1
|
Wang Y, Ma L, Wei S. Deprotonation of 8-Oxo-7,8-dihydroadenine Radical Cation in Free and Encumbered Context: A Theoretical Study. ACS OMEGA 2024; 9:50730-50741. [PMID: 39741838 PMCID: PMC11683639 DOI: 10.1021/acsomega.4c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025]
Abstract
Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA•+) in both free and encumbered context by calculating the pK a value and mapping the energy profiles. The calculative pK a values of active protons in free 8-oxoA•+ follow the order: N7-H < N9-H < N6-H1< N6-H2, suggesting the preference of proton departure in free 8-oxoA•+. To further illustrate the preferred site and mechanism for 8-oxoA•+ deprotonation, energy profiles are constructed to distinguish the possibility from that of all active protons in both contexts. The results show distinctly that 8-oxoA•+ mainly suffers from the loss of proton from N9 due to the lowest energy barrier but deprotonates N7-H in real DNA as the connection of N9 and ribose. The energy barriers for the deprotonation of N7-H from 8-oxoA•+ in free and encumbered contexts are 1.5 and 1.3 kcal/mol, respectively, indicating a fast deprotonation reaction. It is more interestingly that the N9-H proton transfer (PT, toward N3) to adjacent water follows a stepwise fashion rather than a one-step approach as previously reported. Furthermore, the PT behavior of free N9-H toward O8 is dramatically influenced by base pairing T, where it is localized at neighboring water without further PT to adjacent water in free 8-oxoA•+ but migrated directly to adjacent water in the 8-oxoA•+:T base pair. And the deprotonation of N6-H2 in 8-oxoA•+:T is disturbed as the PT to O4 of the pairing T base is inhibited. It is warmly anticipated that these results could provide an in-depth perspective to understand the important role of 8-oxoA in mutation.
Collapse
Affiliation(s)
- Yinghui Wang
- College
of Science, Chang’an University, Xi’an 710064, China
| | - Lei Ma
- College
of Science, Chang’an University, Xi’an 710064, China
| | - Simin Wei
- State
Key Laboratory of Research & Development of Characteristic Qin
Medicine Resources (Cultivation), Co-Construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, Shaanxi University
of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
2
|
Li J, Li Y, Wu B, Xie M, Hu Y. Proton Transfer Processes in 2-Butenenitrile Dimer Cation Studied by Mass-Selective Infrared Spectroscopy. J Phys Chem A 2024; 128:4694-4700. [PMID: 38833155 DOI: 10.1021/acs.jpca.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
2-Butenenitrile (2-Bu) is a recently discovered crucial interstellar molecule. Herein, an abnormal NH band was observed in the infrared spectrum of the 2-Bu dimer cation, suggestive of a proton transfer reaction within the cluster. Through a comprehensive theoretical analysis of the IR spectrum of (2-Bu)2+, we discovered not only the formation of a new C-N bond through the attachment of one 2-Bu to another but also the occurrence of a proton transfer reaction in the cluster. This proton was identified as originating from the methyl group of the attaching 2-Bu in the cluster based on the analysis of IR spectra of (2-Bu)+ and [2-Bu-acrylonitrile (AN)]+. Furthermore, the detailed reaction process of this ion-molecule reaction is examined with theoretical calculation. This finding contributes significantly to our deeper understanding of ion-molecule reactions in the gas phase and the formation of nitrogen-containing prebiotic molecules in the interstellar medium.
Collapse
Affiliation(s)
- Jingyu Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujian Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Bingbing Wu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Guo M, Wu X, Wu H, Sun X. Ligand effect on Ru-centered species toward methane activation. Phys Chem Chem Phys 2024; 26:14329-14335. [PMID: 38695750 DOI: 10.1039/d4cp01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ligands have been known to profoundly affect the chemical transformations of methane, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we demonstrate that the conversion of methane can be regulated by Ru centered cations with a series of ligands (C, CH, CNH, CHCNH). Gas-phase experiments complemented by theoretical dynamic analysis were performed to explore the essences and principles governing the ligand effect. In contrast to the inert Ru+, [RuC]+, and [RuCNH]+ toward CH4, the dehydrogenation dominates the reaction of ligand-regulated systems [RuCH]+/CH4 and [RuCHCNH]+/CH4. In active cases, CH acts as active sites, and regulates the activation of CH4 assisted by the "seemingly inert" CNH ligand.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaonan Wu
- East China Normal University, Shanghai 200241, P. R. China.
| | - Hechen Wu
- Fudan University, Shanghai 200240, P. R. China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
4
|
Johny M, Schouder CA, Al-Refaie A, He L, Wiese J, Stapelfeldt H, Trippel S, Küpper J. Water is a radiation protection agent for ionised pyrrole. Phys Chem Chem Phys 2024; 26:13118-13130. [PMID: 38629233 DOI: 10.1039/d3cp03471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.
Collapse
Affiliation(s)
- Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- LIDYL, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ahmed Al-Refaie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Tian Y, Liu K, Wang Y, Zhou Y, Lu P. Proton tunneling in the dissociation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. J Chem Phys 2024; 160:114311. [PMID: 38501475 DOI: 10.1063/5.0195867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Light-induced deprotonation of molecules is an important process in photochemical reactions. Here, we theoretically investigate the tunneling deprotonation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. The quasi-static picture shows that the field-dressed potential barrier is significantly lowered for the deprotonation channel when the mass asymmetry of the diatomic molecule increases. Our numerical simulations demonstrate that when the mass symmetry breaks, the tunneling deprotonation is significantly enhanced and the proton tunneling becomes the dominant dissociation channel in the THz driving fields. In addition, the simulated nuclear momentum distributions show that the emission of the proton is directed by the effective vector potential for the deprotonation channel and, meanwhile, the angular distribution of the emitting proton is affected by the alignment and rotation of the molecule induced by the rotating field.
