1
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
2
|
Deng T, Du L, Ding S, Peng X, Chen W, Yan Y, Hu B, Zhou J. Protein kinase Cdc7 supports viral replication by phosphorylating Avibirnavirus VP3 protein. J Virol 2023; 97:e0112523. [PMID: 37902398 PMCID: PMC10688373 DOI: 10.1128/jvi.01125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The Avibirnavirus infectious bursal disease virus is still an important agent which largely threatens global poultry farming industry economics. VP3 is a multifunctional scaffold structural protein that is involved in virus morphogenesis and the regulation of diverse cellular signaling pathways. However, little is known about the roles of VP3 phosphorylation during the IBDV life cycle. In this study, we determined that IBDV infection induced the upregulation of Cdc7 expression and phosphorylated the VP3 Ser13 site to promote viral replication. Moreover, we confirmed that the negative charge addition of phosphoserine on VP3 at the S13 site was essential for IBDV proliferation. This study provides novel insight into the molecular mechanisms of VP3 phosphorylation-mediated regulation of IBDV replication.
Collapse
Affiliation(s)
- Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Shuxiang Ding
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wenjing Chen
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Patel JA, Kim H. The TIMELESS effort for timely DNA replication and protection. Cell Mol Life Sci 2023; 80:84. [PMID: 36892674 PMCID: PMC9998586 DOI: 10.1007/s00018-023-04738-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
Accurate replication of the genome is fundamental to cellular survival and tumor prevention. The DNA replication fork is vulnerable to DNA lesions and damages that impair replisome progression, and improper control over DNA replication stress inevitably causes fork stalling and collapse, a major source of genome instability that fuels tumorigenesis. The integrity of the DNA replication fork is maintained by the fork protection complex (FPC), in which TIMELESS (TIM) constitutes a key scaffold that couples the CMG helicase and replicative polymerase activities, in conjunction with its interaction with other proteins associated with the replication machinery. Loss of TIM or the FPC in general results in impaired fork progression, elevated fork stalling and breakage, and a defect in replication checkpoint activation, thus underscoring its pivotal role in protecting the integrity of both active and stalled replication forks. TIM is upregulated in multiple cancers, which may represent a replication vulnerability of cancer cells that could be exploited for new therapies. Here, we discuss recent advances on our understanding of the multifaceted roles of TIM in DNA replication and stalled fork protection, and how its complex functions are engaged in collaboration with other genome surveillance and maintenance factors.
Collapse
Affiliation(s)
- Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
- Stony Brook Cancer Center and Renaissance School of Medicine, Stony Brook University, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Claspin-Dependent and -Independent Chk1 Activation by a Panel of Biological Stresses. Biomolecules 2023; 13:biom13010125. [PMID: 36671510 PMCID: PMC9855620 DOI: 10.3390/biom13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Replication stress has been suggested to be an ultimate trigger of carcinogenesis. Oncogenic signal, such as overexpression of CyclinE, has been shown to induce replication stress. Here, we show that various biological stresses, including heat, oxidative stress, osmotic stress, LPS, hypoxia, and arsenate induce activation of Chk1, a key effector kinase for replication checkpoint. Some of these stresses indeed reduce the fork rate, inhibiting DNA replication. Analyses of Chk1 activation in the cell population with Western analyses showed that Chk1 activation by these stresses is largely dependent on Claspin. On the other hand, single cell analyses with Fucci cells indicated that while Chk1 activation during S phase is dependent on Claspin, that in G1 is mostly independent of Claspin. We propose that various biological stresses activate Chk1 either directly by stalling DNA replication fork or by some other mechanism that does not involve replication inhibition. The former pathway predominantly occurs in S phase and depends on Claspin, while the latter pathway, which may occur throughout the cell cycle, is largely independent of Claspin. Our findings provide evidence for novel links between replication stress checkpoint and other biological stresses and point to the presence of replication-independent mechanisms of Chk1 activation in mammalian cells.
