1
|
Song Y, Li A, Cui H, Wu L, Zhou B, Li X. Ancestral Sequence Reconstruction and Comprehensive Computational Simulations Unmask an Efficient PET Hydrolase with the Wobbled Catalytic Triad. CHEMSUSCHEM 2025; 18:e202402614. [PMID: 39865529 DOI: 10.1002/cssc.202402614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/28/2025]
Abstract
Beyond directed evolution, ancestral sequence reconstruction (ASR) has emerged as a powerful strategy for engineering proteins with superior functional properties. Herein, we harnessed ASR to uncover robust PET hydrolase variants, expanding the repertoire of PET-degrading enzymes and providing deeper insights into the underlying mechanisms of PET hydrolysis. As a result, ASR1-PETase, featuring a unique cysteine catalytic site, was discovered. Despite having only 19.3 % sequence identity with IsPETase, ASR1-PETase demonstrated improved PET degradation efficiency, with a finely-tuned substrate-binding cleft. Comprehensive experimental validation, including mutagenesis studies and comparisons with six state-of-the-art PET hydrolases, combined with microsecond-scale molecular dynamics (MD) simulations and QM-cluster calculations, revealed that ASR1-PETase's C161 catalytic residue assisted with the wobbled H242 can simultaneously cleave both ester bonds of BHET - a feature not commonly observed in other PET hydrolases. This mechanism may serve as the primary driving force for accelerating PET hydrolysis while minimizing the accumulation of the intermediate MHET, thereby enhancing the efficiency of TPA production.
Collapse
Affiliation(s)
- Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210097, China
- AI-powered Engineering Biology Laboratory, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210097, China
- Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing, 210097, China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Bo Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
- Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing, 210097, China
| |
Collapse
|
2
|
Schmidt H, Raphael BJ. The tree labeling polytope: a unified approach to ancestral reconstruction problems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638328. [PMID: 40027631 PMCID: PMC11870558 DOI: 10.1101/2025.02.14.638328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Motivation Reconstructing unobserved ancestral states of a phylogenetic tree provides insight into the history of evolving systems and is one of the fundamental problems in phylogenetics. For a fixed phylogenetic tree, the most parsimonious ancestral reconstruction - a solution to the small parsimony problem - can be efficiently found using the dynamic programming algorithms of Fitch-Hartigan and Sankoff. Ancestral reconstruction is important in many applications including inferring the routes of metastases in cancer, deriving the transmission history of viruses, determining the direction of cellular differentiation in organismal development, and detecting recombination and horizontal gene transfer in phylogenetic networks. However, most of these applications impose additional global constraints on the reconstructed ancestral states, which break the local structure required in the recurrences of Fitch-Hartigan and Sankoff. Results We introduce an alternative, polyhedral approach to ancestral reconstruction problems using the tree labeling polytope , a geometric object whose vertices represent the feasible ancestral labelings of a tree. This framework yields a polynomial-time linear programming algorithm for the small parsimony problem . More importantly, the tree labeling polytope facilitates the incorporation of additional constraints that arise in modern ancestral reconstruction problems. We demonstrate the utility of our approach by deriving mixed-integer programming algorithms with a small number of integer variables and strong linear relaxations for three such problems: the parsimonious migration history problem, the softwired small parsimony problem on phylogenetic networks, and the convex recoloring problem on trees. Our algorithms outperform existing state-of-the-art methods on both simulated and real datasets. For instance, our algorithm scales to trace routes of cancer metastases in trees with thousands of leaves, enabling the analysis of large trees generated by recent single-cell sequencing technologies. On a mouse model of metastatic lung adenocarcinoma, the tree labeling polytope allows us to infer simpler migration histories compared to previous results. Availability Python implementations of the algorithms provided in this work are available at: github.com/raphael-group/tree-labeling-polytope .