Collapse
Affiliation(s)
- Yidian Tian
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kunlong Liu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Wang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
6
|
Guo Z, Zhang M, Dong X, Wang J, Li Z, Liu Y. Probing Conical Intersection in the Multipathway Isomerization of CH 3Cl Using Coulomb Explosion. J Phys Chem Lett 2024; 15:2369-2374. [PMID: 38393833 DOI: 10.1021/acs.jpclett.3c03404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Ubiquitous ultrafast isomerization is paramount in photoexcited molecules, in which non-adiabatic coupling among multiple electronic states can occur. We use the pump-probe Coulomb explosion imaging method to study the isomerization of CH3Cl molecules. We find that the isomerization under our strong field pump-probe scheme proceeds along multiple pathways, which are encoded in several distinct branches of the time-resolved kinetic energy release spectra for the CH2++HCl+ Coulomb explosion channel. Apart from the isomerized dissociative pathway in neutral and cationic excited states, the pump laser can also induce coherent vibrational dynamics in two coupled intermediate states and set up the initial conditions for the two concurrently proceeding isomerization pathways. The isomerization of CH3Cl provides an intriguing example of a chemical reaction consisting of multiple pathways and non-adiabatic dynamics.
Collapse
Affiliation(s)
- Zhenning Guo
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaolong Dong
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jiguo Wang
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Chevalier F, Schlathölter T, Poully JC. Radiation-Induced Transfer of Charge, Atoms, and Energy within Isolated Biomolecular Systems. Chembiochem 2023; 24:e202300543. [PMID: 37712497 DOI: 10.1002/cbic.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
In biological tissues, ionizing radiation interacts with a variety of molecules and the consequences include cell killing and the modification of mechanical properties. Applications of biological radiation action are for instance radiotherapy, sterilization, or the tailoring of biomaterial properties. During the first femtoseconds to milliseconds after the initial radiation action, biomolecular systems typically respond by transfer of charge, atoms, or energy. In the condensed phase, it is usually very difficult to distinguish direct effects from indirect effects. A straightforward solution for this problem is the use of gas-phase techniques, for instance from the field of mass spectrometry. In this review, we survey mainly experimental but also theoretical work, focusing on radiation-induced intra- and inter-molecular transfer of charge, atoms, and energy within biomolecular systems in the gas phase. Building blocks of DNA, proteins, and saccharides, but also antibiotics are considered. The emergence of general processes as well as their timescales and mechanisms are highlighted.
Collapse
Affiliation(s)
- François Chevalier
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen (The, Netherlands
- University College Groningen, University of Groningen, Groningen (The, Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
8
|
Yin Z, Chang YP, Balčiūnas T, Shakya Y, Djorović A, Gaulier G, Fazio G, Santra R, Inhester L, Wolf JP, Wörner HJ. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature 2023; 619:749-754. [PMID: 37380782 PMCID: PMC10371863 DOI: 10.1038/s41586-023-06182-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
Proton transfer is one of the most fundamental events in aqueous-phase chemistry and an emblematic case of coupled ultrafast electronic and structural dynamics1,2. Disentangling electronic and nuclear dynamics on the femtosecond timescales remains a formidable challenge, especially in the liquid phase, the natural environment of biochemical processes. Here we exploit the unique features of table-top water-window X-ray absorption spectroscopy3-6 to reveal femtosecond proton-transfer dynamics in ionized urea dimers in aqueous solution. Harnessing the element specificity and the site selectivity of X-ray absorption spectroscopy with the aid of ab initio quantum-mechanical and molecular-mechanics calculations, we show how, in addition to the proton transfer, the subsequent rearrangement of the urea dimer and the associated change of the electronic structure can be identified with site selectivity. These results establish the considerable potential of flat-jet, table-top X-ray absorption spectroscopy7,8 in elucidating solution-phase ultrafast dynamics in biomolecular systems.
Collapse
Affiliation(s)
- Zhong Yin
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland.
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Miyagi, Sendai, Japan.
| | - Yi-Ping Chang
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
- European XFEL, Schenefeld, Germany
| | - Tadas Balčiūnas
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
| | - Yashoj Shakya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | | | - Giuseppe Fazio
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| | | | | |
Collapse
|
9
|
Liu M, O'Reilly D, Schwob L, Wang X, Zamudio-Bayer V, Lau JT, Bari S, Schlathölter T, Poully JC. Direct Observation of Charge, Energy, and Hydrogen Transfer between the Backbone and Nucleobases in Isolated DNA Oligonucleotides. Chemistry 2023; 29:e202203481. [PMID: 36478608 DOI: 10.1002/chem.202203481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Understanding how charge and energy, as well as protons and hydrogen atoms, are transferred in molecular systems as a result of an electronic excitation is fundamental for understanding the interaction between ionizing radiation and biological matter on the molecular level. To localize the excitation at the atomic scale, it was chosen to target phosphorus atoms in the backbone of gas-phase oligonucleotide anions and cations, by means of resonant photoabsorption at the L- and K-edges. The ionic photoproducts of the excitation process were studied by a combination of mass spectrometry and X-ray spectroscopy. The combination of absorption site selectivity and photoproduct sensitivity allowed the identification of X-ray spectral signatures of specific processes. Moreover, charge and/or energy as well as H transfer from the backbone to nucleobases has been directly observed. Although the probability of one versus two H transfer following valence ionization depends on the nucleobase, ionization of sugar or phosphate groups at the carbon K-edge or the phosphorus L-edge mainly leads to single H transfer to protonated adenine. Moreover, our results indicate a surprising proton-transfer process to specifically form protonated guanine after excitation or ionization of P 2p electrons.
Collapse
Affiliation(s)
- Min Liu
- CIMAP UMR 6252, CEA/, CNRS/, ENSICAEN/, Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - David O'Reilly
- CIMAP UMR 6252, CEA/, CNRS/, ENSICAEN/, Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | | | - Xin Wang
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - J Tobias Lau
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Germany
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,University College Groningen, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/, CNRS/, ENSICAEN/, Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
10
|
Valadbeigi Y, Causon T. Monitoring intramolecular proton transfer with ion mobility-mass spectrometry and in-source ion activation. Chem Commun (Camb) 2023; 59:1673-1676. [PMID: 36689277 DOI: 10.1039/d2cc05237g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here, we show how intramolecular proton transfer can be induced and monitored with the example of polycyclic aromatic amines using in-source ion-activation and ion mobility-mass spectrometry. Experiment and DFT calculations reveal that the protonation rate of C-atoms in aromatic rings is controlled by the energy barrier of intramolecular NH3+ → C proton transfer.