Collapse
|
5
|
Yang CC, Masai H. Claspin is Required for Growth Recovery from Serum Starvation through Regulating the PI3K-PDK1-mTOR Pathway in Mammalian Cells. Mol Cell Biol 2023; 43:1-21. [PMID: 36720467 PMCID: PMC9936878 DOI: 10.1080/10985549.2022.2160598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Claspin plays multiple important roles in regulation of DNA replication as a mediator for the cellular response to replication stress, an integral replication fork factor that facilitates replication fork progression and a factor that promotes initiation by recruiting Cdc7 kinase. Here, we report a novel role of Claspin in growth recovery from serum starvation, which requires the activation of PI3 kinase (PI3K)-PDK1-Akt-mTOR pathways. In the absence of Claspin, cells do not proceed into S phase and eventually die partially in a ROS- and p53-dependent manner. Claspin directly interacts with PI3K and mTOR, and is required for activation of PI3K-PDK1-mTOR and for that of mTOR downstream factors, p70S6K and 4EBP1, but not for p38 MAPK cascade during the recovery from serum starvation. PDK1 physically interacts with Claspin, notably with CKBD, in a manner dependent on phosphorylation of the latter protein, and is required for interaction of mTOR with Claspin. Thus, Claspin plays a novel role as a key regulator for nutrition-induced proliferation/survival signaling by activating the mTOR pathway. The results also suggest a possibility that Claspin may serve as a common mediator that receives signals from different PI3K-related kinases and transmit them to specific downstream kinases.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
6
|
Persyn E, Wahlen S, Kiekens L, Van Loocke W, Siwe H, Van Ammel E, De Vos Z, Van Nieuwerburgh F, Matthys P, Taghon T, Vandekerckhove B, Van Vlierberghe P, Leclercq G. IRF2 is required for development and functional maturation of human NK cells. Front Immunol 2022; 13:1038821. [PMID: 36544762 PMCID: PMC9762550 DOI: 10.3389/fimmu.2022.1038821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes that play an important role in the first line of defense against malignant or virus-infected cells. A better understanding of the transcriptional regulation of human NK cell differentiation is crucial to improve the efficacy of NK cell-mediated immunotherapy for cancer treatment. Here, we studied the role of the transcription factor interferon regulatory factor (IRF) 2 in human NK cell differentiation by stable knockdown or overexpression in cord blood hematopoietic stem cells and investigated its effect on development and function of the NK cell progeny. IRF2 overexpression had limited effects in these processes, indicating that endogenous IRF2 expression levels are sufficient. However, IRF2 knockdown greatly reduced the cell numbers of all early differentiation stages, resulting in decimated NK cell numbers. This was not caused by increased apoptosis, but by decreased proliferation. Expression of IRF2 is also required for functional maturation of NK cells, as the remaining NK cells after silencing of IRF2 had a less mature phenotype and showed decreased cytotoxic potential, as well as a greatly reduced cytokine secretion. Thus, IRF2 plays an important role during development and functional maturation of human NK cells.
Collapse
Affiliation(s)
- Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hannah Siwe
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Zenzi De Vos
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium,*Correspondence: Georges Leclercq,
| |
Collapse
|
7
|
Regulation of ATR-CHK1 signaling by ubiquitination of CLASPIN. Biochem Soc Trans 2022; 50:1471-1480. [PMID: 36196914 DOI: 10.1042/bst20220729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
DNA replication forks are frequently forced into stalling by persistent DNA aberrations generated from endogenous or exogenous insults. Stalled replication forks are catastrophic for genome integrity and cell survival if not immediately stabilized. The ataxia-telangiectasia and RAD3-related kinase (ATR)-CLASPIN-checkpoint kinase 1 (CHK1) signaling cascade is a pivotal mechanism that initiates cell-cycle checkpoints and stabilizes stalled replication forks, assuring the faithful duplication of genomic information before entry into mitosis. The timely recovery of checkpoints after stressors are resolved is also crucial for normal cell proliferation. The precise activation and inactivation of ATR-CHK1 signaling are usually efficiently regulated by turnover and the cellular re-localization of the adaptor protein CLASPIN. The ubiquitination-proteasome-mediated degradation of CLASPIN, driven by APC/CCDH1 and SCFβTrCP, results in a cell-cycle-dependent fluctuation pattern of CLASPIN levels, with peak levels seen in S/G2 phase when it functions in the DNA replisome or as an adaptor protein in ATR-CHK1 signaling under replication stress. Deubiquitination mediated by a series of ubiquitin-specific protease family proteins releases CLASPIN from proteasome-dependent destruction and activates the ATR-CHK1 checkpoint to overcome replication stress. Moreover, the non-proteolytic ubiquitination of CLASPIN also affects CHK1 activation by regulating CLASPIN localization. In this review, we discuss the functions of CLASPIN ubiquitination with specific linkage types in the regulation of the ATR-CHK1 signaling pathway. Research in this area is progressing at pace and provides promising chemotherapeutic targets.
