1
|
Zahoor M, Dong Y, Preussner M, Reiterer V, Shameen Alam S, Haun M, Horzum U, Frey Y, Hajdu R, Geley S, Cormier-Daire V, Heyd F, Jerome-Majewska LA, Farhan H. The unfolded protein response regulates ER exit sites via SNRPB-dependent RNA splicing and contributes to bone development. EMBO J 2024; 43:4228-4247. [PMID: 39160274 PMCID: PMC11445528 DOI: 10.1038/s44318-024-00208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Splicing and endoplasmic reticulum (ER)-proteostasis are two key processes that ultimately regulate the functional proteins that are produced by a cell. However, the extent to which these processes interact remains poorly understood. Here, we identify SNRPB and other components of the Sm-ring, as targets of the unfolded protein response and novel regulators of export from the ER. Mechanistically, The Sm-ring regulates the splicing of components of the ER export machinery, including Sec16A, a component of ER exit sites. Loss of function of SNRPB is causally linked to cerebro-costo-mandibular syndrome (CCMS), a genetic disease characterized by bone defects. We show that heterozygous deletion of SNRPB in mice resulted in bone defects reminiscent of CCMS and that knockdown of SNRPB delays the trafficking of type-I collagen. Silencing SNRPB inhibited osteogenesis in vitro, which could be rescued by overexpression of Sec16A. This rescue indicates that the role of SNRPB in osteogenesis is linked to its effects on ER-export. Finally, we show that SNRPB is a target for the unfolded protein response, which supports a mechanistic link between the spliceosome and ER-proteostasis. Our work highlights components of the Sm-ring as a novel node in the proteostasis network, shedding light on CCMS pathophysiology.
Collapse
Affiliation(s)
- Muhammad Zahoor
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Yanchen Dong
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Marco Preussner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Sabrina Shameen Alam
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Margot Haun
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Utku Horzum
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Yannick Frey
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Renata Hajdu
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Valerie Cormier-Daire
- Clinical Genetics Department, Université de Paris, INSERM UMR 1163, Imagine Institute, Necker Enfants Malades Hospital, Paris, France
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Loydie A Jerome-Majewska
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada.
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- Institute of Pathophysiology, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Wang M, Wang Y, Masson E, Wang Y, Yu D, Qian Y, Tang X, Deng S, Hu L, Wang L, Wang L, Rebours V, Cooper DN, Férec C, Li Z, Chen J, Zou W, Liao Z. SEC16A Variants Predispose to Chronic Pancreatitis by Impairing ER-to-Golgi Transport and Inducing ER Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402550. [PMID: 39119875 PMCID: PMC11481239 DOI: 10.1002/advs.202402550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.
Collapse
Affiliation(s)
- Min‐Jun Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Department of Cell BiologyCenter for Stem Cell and MedicineNaval Medical UniversityShanghai200433China
| | - Yuan‐Chen Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Emmanuelle Masson
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
- Service de Génétique Médicale et de Biologie de la ReproductionCHRU BrestBrestF‐29200France
| | - Ya‐Hui Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Dong Yu
- Center for Translational MedicineNaval Medical UniversityShanghai200433China
| | - Yang‐Yang Qian
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Xin‐Ying Tang
- Department of Prevention and Health CareEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Shun‐Jiang Deng
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Liang‐Hao Hu
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Lei Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Li‐Juan Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology DepartmentBeaujon HospitalAPHP – ClichyUniversité Paris CitéParis92110France
| | - David N. Cooper
- Institute of Medical GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUnited Kingdom
| | - Claude Férec
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
| | - Zhao‐Shen Li
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | | | - Wen‐Bin Zou
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhuan Liao
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| |
Collapse
|
3
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Olofsson D, Preußner M, Kowar A, Heyd F, Neumann A. One pipeline to predict them all? On the prediction of alternative splicing from RNA-Seq data. Biochem Biophys Res Commun 2023; 653:31-37. [PMID: 36854218 DOI: 10.1016/j.bbrc.2023.02.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
RNA-Seq has become the standard approach to quantify and compare gene expression and alternative splicing in different conditions. In many cases the limiting factor is not the sequencing itself but the bioinformatic analysis. A variety of software tools exist that predict alternative splicing patterns from RNA-Seq data, but surprisingly, a systematic comparison of the predictions obtained from different pipelines has not been performed. Here we compare results from frequently used bioinformatic tools using a high-quality RNA-Seq dataset. We show that there is little overlap in the splicing changes predicted by different tools and that GO-term analysis of the splicing changes predicted by the individual targets yields very different results. Validation of bioinformatic predictions by RT-PCR suggest a high number of false positives in the splicing changes predicated by each pipeline, which probably dominates GO-term analysis. The validation rate is strongly increased for targets predicted by several tools, offering a strategy to reduce false positives. Based on these results we offer some guidelines that may contribute to make alternative splicing predictions more reliable and may thus increase the impact of conclusions drawn from RNA-Seq studies. Furthermore, we created rmappet, a nextflow pipeline that performs alternative splicing analysis using rMATS and Whippet with subsequent overlapping of the results, enabling robust splicing analysis with only one command (https://github.com/didrikolofsson/rmappet/).