Collapse
Affiliation(s)
- Younes Valadbeigi
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| | - Tim Causon
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
11
|
Khan A, Ayasli A, Michaelsen T, Gstir T, Ončák M, Wester R. Imaging the Atomistic Dynamics of Single Proton Transfer and Combined Hydrogen/Proton Transfer in the O - + CH 3I Reaction. J Phys Chem A 2022; 126:9408-9413. [PMID: 36512691 PMCID: PMC9791656 DOI: 10.1021/acs.jpca.2c06887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
We report on reactive scattering studies of the proton transfer and combined hydrogen/proton transfer in the O- + CH3I reaction. We combine state-of-the-art crossed-beam velocity map imaging and quantum chemistry calculations to understand the dynamics for the formations of the CH2I- + OH and CHI- + H2O products. The experimental velocity- and angle-differential cross section show for both products and at all collision energies (between 0.3 and 2.0 eV) that the product ions are predominantly forward scattered. For the CHI- + H2O channel, the data show lower product velocities, indicative of higher internal excitation, than in the case of single proton transfer. Furthermore, our results suggest that the combined hydrogen/proton transfer proceeds via a two-step process: In the first step, O- abstracts one H atom to form OH-, and then the transient OH- removes an additional proton from CH2I to form the energetically stable H2O coproduct.
Collapse
Affiliation(s)
- Arnab Khan
- Institut für Ionenphysik und
Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Atilay Ayasli
- Institut für Ionenphysik und
Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Tim Michaelsen
- Institut für Ionenphysik und
Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Thomas Gstir
- Institut für Ionenphysik und
Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und
Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und
Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Zhou J, Jia S, Skitnevskaya AD, Wang E, Hähnel T, Grigoricheva EK, Xue X, Li JX, Kuleff AI, Dorn A, Ren X. Concerted Double Hydrogen-Bond Breaking by Intermolecular Coulombic Decay in the Formic Acid Dimer. J Phys Chem Lett 2022; 13:4272-4279. [PMID: 35522820 DOI: 10.1021/acs.jpclett.2c00957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen bonds are ubiquitous in nature and of fundamental importance to the chemical and physical properties of molecular systems in the condensed phase. Nevertheless, our understanding of the structural and dynamical properties of hydrogen-bonded complexes in particular in electronic excited states remains very incomplete. Here, by using formic acid (FA) dimer as a prototype of DNA base pair, we investigate the ultrafast decay process initiated by removal of an electron from the inner-valence shell of the molecule upon electron-beam irradiation. Through fragment-ion and electron coincident momentum measurements and ab initio calculations, we find that de-excitation of an outer-valence electron at the same site can initiate ultrafast energy transfer to the neighboring molecule, which is in turn ionized through the emission of low-energy electrons. Our study reveals a concerted breaking of double hydrogen-bond in the dimer initiated by the ultrafast molecular rotations of two FA+ cations following this nonlocal decay mechanism.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anna D Skitnevskaya
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Enliang Wang
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Theresa Hähnel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Emma K Grigoricheva
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Xing Li
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander Dorn
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| |
Collapse
|
13
|
Huang SR, Tureček F. Noncanonical Isomers of Nucleoside Cation Radicals: An Ab Initio Study of the Dark Matter of DNA Ionization. J Phys Chem A 2022; 126:2480-2497. [PMID: 35439003 DOI: 10.1021/acs.jpca.2c00894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cation radicals of DNA nucleosides, 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine, can exist in standard canonical forms or as noncanonical isomers in which the charge is introduced by protonation of the nucleobase, whereas the radical predominantly resides in the deoxyribose moiety. Density functional theory as well as correlated ab initio calculations with coupled clusters (CCSD(T)) that were extrapolated to the complete basis set limit showed that noncanonical nucleoside ion isomers were thermodynamically more stable than their canonical forms in both the gas phase and as water-solvated ions. This indicated the possibility of exothermic conversion of canonical to noncanonical forms. The noncanonical isomers were calculated to have very low adiabatic ion-electron recombination energies (REad) for the lowest-energy isomers 2'-deoxy-(N-3H)adenos-1'-yl (4.74 eV), 2'-deoxy-(N-7H)guanos-1'-yl (4.66 eV), 2'-deoxy-(N-3H)cytid-1'-yl (5.12 eV), and 2'-deoxy-5-methylene-(O-2H)uridine (5.24 eV). These were substantially lower than the REad value calculated for the canonical 2'-deoxyadenosine, 2'-deoxy guanosine, 2'-deoxy cytidine, and 2'-deoxy thymidine cation radicals, which were 7.82, 7.46, 8.14, and 8.20 eV, respectively, for the lowest-energy ion conformers of each type. Charge and spin distributions in noncovalent cation-radical dA⊂dT and dG⊂dC nucleoside pairs and dAT, dCT, dTC, and dGC dinucleotides were analyzed to elucidate the electronic structure of the cation radicals. Born-Oppenheimer molecular dynamics trajectory calculations of the dinucleotides and nucleoside pairs indicated rapid exothermic proton transfer from noncanonical T+· to A in both dAT+· and dA⊂dT+·, leading to charge and radical separation. Noncanonical T+· in dCT+· and dTC+· initiated rapid proton transfer to cytosine, whereas the canonical dCT+· dinucleotide ion retained the cation radical structure without isomerization. No spontaneous proton transfer was found in dGC+· and dG⊂dC+· containing canonical neutral and noncanonical ionized deoxycytidine.