Collapse
|
3
|
Barkman TJ. Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230348. [PMID: 39343033 PMCID: PMC11439504 DOI: 10.1098/rstb.2023.0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Studies of enzymes in modern-day plants have documented the diversity of metabolic activities retained by species today but only provide limited insight into how those properties evolved. Ancestral sequence reconstruction (ASR) is an approach that provides statistical estimates of ancient plant enzyme sequences which can then be resurrected to test hypotheses about the evolution of catalytic activities and pathway assembly. Here, I review the insights that have been obtained using ASR to study plant metabolism and highlight important methodological aspects. Overall, studies of resurrected plant enzymes show that (i) exaptation is widespread such that even low or undetectable levels of ancestral activity with a substrate can later become the apparent primary activity of descendant enzymes, (ii) intramolecular epistasis may or may not limit evolutionary paths towards catalytic or substrate preference switches, and (iii) ancient pathway flux often differs from modern-day metabolic networks. These and other insights gained from ASR would not have been possible using only modern-day sequences. Future ASR studies characterizing entire ancestral metabolic networks as well as those that link ancient structures with enzymatic properties should continue to provide novel insights into how the chemical diversity of plants evolved. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Todd J. Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI49008, USA
| |
Collapse
|
4
|
Barone M, Pizzorni L, Fraaije MW, Mascotti ML, Mattevi A. Evolution, structure, and drug-metabolizing activity of mammalian prenylcysteine oxidases. J Biol Chem 2024; 300:107810. [PMID: 39322016 PMCID: PMC11530802 DOI: 10.1016/j.jbc.2024.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Prenylcysteine oxidases (PCYOXs) metabolize prenylated cysteines produced by protein degradation. They utilize oxygen as a co-substrate to produce free cysteine, an aldehyde, and hydrogen peroxide through the unusual oxidation of a thioether bond. In this study, we explore the evolution, structure, and mechanism of the two mammalian PCYOXs. A gene duplication event in jawed vertebrates originated in these two paralogs. Both enzymes are active on farnesyl- and geranylgeranylcysteine, but inactive on molecules with shorter prenyl groups. Kinetics experiments outline a mechanism where flavin reduction and re-oxidation occur rapidly without any detectable intermediates, with the overall reaction rate limited by product release. The experimentally determined three-dimensional structure of PCYOX1 reveals long and wide tunnels leading from the surface to the flavin. They allow the isoprene substrate to curl up within the protein and position its reactive cysteine group close to the flavin. A hydrophobic patch on the surface mediates membrane association, enabling direct substrate and product exchange with the lipid bilayer. Leveraging established knowledge of flavoenzyme inhibition, we designed sub-micromolar PCYOX inhibitors. Additionally, we discovered that PCYOXs bind and slowly degrade salisirab, an anti-RAS compound. This activity suggests potential and previously unknown roles of PCYOXs in drug metabolism.
Collapse
Affiliation(s)
- Marco Barone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Letizia Pizzorni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | | | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Pérez-Niño JA, Guerra Y, Díaz-Salazar AJ, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Stable monomers in the ancestral sequence reconstruction of the last opisthokont common ancestor of dimeric triosephosphate isomerase. Protein Sci 2024; 33:e5134. [PMID: 39145435 PMCID: PMC11325190 DOI: 10.1002/pro.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Function and structure are strongly coupled in obligated oligomers such as Triosephosphate isomerase (TIM). In animals and fungi, TIM monomers are inactive and unstable. Previously, we used ancestral sequence reconstruction to study TIM evolution and found that before these lineages diverged, the last opisthokonta common ancestor of TIM (LOCATIM) was an obligated oligomer that resembles those of extant TIMs. Notably, calorimetric evidence indicated that ancestral TIM monomers are more structured than extant ones. To further increase confidence about the function, structure, and stability of the LOCATIM, in this work, we applied two different inference methodologies and the worst plausible case scenario for both of them, to infer four sequences of this ancestor and test the robustness of their physicochemical properties. The extensive biophysical characterization of the four reconstructed sequences of LOCATIM showed very similar hydrodynamic and spectroscopic properties, as well as ligand-binding energetics and catalytic parameters. Their 3D structures were also conserved. Although differences were observed in melting temperature, all LOCATIMs showed reversible urea-induced unfolding transitions, and for those that reached equilibrium, high conformational stability was estimated (ΔGTot = 40.6-46.2 kcal/mol). The stability of the inactive monomeric intermediates was also high (ΔGunf = 12.6-18.4 kcal/mol), resembling some protozoan TIMs rather than the unstable monomer observed in extant opisthokonts. A comparative analysis of the 3D structure of ancestral and extant TIMs shows a correlation between the higher stability of the ancestral monomers with the presence of several hydrogen bonds located in the "bottom" part of the barrel.