Collapse
Affiliation(s)
- Didrik Olofsson
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Alexander Kowar
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany.
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Zhang C, Kalaitsidou E, Damen JMA, Grond R, Rabouille C, Wu W. Novel Components of the Stress Assembly Sec Body Identified by Proximity Labeling. Cells 2023; 12:cells12071055. [PMID: 37048128 PMCID: PMC10093351 DOI: 10.3390/cells12071055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Sec bodies are membraneless stress-induced assemblies that form by the coalescence of endoplasmic reticulum exit sites (ERES). Through APEX2 tagging of Sec24AB, we biotinylated and identified the full complement of Sec body proteins. In the presence of biotin-phenol and H2O2 (APEX on), APEX2 facilitates the transfer of a biotin moiety to nearby interactors of chimeric Sec24AB. Using this unbiased approach comparing APEX on and off (−H2O2) conditions, we identified 52 proteins specifically enriched in Sec bodies. These include a large proportion of ER and Golgi proteins, packaged without defined stoichiometry, which we could selectively verify by imaging. Interestingly, Sec body components are neither transcriptionally nor translationally regulated under the conditions that induce Sec body formation, suggesting that incorporation of these proteins into granules may be driven instead by the aggregation of nucleating proteins with a high content of intrinsically disordered regions. This reinforces the notion that Sec bodies may act as storage for ERES, ER and Golgi components during stress.
Collapse
|
6
|
van Leeuwen W, Nguyen DTM, Grond R, Veenendaal T, Rabouille C, Farías GG. Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells. J Cell Sci 2022; 135:jcs260294. [PMID: 36325988 PMCID: PMC10112967 DOI: 10.1242/jcs.260294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Dan T. M. Nguyen
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, Groningen 9713 AV, The Netherlands
| | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
7
|
Ostwaldt F, Los B, Heyd F. In silico analysis of alternative splicing events implicated in intracellular trafficking during B-lymphocyte differentiation. Front Immunol 2022; 13:1030409. [DOI: 10.3389/fimmu.2022.1030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
There are multiple regulatory layers that control intracellular trafficking and protein secretion, ranging from transcriptional to posttranslational mechanisms. Finely regulated trafficking and secretion is especially important for lymphocytes during activation and differentiation, as the quantity of secretory cargo increases once the activated cells start to produce and secrete large amounts of cytokines, cytotoxins, or antibodies. However, how the secretory machinery dynamically adapts its efficiency and specificity in general and specifically in lymphocytes remains incompletely understood. Here we present a systematic bioinformatics analysis to address RNA-based mechanisms that control intracellular trafficking and protein secretion during B-lymphocyte activation, and differentiation, with a focus on alternative splicing. Our in silico analyses suggest that alternative splicing has a substantial impact on the dynamic adaptation of intracellular traffic and protein secretion in different B cell subtypes, pointing to another regulatory layer to the control of lymphocyte function during activation and differentiation. Furthermore, we suggest that NERF/ELF2 controls the expression of some COPII-related genes in a cell type-specific manner. In addition, T cells and B cells appear to use different adaptive strategies to adjust their secretory machineries during the generation of effector and memory cells, with antibody secreting B cell specifically increasing the expression of components of the early secretory pathway. Together, our data provide hypotheses how cell type-specific regulation of the trafficking machinery during immune cell activation and differentiation is controlled that can now be tested in wet lab experiments.
