1
|
Abstract
The accidental discovery of PI5P (phosphatidylinositol-5-phosphate) was published 25 years ago, when PIP5K type II (phosphoinositide-4-phosphate 5-kinase) was shown to actually be a 4-kinase that uses PI5P as a substrate to generate PI(4,5)P2. Consequently, PIP5K type II was renamed to PI5P4K, or PIP4K for short, and PI5P became the last of the 7 signaling phosphoinositides to be discovered. Much of what we know about PI5P comes from genetic studies of PIP4K, as the pathways for PI5P synthesis, the downstream targets of PI5P and how PI5P affects cellular function all remain largely enigmatic. Nevertheless, PI5P and PI5P-dependent PI(4,5)P2 synthesis have been clearly implicated in metabolic homeostasis and in diseases such as cancer. Here, we review the past 25 years of PI5P research, with particular emphasis on the impact this small signaling lipid has on human health.
Collapse
Affiliation(s)
- Lucia E. Rameh
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Wen T, Thapa N, Cryns VL, Anderson RA. Regulation of Phosphoinositide Signaling by Scaffolds at Cytoplasmic Membranes. Biomolecules 2023; 13:1297. [PMID: 37759697 PMCID: PMC10526805 DOI: 10.3390/biom13091297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cytoplasmic phosphoinositides (PI) are critical regulators of the membrane-cytosol interface that control a myriad of cellular functions despite their low abundance among phospholipids. The metabolic cycle that generates different PI species is crucial to their regulatory role, controlling membrane dynamics, vesicular trafficking, signal transduction, and other key cellular events. The synthesis of phosphatidylinositol (3,4,5)-triphosphate (PI3,4,5P3) in the cytoplamic PI3K/Akt pathway is central to the life and death of a cell. This review will focus on the emerging evidence that scaffold proteins regulate the PI3K/Akt pathway in distinct membrane structures in response to diverse stimuli, challenging the belief that the plasma membrane is the predominant site for PI3k/Akt signaling. In addition, we will discuss how PIs regulate the recruitment of specific scaffolding complexes to membrane structures to coordinate vesicle formation, fusion, and reformation during autophagy as well as a novel lysosome repair pathway.
Collapse
Affiliation(s)
- Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| |
Collapse
|
3
|
Bao F, Hao P, An S, Yang Y, Liu Y, Hao Q, Ejaz M, Guo XX, Xu TR. Akt scaffold proteins: the key to controlling specificity of Akt signaling. Am J Physiol Cell Physiol 2021; 321:C429-C442. [PMID: 34161152 DOI: 10.1152/ajpcell.00146.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphatidylinositol 3-kinase-Akt signaling pathway plays an essential role in regulating cell proliferation and apoptosis. Akt kinase is at the center of this signaling pathway and interacts with a variety of proteins. Akt is overexpressed in almost 80% of tumors. However, inhibiting Akt has serious clinical side effects so is not a suitable treatment for cancer. During recent years, Akt scaffold proteins have received increasing attention for their ability to regulate Akt signaling and have emerged as potential targets for cancer therapy. In this paper, we categorize Akt kinase scaffold proteins into four groups based on their cellular location: membrane-bound activator and inhibitor, cytoplasm, and endosome. We describe how these scaffolds interact with Akt kinase, how they affect Akt activity, and how they regulate the specificity of Akt signaling. We also discuss the clinical application of Akt scaffold proteins as targets for cancer therapy.
Collapse
Affiliation(s)
- Fan Bao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,Center of Stomatology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mubashir Ejaz
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
4
|
Hamid SM, Citir M, Terzi EM, Cimen I, Yildirim Z, Dogan AE, Kocaturk B, Onat UI, Arditi M, Weber C, Traynor-Kaplan A, Schultz C, Erbay E. Inositol-requiring enzyme-1 regulates phosphoinositide signaling lipids and macrophage growth. EMBO Rep 2020; 21:e51462. [PMID: 33140520 DOI: 10.15252/embr.202051462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
The ER-bound kinase/endoribonuclease (RNase), inositol-requiring enzyme-1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1's one known, specific RNA target, X box-binding protein-1 (XBP1) or the RNA substrates of IRE1-dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide-derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross-talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1's RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3 ) 5-phosphatase-2 (INPPL1) is a direct target of miR-2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3 /PIP2 ratio and anabolic mTOR signaling by the IRE1-induced miR-2137 demonstrates how the ER can provide a critical input into cell growth decisions.
