL4-based light-switchable yeast two-hybrid (Y2H) system was developed two decades ago and has been successfully employed in many studies to determine phytochrome interactions with their signaling components. However, several pairs of interactions between phytochromes and their interactors, such as the phyA-COP1 and phyA-TZP interactions, were demonstrated by other assay systems but were not detected by this GAL4 Y2H system. Here, we report a modified LexA Y2H system, in which the LexA DNA-binding domain is fused to the C-terminus of a phytochrome protein. The conformational changes of phytochromes in response to R and FR light are achieved in yeast cells by exogenously supplying phycocyanobilin (PCB) extracted from Spirulina. The well-defined interaction pairs, including phyA-FHY1 and phyB-PIFs, are well reproducible in this system. Moreover, we show that our system is successful in detecting the phyA-COP1 and phyA-TZP interactions. Together, our study provides an alternative Y2H system that is highly sensitive and reproducible for detecting light-switchable interactions of phytochromes with their interacting partners. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00034-5.
Collapse
|
41
|
Natwick DE, Collins SR. Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment. ACS Synth Biol 2021; 10:1009-1023. [PMID: 33843200 DOI: 10.1021/acssynbio.0c00511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Optogenetic protein dimerization systems are powerful tools to investigate the biochemical networks that cells use to make decisions and coordinate their activities. These tools, including the improved Light-Inducible Dimer (iLID) system, offer the ability to selectively recruit components to subcellular locations, such as micron-scale regions of the plasma membrane. In this way, the role of individual proteins within signaling networks can be examined with high spatiotemporal resolution. Currently, consistent recruitment is limited by heterogeneous optogenetic component expression, and spatial precision is diminished by protein diffusion, especially over long time scales. Here, we address these challenges within the iLID system with alternative membrane anchoring domains and fusion configurations. Using live cell imaging and mathematical modeling, we demonstrate that the anchoring strategy affects both component expression and diffusion, which in turn impact recruitment strength, kinetics, and spatial dynamics. Compared to the commonly used C-terminal iLID fusion, fusion proteins with large N-terminal anchors show stronger local recruitment, slower diffusion of recruited components, efficient recruitment over wider gene expression ranges, and improved spatial control over signaling outputs. We also define guidelines for component expression regimes for optimal recruitment for both cell-wide and subcellular recruitment strategies. Our findings highlight key sources of imprecision within light-inducible dimer systems and provide tools that allow greater control of subcellular protein localization across diverse cell biological applications.
Collapse
Affiliation(s)
- Dean E. Natwick
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, United States
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
42
|
Repina NA, McClave T, Johnson HJ, Bao X, Kane RS, Schaffer DV. Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics. Cell Rep 2021; 31:107737. [PMID: 32521262 PMCID: PMC9357365 DOI: 10.1016/j.celrep.2020.107737] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 10/31/2022] Open
Abstract
Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas McClave
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hunter J Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Forlani G, Di Ventura B. A light way for nuclear cell biologists. J Biochem 2021; 169:273-286. [PMID: 33245128 PMCID: PMC8053400 DOI: 10.1093/jb/mvaa139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleus is a very complex organelle present in eukaryotic cells. Having the crucial task to safeguard, organize and manage the genetic information, it must tightly control its molecular constituents, its shape and its internal architecture at any given time. Despite our vast knowledge of nuclear cell biology, much is yet to be unravelled. For instance, only recently we came to appreciate the existence of a dynamic nuclear cytoskeleton made of actin filaments that regulates processes such as gene expression, DNA repair and nuclear expansion. This suggests further exciting discoveries ahead of us. Modern cell biologists embrace a new methodology relying on precise perturbations of cellular processes that require a reversible, highly spatially confinable, rapid, inexpensive and tunEable external stimulus: light. In this review, we discuss how optogenetics, the state-of-the-art technology that uses genetically encoded light-sensitive proteins to steer biological processes, can be adopted to specifically investigate nuclear cell biology.