Collapse
Affiliation(s)
- Jorge Alejandro Pérez-Niño
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yasel Guerra
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - A Jessica Díaz-Salazar
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Boverio A, Jamil N, Mannucci B, Mascotti ML, Fraaije MW, Mattevi A. Structure, mechanism, and evolution of the last step in vitamin C biosynthesis. Nat Commun 2024; 15:4158. [PMID: 38755143 PMCID: PMC11099136 DOI: 10.1038/s41467-024-48410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Photosynthetic organisms, fungi, and animals comprise distinct pathways for vitamin C biosynthesis. Besides this diversity, the final biosynthetic step consistently involves an oxidation reaction carried out by the aldonolactone oxidoreductases. Here, we study the origin and evolution of the diversified activities and substrate preferences featured by these flavoenzymes using molecular phylogeny, kinetics, mutagenesis, and crystallographic experiments. We find clear evidence that they share a common ancestor. A flavin-interacting amino acid modulates the reactivity with the electron acceptors, including oxygen, and determines whether an enzyme functions as an oxidase or a dehydrogenase. We show that a few side chains in the catalytic cavity impart the reaction stereoselectivity. Ancestral sequence reconstruction outlines how these critical positions were affixed to specific amino acids along the evolution of the major eukaryotic clades. During Eukarya evolution, the aldonolactone oxidoreductases adapted to the varying metabolic demands while retaining their overarching vitamin C-generating function.
Collapse
Affiliation(s)
- Alessandro Boverio
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Neelam Jamil
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Barbara Mannucci
- Centro Grandi Strumenti, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Maria Laura Mascotti
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Marco W Fraaije
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
7
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
8
|
Sennett MA, Theobald DL. Extant Sequence Reconstruction: The Accuracy of Ancestral Sequence Reconstructions Evaluated by Extant Sequence Cross-Validation. J Mol Evol 2024; 92:181-206. [PMID: 38502220 PMCID: PMC10978691 DOI: 10.1007/s00239-024-10162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Ancestral sequence reconstruction (ASR) is a phylogenetic method widely used to analyze the properties of ancient biomolecules and to elucidate mechanisms of molecular evolution. Despite its increasingly widespread application, the accuracy of ASR is currently unknown, as it is generally impossible to compare resurrected proteins to the true ancestors. Which evolutionary models are best for ASR? How accurate are the resulting inferences? Here we answer these questions using a cross-validation method to reconstruct each extant sequence in an alignment with ASR methodology, a method we term "extant sequence reconstruction" (ESR). We thus can evaluate the accuracy of ASR methodology by comparing ESR reconstructions to the corresponding known true sequences. We find that a common measure of the quality of a reconstructed sequence, the average probability, is indeed a good estimate of the fraction of correct amino acids when the evolutionary model is accurate or overparameterized. However, the average probability is a poor measure for comparing reconstructions from different models, because, surprisingly, a more accurate phylogenetic model often results in reconstructions with lower probability. While better (more predictive) models may produce reconstructions with lower sequence identity to the true sequences, better models nevertheless produce reconstructions that are more biophysically similar to true ancestors. In addition, we find that a large fraction of sequences sampled from the reconstruction distribution may have fewer errors than the single most probable (SMP) sequence reconstruction, despite the fact that the SMP has the lowest expected error of all possible sequences. Our results emphasize the importance of model selection for ASR and the usefulness of sampling sequence reconstructions for analyzing ancestral protein properties. ESR is a powerful method for validating the evolutionary models used for ASR and can be applied in practice to any phylogenetic analysis of real biological sequences. Most significantly, ESR uses ASR methodology to provide a general method by which the biophysical properties of resurrected proteins can be compared to the properties of the true protein.