Collapse
|
8
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
9
|
Liu R, Huang Y. CDC7 as a novel biomarker and druggable target in cancer. Clin Transl Oncol 2022; 24:1856-1864. [PMID: 35657477 DOI: 10.1007/s12094-022-02853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Due to the bottlenecks encountered in traditional treatment for tumor, more effective drug targets need to be developed. Cell division cycle 7 kinase plays an important role in DNA replication, DNA repair and recombination signaling pathways. In this review, we first describe recent studies on the role of CDC7 in DNA replication in normal human tissues, and then we integrate new evidence focusing on the important role of CDC7 in replication stress tolerance of tumor cells and its impact on the prognosis of clinical oncology patients. Finally, we comb through the CDC7 inhibitors identified in recent studies as a reference for further research in clinical practice.
Collapse
Affiliation(s)
- Runze Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021; 40:e108819. [PMID: 34694004 PMCID: PMC8634136 DOI: 10.15252/embj.2021108819] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Å cryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.
Collapse
|
11
|
Matos-Rodrigues GE, Martins RAP. An Eye in the Replication Stress Response: Lessons From Tissue-Specific Studies in vivo. Front Cell Dev Biol 2021; 9:731308. [PMID: 34805142 PMCID: PMC8599991 DOI: 10.3389/fcell.2021.731308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
Several inherited human syndromes that severely affect organogenesis and other developmental processes are caused by mutations in replication stress response (RSR) genes. Although the molecular machinery of RSR is conserved, disease-causing mutations in RSR-genes may have distinct tissue-specific outcomes, indicating that progenitor cells may differ in their responses to RSR inactivation. Therefore, understanding how different cell types respond to replication stress is crucial to uncover the mechanisms of RSR-related human syndromes. Here, we review the ocular manifestations in RSR-related human syndromes and summarize recent findings investigating the mechanisms of RSR during eye development in vivo. We highlight a remarkable heterogeneity of progenitor cells responses to RSR inactivation and discuss its implications for RSR-related human syndromes.
Collapse
Affiliation(s)
- Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Cai C, Luo J, Liu Q, Liu Z, Zhao Y, Wu X, Yuegao Y, Lei Y, Lu J, Wang Y, Cai Z, Duan X, Lei M, Gu D, Liu Y. Claspin Overexpression Promotes Tumor Progression and Predicts Poor Clinical Outcome in Prostate Cancer. Genet Test Mol Biomarkers 2021; 25:131-139. [PMID: 33596143 DOI: 10.1089/gtmb.2020.0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Claspin (CLSPN) expression is acknowledged as a poor clinical prognostic factor in various tumors. However, the clinical characteristics and biological functions of CLSPN in prostate cancer (PCa) are still to be clarified. The aim of our study was to evaluate the association of CLSPN expression during PCa progression and its potential role in prognosis. Methods: We analyzed mRNA expression of the CLSPN gene with various clinicopathological features using the Cancer Genome Atlas and GSE21032 dataset. Immunohistochemical assays were used to detect the protein expression levels of CLSPN in human PCa tissue microarrays. Furthermore, we characterized the role of CLSPN in PCa progression through in vitro experiments using a CLSPN knockout. Results: Immunohistochemistry and public datasets revealed that CLSPN expression was increased in PCa with: a high Gleason score; advanced pathological stage; and positive surgical margins. In addition, upregulation of CLSPN was correlated with shorter biochemical recurrence (BCR)-free survival and overall survival. After we knocked-out CLSPN in DU145 and LNCaP cells, the in vitro phenotypic results showed that the ability of the knockouts to proliferate, migrate, and invade was attenuated; but that apoptosis was promoted. Conclusions: Our data support an oncogenic role for CLSPN in PCa progression. Moreover, increased CLSPN expression was identified as an independent factor in predicting bCR-free survival and disease-free survival in PCa patients.