Collapse
|
8
|
Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice. Int J Mol Sci 2021; 22:ijms22168597. [PMID: 34445304 PMCID: PMC8395343 DOI: 10.3390/ijms22168597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.
Collapse
|
9
|
Zhang C, van Leeuwen W, Blotenburg M, Aguilera-Gomez A, Brussee S, Grond R, Kampinga HH, Rabouille C. Activation of salt Inducible Kinases, IRE1 and PERK leads to Sec bodies formation in Drosophila S2 cells. J Cell Sci 2021; 134:272062. [PMID: 34350957 PMCID: PMC8445602 DOI: 10.1242/jcs.258685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na+ stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper. Summary: In S2 cells, the phase-separated Sec bodies form upon the combined activation of salt-inducible kinases, IRE1 and PERK.
Collapse
Affiliation(s)
- Chujun Zhang
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Sem Brussee
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands.,Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
10
|
Herdt O, Reich S, Medenbach J, Timmermann B, Olofsson D, Preußner M, Heyd F. The zinc finger domains in U2AF26 and U2AF35 have diverse functionalities including a role in controlling translation. RNA Biol 2020; 17:843-856. [PMID: 32116123 DOI: 10.1080/15476286.2020.1732701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent work has associated point mutations in both zinc fingers (ZnF) of the spliceosome component U2AF35 with malignant transformation. However, surprisingly little is known about the functionality of the U2AF35 ZnF domains in general. Here we have analysed key functionalities of the ZnF domains of mammalian U2AF35 and its paralog U2AF26. Both ZnFs are required for splicing regulation, whereas only ZnF2 controls protein stability and contributes to the interaction with U2AF65. These features are confirmed in a naturally occurring splice variant of U2AF26 lacking ZnF2, that is strongly induced upon activation of primary mouse T cells and localized in the cytoplasm. Using Ribo-Seq in a model T cell line we provide evidence for a role of U2AF26 in activating cytoplasmic steps in gene expression, notably translation. Consistently, an MS2 tethering assay shows that cytoplasmic U2AF26/35 increase translation when localized to the 5'UTR of a model mRNA. This regulation is partially dependent on ZnF1 thus providing a connection between a core splicing factor, the ZnF domains and the regulation of translation. Altogether, our work reveals unexpected functions of U2AF26/35 and their ZnF domains, thereby contributing to a better understanding of their role and regulation in mammalian cells.
Collapse
Affiliation(s)
- Olga Herdt
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Stefan Reich
- Institute of Biochemistry I, University of Regensburg , Regensburg, Germany
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg , Regensburg, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics , Berlin, Germany
| | - Didrik Olofsson
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Marco Preußner
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
11
|
Differential Interleukin-2 Transcription Kinetics Render Mouse but Not Human T Cells Vulnerable to Splicing Inhibition Early after Activation. Mol Cell Biol 2019; 39:MCB.00035-19. [PMID: 31160491 DOI: 10.1128/mcb.00035-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
T cells are nodal players in the adaptive immune response against pathogens and malignant cells. Alternative splicing plays a crucial role in T cell activation, which is analyzed mainly at later time points upon stimulation. Here we have discovered a 2-h time window early after stimulation where optimal splicing efficiency or, more generally, gene expression efficiency is crucial for successful T cell activation. Reducing the splicing efficiency at 4 to 6 h poststimulation significantly impaired murine T cell activation, which was dependent on the expression dynamics of the Egr1-Nab2-interleukin-2 (IL-2) pathway. This time window overlaps the time of peak IL-2 de novo transcription, which, we suggest, represents a permissive time window in which decreased splicing (or transcription) efficiency reduces mature IL-2 production, thereby hampering murine T cell activation. Notably, the distinct expression kinetics of the Egr1-Nab2-IL-2 pathway between mouse and human render human T cells refractory to this vulnerability. We propose that the rational temporal modulation of splicing or transcription during peak de novo expression of key effectors can be used to fine-tune stimulation-dependent biological outcomes. Our data also show that critical consideration is required when extrapolating mouse data to the human system in basic and translational research.