Collapse
Affiliation(s)
- Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
14
|
Water acting as a catalyst for electron-driven molecular break-up of tetrahydrofuran. Nat Commun 2020; 11:2194. [PMID: 32366861 PMCID: PMC7198510 DOI: 10.1038/s41467-020-15958-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/02/2020] [Indexed: 11/09/2022] Open
Abstract
Low-energy electron-induced reactions in hydrated molecular complexes are important in various fields ranging from the Earth’s environment to radiobiological processes including radiation therapy. Nevertheless, our understanding of the reaction mechanisms in particular in the condensed phase and the role of water in aqueous environments is incomplete. Here we use small hydrogen-bonded pure and mixed dimers of the heterocyclic molecule tetrahydrofuran (THF) and water as models for biochemically relevant systems. For electron-impact-induced ionization of these dimers, a molecular ring-break mechanism is observed, which is absent for the THF monomer. Employing coincident fragment ion mass and electron momentum spectroscopy, and theoretical calculations, we find that ionization of the outermost THF orbital initiates significant rearrangement of the dimer structure increasing the internal energy and leading to THF ring-break. These results demonstrate that the local environment in form of hydrogen-bonded molecules can considerably affect the stability of molecular covalent bonds. Reactions induced by low-energy electrons in hydrated systems are central to radiation therapy, but a full understanding of their mechanism is lacking. Here the authors investigate the electron-impact induced ionization and subsequent dissociation of tetrahydrofuran, model for biochemically relevant systems, in a micro-solvated environment.
Collapse
|
15
|
Kumar A, Adhikary A, Sevilla MD, Close DM. One-electron oxidation of ds(5'-GGG-3') and ds(5'-G(8OG)G-3') and the nature of hole distribution: a density functional theory (DFT) study. Phys Chem Chem Phys 2020; 22:5078-5089. [PMID: 32073006 PMCID: PMC7058519 DOI: 10.1039/c9cp06244k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Of particular interest in radiation-induced charge transfer processes in DNA is the extent of hole localization immediately after ionization and subsequent relaxation. To address this, we considered double stranded oligomers containing guanine (G) and 8-oxoguanine (8OG), i.e., ds(5'-GGG-3') and ds(5'-G8OGG-3') in B-DNA conformation. Using DFT, we calculated a variety of properties, viz., vertical and adiabatic ionization potentials, spin density distributions in oxidized stacks, solvent and solute reorganization energies and one-electron oxidation potential (E0) in the aqueous phase. Calculations for the vertical state of the -GGG- cation radical showed that the spin was found mainly (67%) on the middle G. However, upon relaxation to the adiabatic -GGG- cation radical, the spin localized (96%) on the 5'-G, as observed in experiments. Hole localizations on the middle G and 3'-G were higher in energy by 0.5 kcal mol-1 and 0.4 kcal mol-1, respectively, than that of 5'-G. In the -G8OGG- cation radical, the spin localized only on the 8OG in both vertical and adiabatic states. The calculated vertical ionization potentials of -GGG- and -G8OGG- stacks were found to be lower than that of the vertical ionization potential of a single G in DNA. The calculated E0 values of -GGG- and -G8OGG- stacks are 1.15 and 0.90 V, respectively, which owing to stacking effects are substantially lower than the corresponding experimental E0 values of their monomers (1.49 and 1.18 V, respectively). SOMO to HOMO level switching is observed in these oxidized stacks. Consequently, our calculations predict that local double oxidations in DNA will form triplet diradical states, which are especially significant for high LET radiations.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA.
| | | | | | | |
Collapse
|
16
|
Ahmed M, Kostko O. From atoms to aerosols: probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy. Phys Chem Chem Phys 2020; 22:2713-2737. [DOI: 10.1039/c9cp05802h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synchrotron radiation provides insight into spectroscopy and dynamics in clusters and nanoparticles.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
17
|
Ohshimo K, Miyazaki S, Hattori K, Misaizu F. Long-distance proton transfer induced by a single ammonia molecule: ion mobility mass spectrometry of protonated benzocaine reacted with NH3. Phys Chem Chem Phys 2020; 22:8164-8170. [DOI: 10.1039/c9cp06923b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A long-distance proton transfer via the vehicle mechanism in the absence of a hydrogen-bonded solvent-bridge in molecules.
Collapse
Affiliation(s)
- Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Shun Miyazaki
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Keigo Hattori
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
18
|
Wu JY, Cheng PY. Ultrafast Protonation of an Amide: Photoionization-Induced Proton Transfer in Phenol-Dimethylformamide Complex Cation. J Phys Chem A 2019; 123:10700-10713. [DOI: 10.1021/acs.jpca.9b09651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, R.
O. C
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, R.
O. C
| |
Collapse
|
19
|
Guo M, Wu H, Yang M, Luo Z. Acetone Dimer Hydrogenation under Vacuum Ultraviolet: An Intracluster Trimolecular Dissociation Mechanism. J Phys Chem A 2019; 123:10739-10745. [DOI: 10.1021/acs.jpca.9b08833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Milovanović B, Stanković IM, Petković M, Etinski M. Elucidating Solvent Effects on Strong Intramolecular Hydrogen Bond: DFT-MD Study of Dibenzoylmethane in Methanol Solution. Chemphyschem 2019; 20:2852-2859. [PMID: 31544323 DOI: 10.1002/cphc.201900704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/31/2019] [Indexed: 11/10/2022]
Abstract
The dynamic aspect of solvation plays a crucial role in determining properties of strong intramolecular hydrogen bonds since solvent fluctuations modify instantaneous hydrogen-bonded proton transfer barriers. Previous studies pointed out that solvent-solute interactions in the first solvation shell govern the position of the proton but the ability of the electric field due to other solvent molecules to localize the proton remains an important issue. In this work, we examine the structure of the O-H⋅⋅⋅O intramolecular hydrogen bond of dibenzoylmethane in methanol solution by employing density functional theory-based molecular dynamics and quantum chemical calculations. Our computations showed that homogeneous electric fields with intensities corresponding to those found in polar solvents are able to considerably alter the proton transfer barrier height in the gas phase. In methanol solution, the proton position is correlated with the difference in electrostatic potentials on the oxygen atoms of dibenzoylmethane even when dibenzoylmethane-methanol hydrogen bonding is lacking. On a timescale of our simulation, the hydrogen bonding and solvent electrostatics tend to localize the proton on different oxygen atoms. These findings provide an insight into the importance of the solvent electric field on the structure of a strong intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | | | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
21
|
Abstract
Hydrogen bonds play a critical role in nucleobase studies as they encode genes, map protein structures, provide stability to the base pairs, and are involved in spontaneous and induced mutations. Proton transfer mechanism is a critical phenomenon that is related to the acid-base characteristics of the nucleobases in Watson-Crick base pairs. The energetic and dynamical behavior of the proton can be depicted from these characteristics and their adjustment to the water molecules or the surrounding ions. Further, new pathways open up in which protonated nucleobases are generated by proton transfer from the ionized water molecules and elimination of a hydroxyl radical in this review, the analysis will be focused on understanding the mechanism of untargeted mutations in canonical, wobble, Hoogsteen pairs, and mutagenic tautomers through the non-covalent interactions. Further, rare tautomer formation through the single proton transfer (SPT) and the double proton transfer (DPT), quantum tunneling in nucleobases, radiation-induced bystander effects, role of water in proton transfer (PT) reactions, PT in anticancer drugs-DNA interaction, displacement and oriental polarization, possible models for mutations in DNA, genome instability, and role of proton transfer using kinetic parameters for RNA will be discussed.
