1
|
Wesener MC, Weiler SME, Bissinger M, Klessinger TF, Rose F, Merker S, Luzarowski M, Ruppert T, Helm B, Klingmüller U, Schirmacher P, Breuhahn K. CRKL Enhances YAP Signaling through Binding and JNK/JUN Pathway Activation in Liver Cancer. Int J Mol Sci 2024; 25:8549. [PMID: 39126118 PMCID: PMC11312940 DOI: 10.3390/ijms25158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The Hippo pathway transducers yes-associated protein (YAP) and WW-domain containing transcription regulator 1 (WWTR1/TAZ) are key regulators of liver tumorigenesis, promoting tumor formation and progression. Although the first inhibitors are in clinical trials, targeting the relevant upstream regulators of YAP/TAZ activity could prove equally beneficial. To identify regulators of YAP/TAZ activity in hepatocarcinoma (HCC) cells, we carried out a proximity labelling approach (BioID) coupled with mass spectrometry. We verified CRK-like proto-oncogene adaptor protein (CRKL) as a new YAP-exclusive interaction partner. CRKL is highly expressed in HCC patients, and its expression is associated with YAP activity as well as poor survival prognosis. In vitro experiments demonstrated CRKL-dependent cell survival and the loss of YAP binding induced through actin disruption. Moreover, we delineated the activation of the JNK/JUN pathway by CRKL, which promoted YAP transcription. Our data illustrate that CRKL not only promoted YAP activity through its binding but also through the induction of YAP transcription by JNK/JUN activation. This emphasizes the potential use of targeting the JNK/JUN pathway to suppress YAP expression in HCC patients.
Collapse
Affiliation(s)
- Marie C. Wesener
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sofia M. E. Weiler
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias F. Klessinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Merker
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Marcin Luzarowski
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Barbara Helm
- DKFZ, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Ursula Klingmüller
- DKFZ, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Stergas HR, Kalbag Z, St Clair RM, Talbot JC, Ballif BA, Ebert AM. Crk adaptor proteins are necessary for the development of the zebrafish retina. Dev Dyn 2021; 251:362-376. [PMID: 34268820 DOI: 10.1002/dvdy.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The development of the central nervous system (CNS) requires critical cell signaling molecules to coordinate cell proliferation and migration in order to structure the adult tissue. Chicken tumor virus #10 Regulator of Kinase (CRK) and CRK-like (CRKL) are adaptor proteins with pre-metazoan ancestry and are known to be required for patterning laminated structures downstream of Reelin (RELN), such as the cerebral cortex, cerebellum, and hippocampus. CRK and CRKL also play crucial roles in a variety of other growth factor and extracellular matrix signaling cascades. The neuronal retina is another highly laminated structure within the CNS that is dependent on migration for proper development, but the cell signaling mechanisms behind neuronal positioning in the retina are only partly understood. RESULTS We find that crk and crkl have largely overlapping expression within the developing zebrafish nervous system. We find that their disruption results in smaller eye size and loss of retinal lamination. CONCLUSIONS Our data indicate that Crk adaptors are critical for proper development of the zebrafish neural retina in a crk/crkl dose-dependent manner.
Collapse
Affiliation(s)
- Helaina R Stergas
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Zoë Kalbag
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Riley M St Clair
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Jared C Talbot
- School of Biology and Ecology, The University of Maine, Orono, Maine, USA
| | - Bryan A Ballif
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Alicia M Ebert
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
3
|
Kanazawa T, Michida H, Uchino Y, Ishihara A, Zhang S, Tabata S, Suzuki Y, Imamoto A, Okada M. Cell shape-based chemical screening reveals an epigenetic network mediated by focal adhesions. FEBS J 2021; 288:5613-5628. [PMID: 33768715 DOI: 10.1111/febs.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Adapter proteins CRK and CRKL participate in a variety of signaling pathways, including cell adhesion, and fate regulation of mammalian cells. However, the molecular functions of CRK/CRKL in epigenetic regulation remain largely unknown. Here, we developed a pipeline to evaluate cell morphology using high-content image analysis combined with chemical screening of kinase and epigenetic modulators. We found that CRK/CRKL modulates gene regulatory networks associated with cell morphology through epigenetic alteration in mouse embryonic fibroblasts. Integrated epigenome and transcriptome analyses revealed that CRK/CRKL is involved in super-enhancer activity and upregulation of Cdt1, Rin1, and Spp1 expression for the regulation of cell morphology. Screening of a library of 80 epigenetic inhibitors showed that histone H3 modifiers, euchromatic histone methyltransferase 2 and mitogen- and stress-activated kinase 1, may be important for CRK/CRKL-mediated morphological changes. Taken together, our results indicate that CRK/CRKL plays a critical role in gene regulatory networks through epigenetic modification. DATABASES: Chromatin immunoprecipitation sequencing and RNA sequencing data were deposited in the DNA Data Bank of Japan under DRA011080 and DRA011081 accession numbers, respectively.