Collapse
Affiliation(s)
- Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Jiexin Luo
- Department of Urology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Qinwei Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | | | - Yan Zhao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Xiangkun Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Yuanzhi Yuegao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Yeci Lei
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Jianming Lu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, Guangzhou, China
| | - Ying Wang
- Medical Ultrasound Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Ming Lei
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Di Gu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Yongda Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University and Guangdong Key Laboratory of Urology, Guangzhou, China
| |
Collapse
|
13
|
Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PRM, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020; 77:4093-4115. [PMID: 31820036 PMCID: PMC7532973 DOI: 10.1007/s00018-019-03399-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maciej Lalowski
- Faculty of Medicine, Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- EV Group and EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Implications of CLSPN Variants in Cellular Function and Susceptibility to Cancer. Cancers (Basel) 2020; 12:cancers12092396. [PMID: 32847043 PMCID: PMC7565888 DOI: 10.3390/cancers12092396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
Claspin is a multifunctional protein that participates in physiological processes essential for cell homeostasis that are often defective in cancer, namely due to genetic changes. It is conceivable that Claspin gene (CLSPN) alterations may contribute to cancer development. Therefore, CLSPN germline alterations were characterized in sporadic and familial breast cancer and glioma samples, as well as in six cancer cell lines. Their association to cancer susceptibility and functional impact were investigated. Eight variants were identified (c.-68C>T, c.17G>A, c.1574A>G, c.2230T>C, c.2028+16G>A, c.3595-3597del, and c.3839C>T). CLSPN c.1574A>G (p.Asn525Ser) was significantly associated with breast cancer and was shown to cause partial exon skipping and decreased Claspin expression and Chk1 activation in a minigene splicing assay and in signalling experiments, respectively. CLSPN c.2028+16G>A was significantly associated with familial breast cancer and glioma, whereas c.2230T>C (p.Ser744Pro), was exclusively detected in breast cancer and glioma patients, but not in healthy controls. The remaining variants lacked a significant association with cancer. Nevertheless, the c.-68C>T promoter variant increased transcriptional activity in a luciferase assay. In conclusion, some of the CLSPN variants identified in the present study appear to modulate Claspin’s function by altering CLSPN transcription and RNA processing, as well as Chk1 activation.
Collapse
|
15
|
Friedrich M, Wiedemann K, Reiche K, Puppel SH, Pfeifer G, Zipfel I, Binder S, Köhl U, Müller GA, Engeland K, Aigner A, Füssel S, Fröhner M, Peitzsch C, Dubrovska A, Rade M, Christ S, Schreiber S, Hackermüller J, Lehmann J, Toma MI, Muders MH, Sommer U, Baretton GB, Wirth M, Horn F. The Role of lncRNAs TAPIR-1 and -2 as Diagnostic Markers and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2020; 12:E1122. [PMID: 32365858 PMCID: PMC7280983 DOI: 10.3390/cancers12051122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023] Open
Abstract
In search of new biomarkers suitable for the diagnosis and treatment of prostate cancer, genome-wide transcriptome sequencing was carried out with tissue specimens from 40 prostate cancer (PCa) and 8 benign prostate hyperplasia patients. We identified two intergenic long non-coding transcripts, located in close genomic proximity, which are highly expressed in PCa. Microarray studies on a larger cohort comprising 155 patients showed a profound diagnostic potential of these transcripts (AUC~0.94), which we designated as tumor associated prostate cancer increased lncRNA (TAPIR-1 and -2). To test their therapeutic potential, knockdown experiments with siRNA were carried out. The knockdown caused an increase in the p53/TP53 tumor suppressor protein level followed by downregulation of a large number of cell cycle- and DNA-damage repair key regulators. Furthermore, in radiation therapy resistant tumor cells, the knockdown leads to a renewed sensitization of these cells to radiation treatment. Accordingly, in a preclinical PCa xenograft model in mice, the systemic application of nanoparticles loaded with siRNA targeting TAPIR-1 significantly reduced tumor growth. These findings point to a crucial role of TAPIR-1 and -2 in PCa.
Collapse
Affiliation(s)
- Maik Friedrich
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Karolin Wiedemann
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Kristin Reiche
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Sven-Holger Puppel
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Gabriele Pfeifer
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
| | - Ivonne Zipfel
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
| | - Stefanie Binder
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Gerd A. Müller
- Molecular Oncology, Medical School University of Leipzig, Semmelweisstr. 14, D-04103 Leipzig, Germany; (G.A.M.); (K.E.)
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Kurt Engeland
- Molecular Oncology, Medical School University of Leipzig, Semmelweisstr. 14, D-04103 Leipzig, Germany; (G.A.M.); (K.E.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany;
| | - Susanne Füssel
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (S.F.); (M.F.); (M.W.)
| | - Michael Fröhner
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (S.F.); (M.F.); (M.W.)