Collapse
|
12
|
Coat flexibility in the secretory pathway: a role in transport of bulky cargoes. Curr Opin Cell Biol 2019; 59:104-111. [PMID: 31125831 PMCID: PMC7116127 DOI: 10.1016/j.ceb.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Membrane trafficking in eukaryotic cells is a highly dynamic process, which needs to adapt to a variety of cargo proteins. The COPII coat mediates ER export of thousands of proteins with a wide range of sizes by generating coated membrane vesicles that incapsulate cargo. The process of assembly and disassembly of COPII, regulated by GTP hydrolysis, is a major determinant of the size and shape of transport carriers. Here, we analyse our knowledge of the COPII coat architecture and it assembly/disassembly dynamics, and link coat flexibility to the role of COPII in transport of large cargoes. We propose a common mechanism of action of regulatory factors that modulate COPII GTP hydrolysis cycle to promote budding.
Collapse
|
13
|
Neumann A, Schindler M, Olofsson D, Wilhelmi I, Schürmann A, Heyd F. Genome-wide identification of alternative splicing events that regulate protein transport across the secretory pathway. J Cell Sci 2019; 132:jcs.230201. [DOI: 10.1242/jcs.230201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/09/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing (AS) strongly increases proteome diversity and functionality in eukaryotic cells. Protein secretion is a tightly-controlled process, especially in a tissue-specific and differentiation-dependent manner. While previous work has focussed on transcriptional and post-translational regulatory mechanisms, the impact of AS on the secretory pathway remains largely unexplored. Here we integrate a published screen for modulators of protein transport and RNA-Seq analyses to identify over 200 AS events as secretion regulators. We confirm that splicing events along all stages of the secretory pathway regulate the efficiency of membrane trafficking using Morpholinos and CRISPR/Cas9. We furthermore show that these events are highly tissue-specific and adapt the secretory pathway during T-cell activation and adipocyte differentiation. Our data substantially advance the understanding of AS functionality, add a new regulatory layer to a fundamental cell biological process and provide a resource of alternative isoforms that control the secretory pathway.
Collapse
Affiliation(s)
- Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Magdalena Schindler
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Didrik Olofsson
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Goldammer G, Neumann A, Strauch M, Müller-McNicoll M, Heyd F, Preußner M. Characterization of cis-acting elements that control oscillating alternative splicing. RNA Biol 2018; 15:1081-1092. [PMID: 30200840 DOI: 10.1080/15476286.2018.1502587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) in response to changing external conditions often requires alterations in the ability of sequence-specific RNA-binding proteins to bind to cis-acting sequences in their target pre-mRNA. While daily oscillations in AS events have been described in several organisms, cis-acting sequences that control time of the day-dependent AS remain largely elusive. Here we define cis-regulatory RNA elements that control body-temperature driven rhythmic AS using the mouse U2af26 gene as a model system. We identify a complex network of cis-regulatory sequences that regulate AS of U2af26, and show that the activity of two enhancer elements is necessary for oscillating AS. A minigene comprising these U2af26 regions recapitulates rhythmic splicing of the endogenous gene, which is controlled through temperature-regulated SR protein phosphorylation. Mutagenesis of the minigene delineates the cis-acting enhancer element for SRSF2 within exon 6 to single nucleotide resolution and reveals that the combined activity of SRSF2 and SRSF7 is required for oscillating U2af26 AS. By combining RNA-Seq with an siRNA screen and individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP), we identify a complex network of SR proteins that globally controls temperature-dependent rhythmic AS, with the direction of splicing depending on the position of the cis-acting elements. Together, we provide detailed insights into the sequence requirements that allow trans-acting factors to generate daily rhythms in AS.