Collapse
|
22
|
Varadwaj PR, Varadwaj A, Marques HM. C 70 Fullerene Cage as a Novel Catalyst for Efficient Proton Transfer Reactions between Small Molecules: A Theoretical study. Sci Rep 2019; 9:10650. [PMID: 31337790 PMCID: PMC6650427 DOI: 10.1038/s41598-019-46725-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/02/2019] [Indexed: 11/12/2022] Open
Abstract
When acids are supplied with an excess electron (or placed in an Ar or the more polarizable N2 matrix) in the presence of species such as NH3, the formation of ion-pairs is a likely outcome. Using density functional theory and first-principles calculations, however, we show that, without supplying an external electron or an electric field, or introducing photo-excitation and -ionization, a single molecule of HCl or HBr in the presence of a single molecule of water inside a C70 fullerene cage is susceptible to cleavage of the σ-bond of the Brønsted-Lowry acid into X− and H+ ions, with concomitant transfer of the proton along the reaction coordinate. This leads to the formation of an X−···+HOH2 (X = Cl, Br) conjugate acid-base ion-pair, similar to the structure in water of a Zundel ion. This process is unlikely to occur in other fullerene derivatives in the presence of H2O without significantly affecting the geometry of the carbon cage, suggesting that the interior of C70 is an ideal catalytic platform for proton transfer reactions and the design of related novel materials. By contrast, when a single molecule of HF is reacted with a single molecule of H2O inside the C70 cage, partial proton transfers from HF to H2O is an immediate consequence, as recently observed experimentally. The geometrical, energetic, electron density, orbital, optoelectronic and vibrational characteristics supporting these observations are presented. In contrast with the views that have been advanced in several recent studies, we show that the encaged species experiences significant non-covalent interaction with the interior of the cage. We also show that the inability of current experiments to detect many infrared active vibrational bands of the endo species in these systems is likely to be a consequence of the substantial electrostatic screening effect of the cage.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan. .,The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan.
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan. .,The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan.
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
23
|
Endo T, Matsuda Y, Moriyama S, Fujii A. Infrared Spectroscopic Study on Trimethyl Amine Radical Cation: Correlation between Proton-Donating Ability and Structural Deformation. J Phys Chem A 2019; 123:5945-5950. [DOI: 10.1021/acs.jpca.9b01261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoya Endo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Yoshiyuki Matsuda
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Shohei Moriyama
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| |
Collapse
|
24
|
Yang G, Wu H, Pembere AMS, Luo Z. Deep Ultraviolet Laser Radiation Causes Brittle Fracture of C
α
‐C
β
Bonds in Neurotransmitters. ChemistrySelect 2019. [DOI: 10.1002/slct.201900936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanhua Yang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences. Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Anthony M. S. Pembere
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences. Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences. Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
25
|
Guo M, Wu H, Zhang H, Luo Z. Furthering the Diverse Hydrogen Atom Transfer and Carbon Bond Dissociation of Amino Acids under Vacuum Ultraviolet. ChemistrySelect 2019. [DOI: 10.1002/slct.201803564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| |
Collapse
|
26
|
Chatterjee P, Ghosh AK, Samanta M, Chakraborty T. Barrierless Proton Transfer in the Weak C-H···O Hydrogen Bonded Methacrolein Dimer upon Nonresonant Multiphoton Ionization in the Gas Phase. J Phys Chem A 2018; 122:5563-5573. [PMID: 29878781 DOI: 10.1021/acs.jpca.8b02597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intermolecular proton transfer (IMPT) in a C-H···O hydrogen bonded dimer of an α,β-unsaturated aldehyde, methacrolein (MC), upon nonresonant multiphoton ionization by 532 nm laser pulses (10 ns), has been investigated using time-of-flight (TOF) mass spectrometry under supersonic cooling condition. The mass peaks corresponding to both the protonated molecular ion [(MC)H+] and intact dimer cation [(MC)2]•+ show up in the mass spectra, and the peak intensity of the former increases proportionately with the latter with betterment of the jet cooling conditions. The observations indicate that [(MC)2]•+ is the likely precursor of (MC)H+ and, on the basis of electronic structure calculations, IMPT in the dimer cation has been shown to be the key reaction for formation of the latter. Laser power dependences of ion yields indicate that at this wavelength the dimer is photoionized by means of 4-photon absorption process, and the total 4-photon energy is nearly the same as the predicted vertical ionization energy of the dimer. Electronic structure calculations reveal that the optimized structures of [(MC)2]•+ correspond to a proton transferred configuration wherein the aldehydic hydrogen is completely shifted to the carbonyl oxygen of the neighboring moiety. Potential energy scans along the C-H···O coordinate also show that the IMPT in [(MC)2]•+ is a barrierless process.
Collapse
Affiliation(s)
- Piyali Chatterjee
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Arup K Ghosh
- Department of Chemistry , Dharmsinh Desai University , Nadiad 387001 , Gujarat , India
| | - Monoj Samanta
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Tapas Chakraborty
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
27
|
Chisca D, Croitor L, Petuhov O, Kulikova OV, Volodina GF, Coropceanu EB, Masunov AE, Fonari MS. Tuning structures and emissive properties in a series of Zn(ii) and Cd(ii) coordination polymers containing dicarboxylic acids and nicotinamide pillars. CrystEngComm 2018. [DOI: 10.1039/c7ce01988b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the metal, ligand, and solvent on structures and emission properties was monitored.