- Zeisigwaldklinik BETHANIEN, Zeisigwaldstraße 101, D-09130 Chemnitz, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, D-01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Anna Dubrovska
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, D-01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, D-01328 Dresden, Germany
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Sabina Christ
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Stephan Schreiber
- Helmholtz Centre for Environmental Research—UFZ, Young Investigators Group Bioinformatics & Transcriptomics, Permoserstr. 15, D-04318 Leipzig, Germany; (S.S.); (J.H.)
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research—UFZ, Young Investigators Group Bioinformatics & Transcriptomics, Permoserstr. 15, D-04318 Leipzig, Germany; (S.S.); (J.H.)
| | - Jörg Lehmann
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, GLP Test Facility, Perlickstr. 1, D-04103 Leipzig, Germany;
| | - Marieta I. Toma
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
- Institute of Pathology, Universitätsklinikum Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany
| | - Michael H. Muders
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
- Rudolf-Becker-Laboratory for Prostate Cancer Research, Institute of Pathology, Universitätsklinikum Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
| | - Gustavo B. Baretton
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
| | - Manfred Wirth
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (S.F.); (M.F.); (M.W.)
| | - Friedemann Horn
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| |
Collapse
|
16
|
Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene 2020; 39:3245-3257. [PMID: 32086441 DOI: 10.1038/s41388-020-1220-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/08/2022]
Abstract
ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA-resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3'-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR-CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR-CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.
Collapse
|
17
|
Yang CC, Kato H, Shindo M, Masai H. Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells. eLife 2019; 8:50796. [PMID: 31889509 PMCID: PMC6996922 DOI: 10.7554/elife.50796] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023] Open
Abstract
Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroyuki Kato
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Shindo
- Protein Analyses Laboratory, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
18
|
Rai R, Gu P, Broton C, Kumar-Sinha C, Chen Y, Chang S. The Replisome Mediates A-NHEJ Repair of Telomeres Lacking POT1-TPP1 Independently of MRN Function. Cell Rep 2019; 29:3708-3725.e5. [PMID: 31825846 PMCID: PMC7001145 DOI: 10.1016/j.celrep.2019.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/22/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres. In cells lacking MRN, single-stranded telomeric overhangs devoid of POT1-TPP1 do not recruit replication protein A (RPA), ATR-interacting protein (ATRIP), and RAD 51. Rather, components of the replisome complex, including Claspin, Proliferating cell nuclear antigen (PCNA), and Downstream neighbor of SON (DONSON), initiate DNA-PKcs-mediated p-CHK1 activation and A-NHEJ repair. In addition, Claspin directly interacts with TRF2 and recruits EXO1 to newly replicated telomeres to promote 5' end resection. Our data indicate that MRN is dispensable for the repair of dysfunctional telomeres lacking POT1-TPP1 and highlight the contributions of the replisome in telomere repair.
Collapse
Affiliation(s)
- Rekha Rai
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
| | - Peili Gu
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Cayla Broton
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Tri-Institutional MD/PhD Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yong Chen
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Sandy Chang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Abstract
The conserved serine-threonine kinase, Cdc7, plays a crucial role in initiation of DNA replication by facilitating the assembly of an initiation complex. Cdc7 is expressed at a high level and exhibits significant kinase activity not only during S-phase but also during G2/M-phases. A conserved mitotic kinase, Aurora B, is activated during M-phase by association with INCENP, forming the chromosome passenger complex with Borealin and Survivin. We show that Cdc7 phosphorylates and stimulates Aurora B kinase activity in vitro. We identified threonine-236 as a critical phosphorylation site on Aurora B that could be a target of Cdc7 or could be an autophosphorylation site stimulated by Cdc7-mediated phosphorylation elsewhere. We found that threonines at both 232 (that has been identified as an autophosphorylation site) and 236 are essential for the kinase activity of Aurora B. Cdc7 down regulation or inhibition reduced Aurora B activity in vivo and led to retarded M-phase progression. SAC imposed by paclitaxel was dramatically reversed by Cdc7 inhibition, similar to the effect of Aurora B inhibition under the similar situation. Our data show that Cdc7 contributes to M-phase progression and to spindle assembly checkpoint most likely through Aurora B activation.