Collapse
Affiliation(s)
- Gesine Goldammer
- a Laboratory of RNA Biochemistry , Freie Universität Berlin, Institute of Chemistry and Biochemistry , Berlin , Germany
| | - Alexander Neumann
- a Laboratory of RNA Biochemistry , Freie Universität Berlin, Institute of Chemistry and Biochemistry , Berlin , Germany
| | - Miriam Strauch
- a Laboratory of RNA Biochemistry , Freie Universität Berlin, Institute of Chemistry and Biochemistry , Berlin , Germany
| | - Michaela Müller-McNicoll
- b Cluster of Excellence Macromolecular Complexes, Institute of Cell Biology and Neuroscience , Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Florian Heyd
- a Laboratory of RNA Biochemistry , Freie Universität Berlin, Institute of Chemistry and Biochemistry , Berlin , Germany
| | - Marco Preußner
- a Laboratory of RNA Biochemistry , Freie Universität Berlin, Institute of Chemistry and Biochemistry , Berlin , Germany
| |
Collapse
|
15
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
16
|
McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 2018; 150:119-131. [PMID: 29916038 PMCID: PMC6096569 DOI: 10.1007/s00418-018-1689-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
17
|
Aguilera-Gomez A, Zacharogianni M, van Oorschot MM, Genau H, Grond R, Veenendaal T, Sinsimer KS, Gavis ER, Behrends C, Rabouille C. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation. Cell Rep 2018; 20:935-948. [PMID: 28746877 DOI: 10.1016/j.celrep.2017.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/22/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein.
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Margarita Zacharogianni
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Heide Genau
- Institute of Biochemistry II, Medical School Goethe University, 60323 Frankfurt am Main, Germany
| | - Rianne Grond
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60323 Frankfurt am Main, Germany
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Cell Biology, UMC Utrecht, 3584 CT Utrecht, the Netherlands; Department of Cell Biology, UMC Groningen, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
18
|
Herdt O, Neumann A, Timmermann B, Heyd F. The cancer-associated U2AF35 470A>G (Q157R) mutation creates an in-frame alternative 5' splice site that impacts splicing regulation in Q157R patients. RNA (NEW YORK, N.Y.) 2017; 23:1796-1806. [PMID: 28893951 PMCID: PMC5689001 DOI: 10.1261/rna.061432.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Recent work has identified cancer-associated U2AF35 missense mutations in two zinc-finger (ZnF) domains, but little is known about Q157R/P substitutions within the second ZnF. Surprisingly, we find that the c.470A>G mutation not only leads to the Q157R substitution, but also creates an alternative 5' splice site (ss) resulting in the deletion of four amino acids (Q157Rdel). Q157P, Q157R, and Q157Rdel control alternative splicing of distinct groups of exons in cell culture and in human patients, suggesting that missplicing of different targets may contribute to cellular aberrations. Our data emphasize the importance to explore missense mutations beyond altered protein sequence.
Collapse
Affiliation(s)
- Olga Herdt
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| |
Collapse
|
19
|
Milek M, Imami K, Mukherjee N, Bortoli FD, Zinnall U, Hazapis O, Trahan C, Oeffinger M, Heyd F, Ohler U, Selbach M, Landthaler M. DDX54 regulates transcriptome dynamics during DNA damage response. Genome Res 2017; 27:1344-1359. [PMID: 28596291 PMCID: PMC5538551 DOI: 10.1101/gr.218438.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.