Collapse
Affiliation(s)
- Diana Chisca
- Institute of Applied Physics
- Academy of Sciences of R. Moldova
- Chisinau
- Moldova
- Tiraspol State University
| | - Lilia Croitor
- Institute of Applied Physics
- Academy of Sciences of R. Moldova
- Chisinau
- Moldova
| | - Oleg Petuhov
- Institute of Chemistry
- Academy of Sciences of R. Moldova
- Chisinau
- Moldova
| | - Olga V. Kulikova
- Institute of Applied Physics
- Academy of Sciences of R. Moldova
- Chisinau
- Moldova
| | - Galina F. Volodina
- Institute of Applied Physics
- Academy of Sciences of R. Moldova
- Chisinau
- Moldova
| | - Eduard B. Coropceanu
- Tiraspol State University
- Chisinau
- Moldova
- Institute of Chemistry
- Academy of Sciences of R. Moldova
| | - Artëm E. Masunov
- NanoScience Technology Center
- Department of Chemistry
- Department of Physics, and
- Florida Solar Energy Center
- University of Central Florida
| | - Marina S. Fonari
- Institute of Applied Physics
- Academy of Sciences of R. Moldova
- Chisinau
- Moldova
| |
Collapse
|
28
|
Heringa MF, Slowik JG, Goldmann M, Signorell R, Hemberger P, Bodi A. The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid. Chemphyschem 2017; 18:3595-3604. [PMID: 28987011 DOI: 10.1002/cphc.201700983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/30/2017] [Indexed: 11/10/2022]
Abstract
The valence threshold photoionization of oleic acid has been studied using synchrotron VUV radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. An oleic acid aerosol beam was impacted on a copper thermodesorber, heated to 130 °C, to evaporate the particles quantitatively. Upon threshold photoionization, oleic acid produces the intact parent ion first, followed by dehydration at higher energies. Starting at ca. 10 eV, a large number of fragment ions slowly rise suggesting several fragmentation coordinates with quasi-degenerate activation energies. However, water loss is the dominant low-energy dissociation channel, and it is shown to be closely related to the unsaturated carbon chain. In the lowest-barrier process, one of the four allylic hydrogen atoms is transferred to the carboxyl group to form the leaving water molecule and a cyclic ketone fragment ion. A statistical model to analyze the breakdown diagram and measured rate constants yields a 0 K appearance energy of 9.77 eV, which can be compared with the density functional theory result of 9.19 eV. Alternative H-transfer steps yielding a terminal C=O group are ruled out based on energetics and kinetics arguments. Some of the previous photoionization mass spectrometric studies also reported 2 amu and 26 amu loss fragment ions, corresponding to hydrogen and acetylene loss. We could not identify such peaks in the mass spectrum of oleic acid.
Collapse
Affiliation(s)
- Maarten F Heringa
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.,Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Maximilian Goldmann
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
29
|
Shen CC, Tsai TT, Wu JY, Ho JW, Chen YW, Cheng PY. Watching proton transfer in real time: Ultrafast photoionization-induced proton transfer in phenol-ammonia complex cation. J Chem Phys 2017; 147:164302. [PMID: 29096460 DOI: 10.1063/1.5001375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH3) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH3]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.
Collapse
Affiliation(s)
- Ching-Chi Shen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Tsung-Ting Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jr-Wei Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Yi-Wei Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| |
Collapse
|
30
|
Poštulka J, Slavíček P, Fedor J, Fárník M, Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J Phys Chem B 2017; 121:8965-8974. [DOI: 10.1021/acs.jpcb.7b07390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Poštulka
- Department
of Physical Chemistry, University of Chemistry and Technology, Technická
5, Prague 6, Czech Republic
| | - P. Slavíček
- Department
of Physical Chemistry, University of Chemistry and Technology, Technická
5, Prague 6, Czech Republic
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Fedor
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - M. Fárník
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Kočišek
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
31
|
Krylov AI. The Quantum Chemistry of Open-Shell Species. REVIEWS IN COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1002/9781119356059.ch4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anna I. Krylov
- Department of Chemistry; University of Southern California; Los Angeles CA United States
| |
Collapse
|
32
|
Galbraith MCE, Smeenk CTL, Reitsma G, Marciniak A, Despré V, Mikosch J, Zhavoronkov N, Vrakking MJJ, Kornilov O, Lépine F. XUV-induced reactions in benzene on sub-10 fs timescale: nonadiabatic relaxation and proton migration. Phys Chem Chem Phys 2017; 19:19822-19828. [DOI: 10.1039/c7cp02255g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Short XUV pulses produce excited cationic states of benzene. Their dynamics are probed by few-cycle VIS/NIR pulses. Very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation. In the CH3+ fragmentation channel a non-trivial transient behaviour is observed.
Collapse
Affiliation(s)
| | | | - G. Reitsma
- Max-Born-Institut
- Max-Born-Straße 2A
- 12489 Berlin
- Germany
| | - A. Marciniak
- Institut Lumière Matière
- Université Lyon 1
- CNRS
- UMR 5306
- 10 rue Ada Byron
| | - V. Despré
- Institut Lumière Matière
- Université Lyon 1
- CNRS
- UMR 5306
- 10 rue Ada Byron
| | - J. Mikosch
- Max-Born-Institut
- Max-Born-Straße 2A
- 12489 Berlin
- Germany
| | | | | | - O. Kornilov
- Max-Born-Institut
- Max-Born-Straße 2A
- 12489 Berlin
- Germany
| | - F. Lépine
- Institut Lumière Matière
- Université Lyon 1
- CNRS
- UMR 5306
- 10 rue Ada Byron
| |
Collapse
|
33
|
Hochlaf M. Advances in spectroscopy and dynamics of small and medium sized molecules and clusters. Phys Chem Chem Phys 2017; 19:21236-21261. [DOI: 10.1039/c7cp01980g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations of the spectroscopy and dynamics of small- and medium-sized molecules and clusters represent a hot topic in atmospheric chemistry, biology, physics, atto- and femto-chemistry and astrophysics.