Collapse
|
20
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
21
|
Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Selvi Gunel N, Sözmen E. Assessing Anticancer Potential of Blueberry Flavonoids, Quercetin, Kaempferol, and Gentisic Acid, Through Oxidative Stress and Apoptosis Parameters on HCT-116 Cells. J Med Food 2019; 22:1118-1126. [PMID: 31241392 DOI: 10.1089/jmf.2019.0098] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, natural products gained popularity with their anti-inflammatory and antioxidant effects mediated by chemical compounds within their composition. Study results offering them as palliative therapy options in cancer or as anticancer agents with high levels of cytotoxicity brought a new approach to combine cancer treatment protocols with these products. From a different perspective, edible types of these products are suggested in daily diets due to their potential cancer preventive effects. Our preliminary work was on blueberry extracts (Vaccinium myrtillus) as a main representative of these natural products, and the contents of the extracts were analyzed with liquid chromatography tandem mass spectrometry (LC MS/MS) to reveal the composition and distribution of polyphenolic compounds within. The most abundant polyphenols detected in V. myrtillus extracts were quercetin, kaempferol, and a phenolic acid, gentisic acid (GA). The compounds were further evaluated on treated HCT-116 cells for their potential anticancer effects by measuring total antioxidant status, total oxidant status, and 8-hydroxydeoxyguanosine levels for evaluation of oxidative stress and through protein array analysis and flow cytometric analysis for evaluation of apoptosis. In analysis of oxidative stress parameters, reduced total oxidant levels and reduced oxidative stress index levels were found in cells treated with the compounds in comparison with untreated cells. In apoptosis-related protein profiles, at least twofold reduction in various apoptotic proteins was observed after quercetin and kaempferol treatment, whereas a different profile was observed for GA. Overall, results of this study showed that quercetin and kaempferol have strong cytotoxic, antioxidant, and apoptotic effects, although GA is mostly effective as an antioxidant polyphenol on HCT-116 cells.
Collapse
Affiliation(s)
- Ebru Demirel Sezer
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Latife Merve Oktay
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Elif Karadadaş
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Hikmet Memmedov
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Nur Selvi Gunel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Eser Sözmen
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| |
Collapse
|
22
|
Azenha D, Lopes MC, Martins TC. Claspin: From replication stress and DNA damage responses to cancer therapy. DNA Repair (Amst) 2019; 115:203-246. [DOI: 10.1016/bs.apcsb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Courtot L, Hoffmann JS, Bergoglio V. The Protective Role of Dormant Origins in Response to Replicative Stress. Int J Mol Sci 2018; 19:ijms19113569. [PMID: 30424570 PMCID: PMC6274952 DOI: 10.3390/ijms19113569] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20⁻30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Collapse
Affiliation(s)
- Lilas Courtot
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| |
Collapse
|
24
|
Hernández-Carralero E, Cabrera E, Alonso-de Vega I, Hernández-Pérez S, Smits VAJ, Freire R. Control of DNA Replication Initiation by Ubiquitin. Cells 2018; 7:E146. [PMID: 30241373 PMCID: PMC6211026 DOI: 10.3390/cells7100146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells divide by accomplishing a program of events in which the replication of the genome is a fundamental part. To ensure all cells have an accurate copy of the genome, DNA replication occurs only once per cell cycle and is controlled by numerous pathways. A key step in this process is the initiation of DNA replication in which certain regions of DNA are marked as competent to replicate. Moreover, initiation of DNA replication needs to be coordinated with other cell cycle processes. At the molecular level, initiation of DNA replication relies, among other mechanisms, upon post-translational modifications, including the conjugation and hydrolysis of ubiquitin. An example is the precise control of the levels of the DNA replication initiation protein Cdt1 and its inhibitor Geminin by ubiquitin-mediated proteasomal degradation. This control ensures that DNA replication occurs with the right timing during the cell cycle, thereby avoiding re-replication events. Here, we review the events that involve ubiquitin signalling during DNA replication initiation, and how they are linked to human disease.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Ignacio Alonso-de Vega
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Santiago Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| |
Collapse
|
25
|
Smits VAJ, Cabrera E, Freire R, Gillespie DA. Claspin – checkpoint adaptor and
DNA
replication factor. FEBS J 2018; 286:441-455. [DOI: 10.1111/febs.14594] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Veronique A. J. Smits
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - Elisa Cabrera