Collapse
Affiliation(s)
| | - Mevlut Citir
- The Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Erdem Murat Terzi
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Ismail Cimen
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre, partner site Munich Heart Alliance Munich, Munich, Germany
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Asli Ekin Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Begum Kocaturk
- Department of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Moshe Arditi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre, partner site Munich Heart Alliance Munich, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,ATK Innovation, Analytics and Discovery, North Bend, WA, USA
| | - Carsten Schultz
- The Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Ebru Erbay
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Jin Z, Zhou S, Ye H, Jiang S, Yu K, Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed Pharmacother 2019; 119:109434. [PMID: 31536933 DOI: 10.1016/j.biopha.2019.109434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Our previous research had firstly shown that MM cells overexpressed IQGAP1 gene and activated Ras/Raf/MEK/ERK pathway. But the mechanism of IQGAP1 overexpression and IQGAP1 gene transcription regulation remains uncertain. The mechanism of IQGAP1 overexpression and transcriptional regulation of IQGAP1 gene in myeloma cells was explored in the study. Through bioinformatics analysis and prediction we predicted and screened transcription factor Sp1 as a possible upstream regulator of IQGAP1.The proliferation, cell cycle and downstream ERK1/2 and p-ERK1/2 proteins were detected after siRNA-IQGAP1 was transfected to myeloma cells. The expression of Sp1, p300, IQGAP1, p-ERK1/2 and ERK1/2 were detected after Sp1 and p300 were inhibited or overexpressed respectively. The dual-luciferase reporter system was used to detect the activity of IQGAP1 gene promoter. CHIP was used to detect the binding of the Sp1 and IQGAP1 promoter regions.CO-IP was used to explore the interaction between Sp1 and p300.The mRNA expression levels of Sp1,p300 and IQGAP1 of the myeloma patients were detected, and the correlation analysis of their mRNA expression levels were carried out. The results showed IQGAP1-siRNA inhibits cell proliferation, cell cycle, IQGAP1 expression and phosphorylation of ERK1/2 protein. Inhibition of Sp1 or p300 down-regulated ERK1/2 and IQGAP1 expression; overexpression of Sp1 or p300 up-regulated ERK1/2 and IQGAP1 expression; Sp1 and p300 had a positive regulation effect on IQGAP1.Over expression of Sp1 or p300 significantly increased activity of IQGAP1 gene promoter. The transcription factor Sp1 plays a regulatory role in the IQGAP1 promoter region. There is an interaction between Sp1 and p300 in myeloma cells. The mRNA expression levels of Sp1, IQGAP1 and p300 in MM samples showed a positive correlation. In summary IQGAP1 is required for cell proliferation in MM cells, and the transcription of Sp1/p300 complex regulates expression of IQGAP1 gene.
Collapse
Affiliation(s)
- Zhouxiang Jin
- Department of General Surgery, Gastric Cancer Research Center, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xue Yuan Western Road, Wenzhou, 325027, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Atrial Natriuretic Peptide: A Potential Early Therapy for the Prevention of Multiple Organ Dysfunction Syndrome Following Severe Trauma. Shock 2019; 49:126-130. [PMID: 28727609 DOI: 10.1097/shk.0000000000000947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Trauma remains a tremendous medical burden partly because of increased expenditure for the management of multiple organ dysfunction syndrome (MODS) developed during hospital stay. The intestinal barrier injury continues to be a second insult resulting in MODS which currently lacks efficient strategies for prevention. Recent studies have uncovered multi-organ protective benefits of atrial natriuretic peptide (ANP) in cardiovascular disease. However, the role of ANP in the prevention of MODS following severe trauma has not been understood. In our laboratory study, 1-h infusion of exogenous ANP during hemorrhagic shock following severe trauma induced high-level expression of endogenous serum ANP after 24 h, this effect was related to the improved level of functional biomarkers in multiple organs. Such phenomenon has not been found in other laboratories. A thorough literature review consequently was performed to uncover the potential mechanisms, to appraise therapy safety, and to propose uncertainties. In severe trauma, short-term exogenous ANP therapy during hemorrhagic shock may promote sustained endogenous expression of ANP from intestinal epithelium through activating a positive feedback loop mechanism involving phospholipase C-γ1 and reactive oxygen species crosstalk. This feedback loop may prevent MODS through multiple signaling pathways. Administration of ANP during hemorrhagic shock is thought to be safe. Further studies are required to confirm our proposed mechanisms and to investigate the dose, duration, and timing of ANP therapy in severe trauma.
Collapse
|
7
|
Choi S, Houdek X, Anderson RA. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv Biol Regul 2018; 68:31-38. [PMID: 29472147 PMCID: PMC5955796 DOI: 10.1016/j.jbior.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) generate a lipid messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2) that controls essentially all aspects of cellular functions. PI4,5P2 rapidly diffuses in the membrane of the lipid bilayer and does not greatly change in membrane or cellular content, and thus PI4,5P2 generation by PIPKs is tightly linked to its usage in subcellular compartments. Based on this verity, recent study of PI4,5P2 signal transduction has been focused on investigations of individual PIPKs and their underlying molecular regulation of cellular processes. Here, we will discuss recent advances in the study of how PIPKs control specific cellular events through assembly and regulation of PI4,5P2 effectors that mediate specific cellular processes. A focus will be on the roles of PIPKs in control of the phosphoinositide 3-kinase pathway and autophagy.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xander Houdek
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|