Collapse
Affiliation(s)
- Tomomi Kanazawa
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Hiroki Michida
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yuki Uchino
- Graduate School of Medical Life Sciences, Yokohama City University, Japan
| | - Akari Ishihara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Suxiang Zhang
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Sho Tabata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Akira Imamoto
- The Ben May Department for Cancer Research, The University of Chicago, IL, USA
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Japan.,Graduate School of Medical Life Sciences, Yokohama City University, Japan.,RIKEN Integrative Medical Sciences, Yokohama, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
4
|
Elmansuri AZ, Tanino MA, Mahabir R, Wang L, Kimura T, Nishihara H, Kinoshita I, Dosaka-Akita H, Tsuda M, Tanaka S. Novel signaling collaboration between TGF-β and adaptor protein Crk facilitates EMT in human lung cancer. Oncotarget 2017; 7:27094-107. [PMID: 27027347 PMCID: PMC5053635 DOI: 10.18632/oncotarget.8314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling adaptor protein Crk has been shown to play an important role in various human cancers. However, its regulatory machinery is not clear. Here, we demonstrated that Crk induced EMT in A549 human lung adenocarcinoma cells through differential regulation of Rac1/Snail and RhoA/Slug, leading to decreased expression of E-cadherin and increased N-cadherin, fibronectin, and MMP2 expression. Cancer cells with mesenchymal features produced TGF-β and also increased the levels of TGF-β receptor. TGF-β increased the endogenous levels of Crk and also augmented Crk-dependent expression of Snail and Slug, and conversely TGF-β receptor inhibitor suppressed the levels of Snail and Slug. Overexpression of Crk was observed at the invasive front of human lung cancer tissues and was significantly associated with poor prognosis. Thus, TGF-β and Crk collaborate to form a positive feedback loop to facilitate EMT, which may lead to the malignancy of human cancers possibly being affected by their microenvironment.
Collapse
Affiliation(s)
- Aiman Z Elmansuri
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mishie A Tanino
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Roshan Mahabir
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Lei Wang
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taichi Kimura
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep 2016; 6:18652. [PMID: 26728244 PMCID: PMC4700473 DOI: 10.1038/srep18652] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis.
Collapse
|
6
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
7
|
Contribution of Crk adaptor proteins to host cell and bacteria interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:372901. [PMID: 25506591 PMCID: PMC4260429 DOI: 10.1155/2014/372901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
The Crk adaptor family of proteins comprises the alternatively spliced CrkI and CrkII isoforms, as well as the paralog Crk-like (CrkL) protein, which is encoded by a different gene. Initially thought to be involved in signaling during apoptosis and cell adhesion, this ubiquitously expressed family of proteins is now known to play essential roles in integrating signals from a wide range of stimuli. In this review, we describe the structure and function of the different Crk proteins. We then focus on the emerging roles of Crk adaptors during Enterobacteriaceae pathogenesis, with special emphasis on the important human pathogens Salmonella, Shigella, Yersinia, and enteropathogenic Escherichia coli. Throughout, we remark on opportunities for future research into this intriguing family of proteins.
Collapse
|
8
|
Liu CH, Chen TC, Chau GY, Jan YH, Chen CH, Hsu CN, Lin KT, Juang YL, Lu PJ, Cheng HC, Chen MH, Chang CF, Ting YS, Kao CY, Hsiao M, Huang CYF. Analysis of protein-protein interactions in cross-talk pathways reveals CRKL protein as a novel prognostic marker in hepatocellular carcinoma. Mol Cell Proteomics 2013; 12:1335-49. [PMID: 23397142 DOI: 10.1074/mcp.o112.020404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Deciphering the network of signaling pathways in cancer via protein-protein interactions (PPIs) at the cellular level is a promising approach but remains incomplete. We used an in situ proximity ligation assay to identify and quantify 67 endogenous PPIs among 21 interlinked pathways in two hepatocellular carcinoma (HCC) cells, Huh7 (minimally migratory cells) and Mahlavu (highly migratory cells). We then applied a differential network biology analysis and determined that the novel interaction, CRKL-FLT1, has a high centrality ranking, and the expression of this interaction is strongly correlated with the migratory ability of HCC and other cancer cell lines. Knockdown of CRKL and FLT1 in HCC cells leads to a decrease in cell migration via ERK signaling and the epithelial-mesenchymal transition process. Our immunohistochemical analysis shows high expression levels of the CRKL and CRKL-FLT1 pair that strongly correlate with reduced disease-free and overall survival in HCC patient samples, and a multivariate analysis further established CRKL and the CRKL-FLT1 as novel prognosis markers. This study demonstrated that functional exploration of a disease network with interlinked pathways via PPIs can be used to discover novel biomarkers.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P. p130Cas: a key signalling node in health and disease. Cell Signal 2012; 25:766-77. [PMID: 23277200 DOI: 10.1016/j.cellsig.2012.12.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023]
Abstract
p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
Collapse
Affiliation(s)
- Angela Barrett
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, United Kingdom.
| | | | | | | | | |
Collapse
|