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - Raimundo Freire
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - David A. Gillespie
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| |
Collapse
|
26
|
Zhang ZX, Zhang J, Cao Q, Campbell JL, Lou H. The DNA Pol ϵ stimulatory activity of Mrc1 is modulated by phosphorylation. Cell Cycle 2017; 17:64-72. [PMID: 29157061 DOI: 10.1080/15384101.2017.1403680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
DNA replication checkpoint (Mec1-Mrc1-Rad53 in budding yeast) is an evolutionarily conserved surveillance system to ensure proper DNA replication and genome stability in all eukaryotes. Compared to its well-known function as a mediator of replication checkpoint, the exact role of Mrc1 as a component of normal replication forks remains relatively unclear. In this study, we provide in vitro biochemical evidence to support that yeast Mrc1 is able to enhance the activity of DNA polymerase ϵ (Pol ϵ), the major leading strand replicase. Mrc1 can selectively bind avidly to primer/template DNA bearing a single-stranded region, but not to double-stranded DNA (dsDNA). Mutations of the lysine residues within basic patch 1 (BP1) compromise both DNA binding and polymerase stimulatory activities. Interestingly, Mrc1-3D, a mutant mimicking phosphorylation by the Hog1/MAPK kinase during the osmotic stress response, retains DNA binding but not polymerase stimulation. The stimulatory effect is also abrogated in Mrc1 purified from cells treated with hydroxyurea (HU), which elicits replication checkpoint activation. Taken together with previous findings, these results imply that under unperturbed condition, Mrc1 has a DNA synthesis stimulatory activity, which can be eliminated via Mrc1 phosphorylation in response to replication and/or osmotic stresses.
Collapse
Affiliation(s)
- Zhong-Xin Zhang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Jingjing Zhang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Qinhong Cao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Judith L Campbell
- b Braun Laboratories , California Institute of Technology , Pasadena , CA 91125 , USA
| | - Huiqiang Lou
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
27
|
Azenha D, Lopes MC, Martins TC. Claspin functions in cell homeostasis-A link to cancer? DNA Repair (Amst) 2017; 59:27-33. [PMID: 28942358 DOI: 10.1016/j.dnarep.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Diana Azenha
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| | - Maria Celeste Lopes
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal.
| | - Teresa C Martins
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| |
Collapse
|
28
|
Rowlands H, Dhavarasa P, Cheng A, Yankulov K. Forks on the Run: Can the Stalling of DNA Replication Promote Epigenetic Changes? Front Genet 2017; 8:86. [PMID: 28690636 PMCID: PMC5479891 DOI: 10.3389/fgene.2017.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Built of DNA polymerases and multiple associated factors, the replication fork steadily progresses along the DNA template and faithfully replicates DNA. This model can be found in practically every textbook of genetics, with the more complex situation of chromatinized DNA in eukaryotes often viewed as a variation. However, the replication-coupled disassembly/reassembly of chromatin adds significant complexity to the whole replication process. During the course of eukaryotic DNA replication the forks encounter various conditions and numerous impediments. These include nucleosomes with a variety of post-translational modifications, euchromatin and heterochromatin, differentially methylated DNA, tightly bound proteins, active gene promoters and DNA loops. At such positions the forks slow down or even stall. Dedicated factors stabilize the fork and prevent its rotation or collapse, while other factors resolve the replication block and facilitate the resumption of elongation. The fate of histones during replication stalling and resumption is not well understood. In this review we briefly describe recent advances in our understanding of histone turnover during DNA replication and focus on the possible mechanisms of nucleosome disassembly/reassembly at paused replication forks. We propose that replication pausing provides opportunities for an epigenetic change of the associated locus.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Piriththiv Dhavarasa
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| |
Collapse
|
29
|
Choi SH, Park JH, Nguyen TTN, Shim HJ, Song YH. Initiation of Drosophila chorion gene amplification requires Claspin and mus101, whereas Claspin, but not mus101, plays a major role during elongation. Dev Dyn 2017; 246:466-474. [PMID: 28294450 PMCID: PMC5435936 DOI: 10.1002/dvdy.24499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Claspin and TopBP1 are checkpoint mediators that are required for the phosphorylation of Chk1 by ATR to maintain genomic stability. Here, we investigated the functions of Drosophila Claspin and mus101 (TopBP1 ortholog) during chorion (eggshell component) gene amplification, which occurs in follicle cells in the absence of global genomic DNA replication. RESULTS Unlike Drosophila mei-41 (ATR ortholog) mutant embryos, Claspin and mus101 mutant embryos showed severe eggshell defects resulting from defects in chorion gene amplification. EdU (5-ethynyl-2'-deoxyuridine) incorporation assay during initiation and elongation stages revealed that Claspin and mus101 were required for initiation, while only Claspin had a major role in the efficient progression of the replication forks. Claspin proteins were enriched in the amplification foci both in the initiation and elongation stage-follicle cell nuclei in a mei-41-independent manner. The focal localization of ORC2, a component of the origin recognition complex, was not significantly affected in the Claspin mutant, whereas it was reduced in the mus101 mutant. CONCLUSIONS Drosophila Claspin plays a major role in the initiation and elongation stages of chorion gene amplification by localizing to the amplification foci in a mei-41-independent manner. Drosophila mus101 is also involved in chorion gene amplification, mostly functioning in initiation, rather than elongation. Developmental Dynamics 246:466-474, 2016. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Seung Ho Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Ji-Hong Park
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Tram Thi Ngoc Nguyen
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee Jin Shim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Young-Han Song
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
30
|
Wang C, Yang C, Ji J, Jiang J, Shi M, Cai Q, Yu Y, Zhu Z, Zhang J. Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells. Int J Oncol 2017; 50:1136-1146. [PMID: 28350092 PMCID: PMC5363881 DOI: 10.3892/ijo.2017.3904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to investigate the clinical significance, the biological function and the mechanisms of USP20 in gastric cancer. The expression of USP20 in 89 pairs of primary gastric cancer and peritumoral gastric tissues specimens were measured by immunohistochemistry. The correlation of USP20 expression with the survival and the clinicopathological characteristics of patients were analyzed. Moreover, the underlying mechanisms of ectopic USP20 expression and its impact on GC cells were also investigated. We found that the expression of USP20 is relatively low in GC tissues and negatively correlated with tumor size, tumor invasion and TNM staging. High expression of USP20 in GC predicted longer survival. Experimentally, small interfering RNA-mediated knockdown of USP20 expression significantly promoted cell proliferation, accelerated G1-S phase transition and attenuated the autophagy activity. Overexpression of USP20 led to the inhibition of proliferation, G1-S cell cycle transition delay and autophagy activation. Mechanistically, we confirmed that silencing the expression of USP20 in GC cells could reduce Claspin protein levels without altering Claspin mRNA levels, which is involved in the antitumor activity of USP20. Furthermore, the expression level of Claspin was relatively higher in peritumoral tissue than that of GC tissues and higher expression of Claspin in GC was also correlated with good prognosis of patients. Given its pivotal role in gastric tumorigenesis and progression, USP20 functioned as the tumor suppressor in GC and possessed promising value to be a therapeutic target for GC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Chen Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Jun Ji
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| | - Qu Cai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyan Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025
| |
Collapse
|
31
|
Mrc1/Claspin: a new role for regulation of origin firing. Curr Genet 2017; 63:813-818. [DOI: 10.1007/s00294-017-0690-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
|
32
|
Checkpoint-Independent Regulation of Origin Firing by Mrc1 through Interaction with Hsk1 Kinase. Mol Cell Biol 2017; 37:MCB.00355-16. [PMID: 28069740 DOI: 10.1128/mcb.00355-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
Mrc1 is a conserved checkpoint mediator protein that transduces the replication stress signal to the downstream effector kinase. The loss of mrc1 checkpoint activity results in the aberrant activation of late/dormant origins in the presence of hydroxyurea. Mrc1 was also suggested to regulate orders of early origin firing in a checkpoint-independent manner, but its mechanism was unknown. Here we identify HBS (Hsk1 bypass segment) on Mrc1. An ΔHBS mutant does not activate late/dormant origin firing in the presence of hydroxyurea but causes the precocious and enhanced activation of weak early-firing origins during normal S-phase progression and bypasses the requirement for Hsk1 for growth. This may be caused by the disruption of intramolecular binding between HBS and NTHBS (N-terminal target of HBS). Hsk1 binds to Mrc1 through HBS and phosphorylates a segment adjacent to NTHBS, disrupting the intramolecular interaction. We propose that Mrc1 exerts a "brake" on initiation (through intramolecular interactions) and that this brake can be released (upon the loss of intramolecular interactions) by either the Hsk1-mediated phosphorylation of Mrc1 or the deletion of HBS (or a phosphomimic mutation of putative Hsk1 target serine/threonine), which can bypass the function of Hsk1 for growth. The brake mechanism may explain the checkpoint-independent regulation of early origin firing in fission yeast.
Collapse
|