Collapse
Affiliation(s)
- Giada Forlani
- Spemann Graduate School of Biology and Medicine (SGBM)
- Centers for Biological Signalling Studies BIOSS and CIBSS
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Barbara Di Ventura
- Centers for Biological Signalling Studies BIOSS and CIBSS
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Sánchez MF, Els-Heindl S, Beck-Sickinger AG, Wieneke R, Tampé R. Photoinduced receptor confinement drives ligand-independent GPCR signaling. Science 2021; 371:science.abb7657. [PMID: 33632896 DOI: 10.1126/science.abb7657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Cell-cell communication relies on the assembly of receptor-ligand complexes at the plasma membrane. The spatiotemporal receptor organization has a pivotal role in evoking cellular responses. We studied the clustering of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and established a photoinstructive matrix with ultrasmall lock-and-key interaction pairs to control lateral membrane organization of hormone neuropeptide Y2 receptors in living cells by light. Within seconds, receptor clustering was modulated in size, location, and density. After in situ confinement, changes in cellular morphology, motility, and calcium signaling revealed ligand-independent receptor activation. This approach may enhance the exploration of mechanisms in cell signaling and mechanotransduction.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04109 Leipzig, Germany
| | | | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Chang D, Feng S, Girik V, Riezman H, Winssinger N. Luciferase Controlled Protein Interactions. J Am Chem Soc 2021; 143:3665-3670. [PMID: 33684293 DOI: 10.1021/jacs.0c11016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein trafficking and protein-protein interactions (PPIs) are central to regulatory processes in cells. Induced dimerization systems have been developed to control PPIs and regulate protein trafficking (localization) or interactions. Chemically induced dimerization (CID) has proven to be a robust approach to control protein interactions and localization. The most recent embodiment of this technology relies on CID conjugates that react with a self-labeling protein on one side and a photocaged ligand on the other side to provide spatiotemporal control of the interaction with the protein of interest. Advancing this technology further is limited by the light delivery problem and the phototoxicity of intense irradiation necessary to achieve photouncaging. Herein, we designed a novel chemically induced dimerization system that was triggered by bioluminescence, instead of external light. Protein dimerization showed fast kinetics and was validated by an induced change of localization of a target protein (to and from the nucleus or plasma membrane) upon trigger. The technology was used transiently to activate the phosphatidylinositol 3-kinase (PI3K)/mTOR pathway and measure the impact on lipid synthesis/metabolism, assessed by lipidomics.
Collapse
Affiliation(s)
- Dalu Chang
- School of Chemistry and Biochemistry, Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Suihan Feng
- School of Chemistry and Biochemistry, Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Vladimir Girik
- School of Chemistry and Biochemistry, Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Howard Riezman
- School of Chemistry and Biochemistry, Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry, Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| |
Collapse
|
46
|
Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2021; 2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
47
|
Tian X, Zhou B. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. J Biol Chem 2021; 296:100509. [PMID: 33676891 PMCID: PMC8050033 DOI: 10.1016/j.jbc.2021.100509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other site-specific recombinase systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
48
|
Christie JM, Zurbriggen MD. Optogenetics in plants. THE NEW PHYTOLOGIST 2021; 229:3108-3115. [PMID: 33064858 DOI: 10.1111/nph.17008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatiotemporal and quantitative resolutions, in a reversible manner with minimal side-effects. Optogenetics has revolutionized the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straightforward, given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Duesseldorf, Duesseldorf, 40225, Germany
| |
Collapse
|
49
|
Benedetti L. Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at Organelle Contact Sites. Curr Protoc 2021; 1:e71. [PMID: 33657274 PMCID: PMC7954661 DOI: 10.1002/cpz1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular signaling processes are frequently based on direct interactions between proteins and organelles. A fundamental strategy to elucidate the physiological significance of such interactions is to utilize optical dimerization tools. These tools are based on the use of small proteins or domains that interact with each other upon light illumination. Optical dimerizers are particularly suitable for reproducing and interrogating a given protein-protein interaction and for investigating a protein's intracellular role in a spatially and temporally precise manner. Described in this article are genetic engineering strategies for the generation of modular light-activatable protein dimerization units and instructions for the preparation of optogenetic applications in mammalian cells. Detailed protocols are provided for the use of light-tunable switches to regulate protein recruitment to intracellular compartments, induce intracellular organellar membrane tethering, and reconstitute protein function using enhanced Magnets (eMags), a recently engineered optical dimerization system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Genetic engineering strategy for the generation of modular light-activated protein dimerization units Support Protocol 1: Molecular cloning Basic Protocol 2: Cell culture and transfection Support Protocol 2: Production of dark containers for optogenetic samples Basic Protocol 3: Confocal microscopy and light-dependent activation of the dimerization system Alternate Protocol 1: Protein recruitment to intracellular compartments Alternate Protocol 2: Induction of organelles' membrane tethering Alternate Protocol 3: Optogenetic reconstitution of protein function Basic Protocol 4: Image analysis Support Protocol 3: Analysis of apparent on- and off-kinetics Support Protocol 4: Analysis of changes in organelle overlap over time.
Collapse
Affiliation(s)
- Lorena Benedetti
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| |
Collapse
|
50
|
Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:189-206. [PMID: 33398814 DOI: 10.1007/978-981-15-8763-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
Collapse
|