Collapse
Affiliation(s)
- Majdi Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| |
Collapse
|
34
|
Ruckenbauer M, Mai S, Marquetand P, González L. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil. J Chem Phys 2016; 144:074303. [PMID: 26896982 DOI: 10.1063/1.4941948] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine π system. The excited-state photoelectron spectra of 2-thiouracil show bands at much lower energies than in the ground state spectrum, allowing to monitor the excited-state population in time-resolved UV photoelectron spectroscopy experiments. However, the results also reveal that single-photon ionization probe schemes alone will not allow monitoring all photodynamic processes existing in 2-thiouracil. Especially, due to overlapping bands of singlet and triplet states the clear observation of intersystem crossing will be hampered.
Collapse
Affiliation(s)
- Matthias Ruckenbauer
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
35
|
Ma J, Li H, Zhang X, Tang WJ, Li M, Phillips DL. Competition between "Meta Effect" Photochemical Reactions of Selected Benzophenone Compounds Having Two Different Substituents at Meta Positions. J Org Chem 2016; 81:9553-9559. [PMID: 27661756 DOI: 10.1021/acs.joc.6b00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies conducted on some "meta effect" photochemical reactions focused on aromatic carbonyls having a substitution on one meta position of the benzophenone (BP) and anthraquinone parent compound. In this paper, two different substitutions were introduced with one at each meta position of the BP parent compound to investigate possible competition between different types of meta effect photochemistry observed in acidic solutions containing water. The photochemical pathways of 3-hydroxymethyl-3'-fluorobenzophenone (1) and 3-fluoro-3'-methylbenzophenone (2) were explored in several solvents, including acidic water-containing solutions, using time-resolved spectroscopic experiments and density functional theory computations. It is observed that 1 can undergo a photoredox reaction and 2 can undergo a meta-methyl deprotonation reaction in acidic water-containing solutions. Comparison of these results to those previously reported for the analogous BP derivatives that contain only one substituent at a meta position indicates the introduction of electron-donating (such as hydroxyl) and electron-withdrawing groups (such as F) on the meta positions of BP can influence the meta effect photochemical reactions. It was found that involvement of an electron-donating moiety facilitates the meta effect photochemical reactions by stabilizing the crucial reactive biradical intermediate associated with the meta effect photochemical reactions.
Collapse
Affiliation(s)
- Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , 229 Taibai N Road, Xi'an, Shaanxi, People's Republic of China
| | - Huai Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , 229 Taibai N Road, Xi'an, Shaanxi, People's Republic of China
| | - Xiting Zhang
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong 11111
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Medical University , Meishan Road 81, Hefei 230032, People's Republic of China
| | - Mingde Li
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong 11111
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong 11111
| |
Collapse
|
36
|
Pairas GN, Tsoungas PG. H-Bond: Τhe Chemistry-Biology H-Bridge. ChemistrySelect 2016; 1:4520-4532. [PMID: 32328512 PMCID: PMC7169486 DOI: 10.1002/slct.201600770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
H-bonding, as a non covalent stabilizing interaction of diverse nature, has a central role in the structure, function and dynamics of chemical and biological processes, pivotal to molecular recognition and eventually to drug design. Types of conventional and non conventional (H-H, dihydrogen, H- π, CH- π, anti- , proton coordination and H-S) H-bonding interactions are discussed as well as features emerging from their interplay, such as cooperativity (σ- and π-) effects and allostery. Its utility in many applications is described. Catalysis, proton and electron transfer processes in various materials or supramolecular architectures of preorganized hosts for guest binding, are front-line technology. The H-bond-related concept of proton transfer (PT) addresses energy issues or deciphering the mechanism of many natural and synthetic processes. PT is also of paramount importance in the functions of cells and is assisted by large complex proteins embedded in membranes. Both intermolecular and intramolecular PT in H-bonded systems has received attention, theoretically and experimentally, using prototype molecules. It is found in rearrangement reactions, protein functions, and enzyme reactions or across proton channels and pumps. Investigations on the competition between intra- and intermolecular H bonding are discussed. Of particular interest is the H-bond furcation, a common phenomenon in protein-ligand binding. Multiple H-bonding (H-bond furcation) is observed in supramolecular structures.
Collapse
Affiliation(s)
- George N. Pairas
- Department of PharmacyLaboratory of Medicinal ChemistryUniversity of PatrasGR-265 04PatrasGreece
| | - Petros G. Tsoungas
- Laboratory of BiochemistryHellenic Pasteur Institute127 Vas. Sofias Ave.GR-115 21AthensGreece
| |
Collapse
|
37
|
Xie M, Matsuda Y, Fujii A. Infrared Spectroscopic Investigation of the Acidic CH Bonds in Cationic n-Alkanes: Pentane, Hexane, and Heptane. J Phys Chem A 2016; 120:6351-6. [DOI: 10.1021/acs.jpca.6b05567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Xie
- Department of Chemistry,
Graduate School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiyuki Matsuda
- Department of Chemistry,
Graduate School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry,
Graduate School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
38
|
Kostko O, Bandyopadhyay B, Ahmed M. Vacuum Ultraviolet Photoionization of Complex Chemical Systems. Annu Rev Phys Chem 2016; 67:19-40. [DOI: 10.1146/annurev-physchem-040215-112553] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Biswajit Bandyopadhyay
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| |
Collapse
|
39
|
|
40
|
Chalabala J, Slavíček P. Nonadiabatic dynamics of floppy hydrogen bonded complexes: the case of the ionized ammonia dimer. Phys Chem Chem Phys 2016; 18:20422-32. [DOI: 10.1039/c6cp02714h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Non-adiabatic dynamics of a floppy hydrogen bonded ammonia dimer was studied by ab initio molecular dynamics simulations.
Collapse
Affiliation(s)
- Jan Chalabala
- University of Chemistry and Technology
- Department of Physical Chemistry
- 16628 Prague 6
- Czech Republic
| | - Petr Slavíček
- University of Chemistry and Technology
- Department of Physical Chemistry
- 16628 Prague 6
- Czech Republic
| |
Collapse
|
41
|
Markush P, Bolognesi P, Cartoni A, Rousseau P, Maclot S, Delaunay R, Domaracka A, Kocisek J, Castrovilli MC, Huber BA, Avaldi L. The role of the environment in the ion induced fragmentation of uracil. Phys Chem Chem Phys 2016; 18:16721-9. [DOI: 10.1039/c6cp01940d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation of uracil molecules and pure and nano-hydrated uracil clusters by 12C4+ ion impact is investigated.
