1
|
Zhi K, Yin R, Guo H, Qu L. PUM2 regulates the formation of thoracic aortic dissection through EFEMP1. Exp Cell Res 2023; 427:113602. [PMID: 37062520 DOI: 10.1016/j.yexcr.2023.113602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Thoracic aortic dissection (TAD) is a severe cardiovascular disease attributed to the abnormal phenotypic switch of vascular smooth muscle cells (VSMCs). We found that the RNA-binding protein PUM2 and the fibulin protein EFEMP1 were significantly decreased at the TAD anatomical site. Therefore, we constructed expression and silencing vectors for PUM2 and EFEMP1 to analyze differential expression. Overexpression of PUM2 inhibited VSMC proliferation and migration. Western blot analysis indicated that PUM2 overexpression in VSMCs upregulated α-SMA and SM22α and downregulated OPN and MMP2. Immunofluorescence demonstrated that PUM2 and EFEMP1 were co-expressed in VSMCs. Immunoprecipitation confirmed that PUM2 bound to EFEMP1 mRNA to promote EFEMP1 expression. An Ang-II-induced aortic dissection mouse model showed that PUM2 impedes the development of aortic dissection in vivo. Our study demonstrates that PUM2 inhibits the VSMC phenotypic switch to prevent aortic dissection by targeting EFEMP1 mRNA. These findings could assist the development of targeted therapy for TAD.
Collapse
Affiliation(s)
- Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China
| | - Renqi Yin
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China
| | - Hongbo Guo
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China
| | - Lefeng Qu
- Department of Vascular Surgery, Changzheng Hospital, Second Mlitary Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Gor R, Sampath SS, Lazer LM, Ramalingam S. RNA binding protein PUM1 promotes colon cancer cell proliferation and migration. Int J Biol Macromol 2021; 174:549-561. [PMID: 33508364 DOI: 10.1016/j.ijbiomac.2021.01.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
Colon cancer is the third leading cause of death worldwide and sixth in India, where it is the cause of 5.8% of the total deaths. Pumilio-1 (PUM1) is an RNA binding protein whose regulatory role is by binding to the consensus 5'UGUANAUA3' sequence on the 3'UTR of the mRNA targets and post-transcriptionally repressing their expression. This study is the first of its kind to report the expression or function of PUM1 in colon cancer. We found that PUM1 mRNA expression is high in primary and metastatic colon cancer cell lines when compared to the normal colon cell line. Immunohistochemistry analysis showed similar trend wherein compared to the normal colon tissue, PUM1 was found to be overexpressed in both adenocarcinoma and in metastatic carcinoma. This confirms the role of PUM1 in colon cancer progression. PUM1 overexpression study in HCT116 revealed that cells transfected with PUM1 plasmid show an increased rate of proliferation, migration and colony formation. Overexpressing PUM1 increases the number and size of spheroids indicating the role of PUM1 in maintaining cancer stem cells. Overall, this is the first study that has shown the role of PUM1 in colon cancer development.
Collapse
Affiliation(s)
- Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Shruthi Sanjitha Sampath
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Lizha Mary Lazer
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Ledet RJ, Ruff SE, Wang Y, Nayak S, Schneider JA, Ueberheide B, Logan SK, Garabedian MJ. Identification of PIM1 substrates reveals a role for NDRG1 phosphorylation in prostate cancer cellular migration and invasion. Commun Biol 2021; 4:36. [PMID: 33398037 PMCID: PMC7782530 DOI: 10.1038/s42003-020-01528-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
PIM1 is a serine/threonine kinase that promotes and maintains prostate tumorigenesis. While PIM1 protein levels are elevated in prostate cancer relative to local disease, the mechanisms by which PIM1 contributes to oncogenesis have not been fully elucidated. Here, we performed a direct, unbiased chemical genetic screen to identify PIM1 substrates in prostate cancer cells. The PIM1 substrates we identified were involved in a variety of oncogenic processes, and included N-Myc Downstream-Regulated Gene 1 (NDRG1), which has reported roles in suppressing cancer cell invasion and metastasis. NDRG1 is phosphorylated by PIM1 at serine 330 (pS330), and the level of NDRG1 pS330 is associated higher grade prostate tumors. We have shown that PIM1 phosphorylation of NDRG1 at S330 reduced its stability, nuclear localization, and interaction with AR, resulting in enhanced cell migration and invasion.
Collapse
Affiliation(s)
- Russell J Ledet
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sophie E Ruff
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Yu Wang
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
| | - Shruti Nayak
- Proteomics Laboratory, New York University School of Medicine, New York, NY, 10016, USA
| | - Jeffrey A Schneider
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, New York University School of Medicine, New York, NY, 10016, USA
| | - Susan K Logan
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Michael J Garabedian
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Abstract
MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.
Collapse
Affiliation(s)
- Doyeon Kim
- Center for RNA Research, Institute for Basic Science, and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- Center for RNA Research, Institute for Basic Science, and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, School of Biological Sciences, and Bioinformatics Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
T cell exhaustion and Interleukin 2 downregulation. Cytokine 2015; 71:339-47. [DOI: 10.1016/j.cyto.2014.11.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023]
|
6
|
Simic D, Euler C, Haines E, He A, Peden WM, Bunch RT, Sanderson T, Van Vleet T. MicroRNA changes associated with atypical CYP1A1 inducer BMS-764459. Toxicology 2013; 311:169-77. [PMID: 23831372 DOI: 10.1016/j.tox.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/29/2013] [Accepted: 06/18/2013] [Indexed: 01/28/2023]
Abstract
The corticotrophin releasing factor (CRF) receptor I antagonist, BMS-764459 (evaluated as a potential treatment of affective disorders), was orally dosed to female Sprague-Dawley rats once daily for 2 weeks (vehicle control or 175mg/kg/day). To investigate the mechanism of BMS-764459-related liver weight increases, total liver RNA was isolated and evaluated for mRNA gene expression by microarray analysis (assessing the expression of approximately 24,000 genes) from snap-frozen tissue. Subsequently, mRNA and miRNA (microRNA) were also analyzed 5 years later from FFPE (Formalin Fixed Paraffin Embedded) samples via RT-PCR (about 800 miRNA evaluated). Genomic analyses showed that BMS-764459 induces AhR target genes with additional inductions of CYP2B, CYP3A, and Abcc3 consistent with the gene expression pattern of atypical CYP1A1 inducers. Analysis of miRNA expression identified a number of significantly affected miRNAs. To further evaluate their role in atypical CYP1A1 induction, an in silico evaluation of differentially expressed miRNA was performed and their putative mRNA 3'-UTR (untranslated region) binding sequences were evaluated. MiR-680 and miR-29a were identified as potential regulators and biomarkers of atypical CYP1A1 induction by regulating Abcc3, CYP3A and CYP2B as well as a number of AhR targeted genes.
Collapse
Affiliation(s)
- Damir Simic
- Drug Safety Evaluation, Bristol-Myers Squibb, Mt. Vernon, IN 47620, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|
8
|
Vasudevan S. Posttranscriptional upregulation by microRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:311-30. [PMID: 22072587 DOI: 10.1002/wrna.121] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.
Collapse
|
9
|
Paciello G, Acquaviva A, Ficarra E, Deriu MA, Macii E. A molecular dynamics study of a miRNA:mRNA interaction. J Mol Model 2011; 17:2895-906. [DOI: 10.1007/s00894-011-0991-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/24/2011] [Indexed: 12/25/2022]
|