Collapse
Affiliation(s)
- Miha Milek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Koshi Imami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Neelanjan Mukherjee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Francesca De Bortoli
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Ulrike Zinnall
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Orsalia Hazapis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, H3T 1J4 Montréal, Quebec, Canada
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Charite-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
20
|
Sun J, Yu S, Zhang X, Capac C, Aligbe O, Daudelin T, Bonder EM, Gao N. A Wntless-SEC12 complex on the ER membrane regulates early Wnt secretory vesicle assembly and mature ligand export. J Cell Sci 2017; 130:2159-2171. [PMID: 28515233 DOI: 10.1242/jcs.200634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Wntless (Wls) transports Wnt molecules for secretion; however, the cellular mechanism underlying the initial assembly of Wnt secretory vesicles is still not fully defined. Here, we performed proteomic and mutagenic analyses of mammalian Wls, and report a mechanism for formation of early Wnt secretory vesicles on ER membrane. Wls forms a complex with SEC12 (also known as PREB), an ER membrane-localized guanine nucleotide-exchange factor (GEF) activator of the SAR1 (the SAR1A isoform) small GTPase. Compared to palmitoylation-deficient Wnt molecules, binding of mature Wnt to Wls increases Wls-SEC12 interaction and promotes association of Wls with SAR1, the key activator of the COPII machinery. Incorporation of Wls into this exporting ER compartment is affected by Wnt ligand binding and SEC12 binding to Wls, as well as the structural integrity and, potentially, the folding of the cytosolic tail of Wls. In contrast, Wls-SEC12 binding is stable, with the interacting interface biochemically mapped to cytosolic segments of individual proteins. Mutant Wls that fails to communicate with the COPII machinery cannot effectively support Wnt secretion. These data suggest that formation of early Wnt secretory vesicles is carefully regulated to ensure proper export of functional ligands.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Catherine Capac
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Timothy Daudelin
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA .,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
21
|
Maeda M, Katada T, Saito K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 2017; 216:1731-1743. [PMID: 28442536 PMCID: PMC5461033 DOI: 10.1083/jcb.201703084] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mammalian endoplasmic reticulum (ER) exit sites export a variety of cargo molecules including oversized cargoes such as collagens. However, the mechanisms of their assembly and organization are not fully understood. TANGO1L is characterized as a collagen receptor, but the function of TANGO1S remains to be investigated. Here, we show that direct interaction between both isoforms of TANGO1 and Sec16 is not only important for their correct localization but also critical for the organization of ER exit sites. The depletion of TANGO1 disassembles COPII components as well as membrane-bound ER-resident complexes, resulting in fewer functional ER exit sites and delayed secretion. The ectopically expressed TANGO1 C-terminal domain responsible for Sec16 binding in mitochondria is capable of recruiting Sec16 and other COPII components. Moreover, TANGO1 recruits membrane-bound macromolecular complexes consisting of cTAGE5 and Sec12 to the ER exit sites. These data suggest that mammalian ER exit sites are organized by TANGO1 acting as a scaffold, in cooperation with Sec16 for efficient secretion.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Activation-Dependent TRAF3 Exon 8 Alternative Splicing Is Controlled by CELF2 and hnRNP C Binding to an Upstream Intronic Element. Mol Cell Biol 2017; 37:MCB.00488-16. [PMID: 28031331 DOI: 10.1128/mcb.00488-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific and inducible alternative splicing has a fundamental impact on regulating gene expression and cellular function in a variety of settings, including activation and differentiation. We have recently shown that activation-induced skipping of TRAF3 exon 8 activates noncanonical NF-κB signaling upon T cell stimulation, but the regulatory basis for this splicing event remains unknown. Here we identify cis- and trans-regulatory elements rendering this splicing switch activation dependent and cell type specific. The cis-acting element is located 340 to 440 nucleotides upstream of the regulated exon and acts in a distance-dependent manner, since altering the location reduces its activity. A small interfering RNA screen, followed by cross-link immunoprecipitation and mutational analyses, identified CELF2 and hnRNP C as trans-acting factors that directly bind the regulatory sequence and together mediate increased exon skipping in activated T cells. CELF2 expression levels correlate with TRAF3 exon skipping in several model systems, suggesting that CELF2 is the decisive factor, with hnRNP C being necessary but not sufficient. These data suggest an interplay between CELF2 and hnRNP C as the mechanistic basis for activation-dependent alternative splicing of TRAF3 exon 8 and additional exons and uncover an intronic splicing silencer whose full activity depends on the precise location more than 300 nucleotides upstream of the regulated exon.
Collapse
|