Collapse
Affiliation(s)
| | | | - Antonella Cartoni
- CNR-ISM
- Monterotondo Scalo
- Italy
- Dipartimento di Chimica
- Sapienza Università di Roma
| | - Patrick Rousseau
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Sylvain Maclot
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Rudy Delaunay
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Alicja Domaracka
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Jaroslav Kocisek
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
- J. Heyrovský Institute of Physical Chemistry
| | | | - Bernd A. Huber
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | | |
Collapse
|
42
|
Kostko O, Troy TP, Bandyopadhyay B, Ahmed M. Proton transfer in acetaldehyde–water clusters mediated by a single water molecule. Phys Chem Chem Phys 2016; 18:25569-25573. [DOI: 10.1039/c6cp04916h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bridging molecules: a single water molecule enhances the stability of symmetric acetaldehyde water clusters, and acts as a bridge for the transport of a proton between two acetaldehyde molecules.
Collapse
Affiliation(s)
- Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Tyler P. Troy
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
43
|
Matsuda Y, Harigaya H, Xie M, Takahashi K, Fujii A. Infrared spectroscopic investigations of cationic ethanol, propanol, and butanol. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Schneider M, Soshnikov DY, Holland DMP, Powis I, Antonsson E, Patanen M, Nicolas C, Miron C, Wormit M, Dreuw A, Trofimov AB. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study. J Chem Phys 2015; 143:144103. [DOI: 10.1063/1.4931643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. Schneider
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - D. Yu. Soshnikov
- Favorsky’s Institute of Chemistry, SB RAS, 664033 Irkutsk, Russia
- Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia
| | - D. M. P. Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - I. Powis
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - E. Antonsson
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - M. Patanen
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - C. Nicolas
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - C. Miron
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - M. Wormit
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - A. Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - A. B. Trofimov
- Favorsky’s Institute of Chemistry, SB RAS, 664033 Irkutsk, Russia
- Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia
| |
Collapse
|
45
|
Neustetter M, Aysina J, da Silva FF, Denifl S. The Effect of Solvation on Electron Attachment to Pure and Hydrated Pyrimidine Clusters. Angew Chem Int Ed Engl 2015; 54:9124-6. [PMID: 26110285 PMCID: PMC4832840 DOI: 10.1002/anie.201503733] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/09/2022]
Abstract
The interaction of low‐energy electrons with biomolecules plays an important role in the radiation‐induced alteration of biological tissue at the molecular level. At electron energies below 15 eV, dissociative electron attachment is one of the most important processes in terms of the chemical transformation of molecules. So far, a common approach to study processes at the molecular level has been to carry out investigations with single biomolecular building blocks like pyrimidine as model molecules. Electron attachment to single pyrimidine, as well as to pure clusters and hydrated clusters, was investigated in this study. In striking contrast to the situation with isolated molecules and hydrated clusters, where no anionic monomer is detectable, we were able to observe the molecular anion for the pure clusters. Furthermore, there is evidence that solvation effectively prevents the ring fragmentation of pyrimidine after electron capture.
Collapse
Affiliation(s)
- Michael Neustetter
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck (Austria)
| | - Julia Aysina
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck (Austria)
| | - Filipe Ferreira da Silva
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal).
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck (Austria).
| |
Collapse
|
46
|
Neustetter M, Aysina J, da Silva FF, Denifl S. Einfluss der Solvatisierung auf die Elektronenanlagerung an Pyrimidin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Xie M, Matsuda Y, Fujii A. Infrared Spectroscopic Investigation of Photoionization-Induced Acidic C–H Bonds in Cyclic Ethers. J Phys Chem A 2015; 119:5668-75. [DOI: 10.1021/acs.jpca.5b03406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Xie
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba,
Aoba-ku, Sendai, 980-8578 Miyagi, Japan
| | - Yoshiyuki Matsuda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba,
Aoba-ku, Sendai, 980-8578 Miyagi, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba,
Aoba-ku, Sendai, 980-8578 Miyagi, Japan
| |
Collapse
|
48
|
Matsuda Y, Endo T, Mikami N, Fujii A, Morita M, Takahashi K. The Large Variation in Acidity of Diethyl Ether Cation Induced by Internal Rotation about a Single Covalent Bond. J Phys Chem A 2015; 119:4885-90. [DOI: 10.1021/acs.jpca.5b02604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshiyuki Matsuda
- Department of Chemistry, Graduate School
of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
- Institute for Excellence in Higher Education, Tohoku University, Kawauchi 41, Aoba-ku, Sendai, 980-8576, Japan
| | - Tomoya Endo
- Department of Chemistry, Graduate School
of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Naohiko Mikami
- Department of Chemistry, Graduate School
of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School
of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Masato Morita
- Institute of Atomic
and Molecular Sciences, Academia Sinica, P.O.Box 23-166, Taipei,10617 Taiwan R.O.C
| | - Kaito Takahashi
- Institute of Atomic
and Molecular Sciences, Academia Sinica, P.O.Box 23-166, Taipei,10617 Taiwan R.O.C
| |
Collapse
|
49
|
Yoder BL, Bravaya KB, Bodi A, West AHC, Sztáray B, Signorell R. Barrierless proton transfer across weak CH⋯O hydrogen bonds in dimethyl ether dimer. J Chem Phys 2015; 142:114303. [DOI: 10.1063/1.4914456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bruce L. Yoder
- Laboratory of Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, USA
| | - Andras Bodi
- Molecular Dynamics Group, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Adam H. C. West
- Laboratory of Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Bálint Sztáray
- Department of Chemistry, University of the Pacific, Stockton, California 95211, USA
| | - Ruth Signorell
- Laboratory of Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
50
|
Xiao W, Hu Y, Li W, Guan J, Liu F, Shan X, Sheng L. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation. J Chem Phys 2015; 142:024306. [DOI: 10.1063/1.4905501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Weizhan Xiao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Weixing Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Jiwen Guan
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Fuyi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Xiaobin Shan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Liusi Sheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| |
Collapse
|