Collapse
Affiliation(s)
- Michael A Sennett
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
9
|
Douglas J, Carter CW, Wills PR. HetMM: A Michaelis-Menten model for non-homogeneous enzyme mixtures. iScience 2024; 27:108977. [PMID: 38333698 PMCID: PMC10850774 DOI: 10.1016/j.isci.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
The Michaelis-Menten model requires its reaction velocities to come from a preparation of homogeneous enzymes, with identical or near-identical catalytic activities. However, this condition is not always met. We introduce a kinetic model that relaxes this requirement, by assuming there are an unknown number of enzyme species drawn from a probability distribution whose standard deviation is estimated. Through simulation studies, we demonstrate the method accurately discriminates between homogeneous and heterogeneous data, even with moderate levels of experimental error. We applied this model to three homogeneous and three heterogeneous biological systems, showing that the standard and heterogeneous models outperform respectively. Lastly, we show that heterogeneity is not readily distinguished from negatively cooperative binding under the Hill model. These two distinct attributes-inequality in catalytic ability and interference between binding sites-yield similar Michaelis-Menten curves that are not readily resolved without further experimentation. Our user-friendly software package allows homogeneity testing and parameter estimation.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Peter R. Wills
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Francisco Barbosa F, Mermudes JRM, Russo CAM. Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda phylogeny. PeerJ 2024; 12:e16706. [PMID: 38213769 PMCID: PMC10782957 DOI: 10.7717/peerj.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
Recently, many studies have addressed the performance of phylogenetic tree-building methods (maximum parsimony, maximum likelihood, and Bayesian inference), focusing primarily on simulated data. However, for discrete morphological data, there is no consensus yet on which methods recover the phylogeny with better performance. To address this lack of consensus, we investigate the performance of different methods using an empirical dataset for hexapods as a model. As an empirical test of performance, we applied normalized indices to effectively measure accuracy (normalized Robinson-Foulds metric, nRF) and precision, which are measured via resolution, one minus Colless' consensus fork index (1-CFI). Additionally, to further explore phylogenetic accuracy and support measures, we calculated other statistics, such as the true positive rate (statistical power) and the false positive rate (type I error), and constructed receiver operating characteristic plots to visualize the relationship between these statistics. We applied the normalized indices to the reconstructed trees from the reanalyses of an empirical discrete morphological dataset from extant Hexapoda using a well-supported phylogenomic tree as a reference. Maximum likelihood and Bayesian inference applying the k-state Markov (Mk) model (without or with a discrete gamma distribution) performed better, showing higher precision (resolution). Additionally, our results suggest that most available tree topology tests are reliable estimators of the performance measures applied in this study. Thus, we suggest that likelihood-based methods and tree topology tests should be used more often in phylogenetic tree studies based on discrete morphological characters. Our study provides a fair indication that morphological datasets have robust phylogenetic signal.
Collapse
Affiliation(s)
| | | | - Claudia A. M. Russo
- Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Wang LY, Tang H, Zhao JQ, Wang MN, Xue YP, Zheng YG. Correlation Analysis of Key Residue Sites between Computational-Aided Design Thermostability d-Amino Acid Oxidase and Ancestral Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20177-20186. [PMID: 38064545 DOI: 10.1021/acs.jafc.3c06865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The d-amino acid oxidase (DAAO) from Rhodotorula taiwanensis has proven to have great potential for applications due to its excellent catalytic kinetic parameters. However, its poor thermal stability has limited its performance in biocatalysis. Herein, starting from the variant SHVG of RtwDAAO, this study employed a comprehensive computational design approach for protein stability engineering, resulting in positive substitutions at specific sites (A43S, T45M, C234L, E195Y). The generated variant combination, SHVG/SMLY, exhibited a significant synergistic effect, leading to an extension of the half-life and Tmapp. The ancestral sequence reconstruction revealed the conservation of the variant sites. The association of the variant sites with the highly stable ancestral enzyme was further explored. After determining the contribution of the variant sites to thermal stability, it was applied to other homologous sequences and validated. Molecular dynamics simulations indicated that the increased hydrophobicity of the variant SHVG/SMLY was a key factor for the increased stability, with strengthened intersubunit interactions playing an important role. In addition, the physical properties of the amino acids themselves were identified as crucial factors for thermal stability generality in homologous enzymes, which is important for the rapid acquisition of a series of stable enzymes.
Collapse
Affiliation(s)
- Liu-Yu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jin-Qiao Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meng-Nan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Li Y, Li Z, Zhang F, Li S, Gu Y, Tian W, Tian W, Wang J, Wen J, Li J. Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:823-839. [PMID: 37522396 DOI: 10.1111/tpj.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Steroidal saponins are a class of specialized metabolites essential for plant's response to biotic and abiotic stresses. They are also important raw materials for the industrial production of steroid drugs. Steroidal saponins are present in some monocots, such as Dioscorea and Paris, but their distribution, origin, and evolution in plants remain poorly understood. By reconstructing the evolutionary history of the steroidal saponin-associated module (SSAM) in plants, we reveal that the steroidal saponin pathway has its origin in Asparagus and Dioscorea. Through evaluating the distribution and evolutionary pattern of steroidal saponins in angiosperms, we further show that steroidal saponins originated multiple times in angiosperms, and exist in early diverged lineages of certain monocot lineages including Asparagales, Dioscoreales, and Liliales. In these lineages, steroidal saponins are synthesized through the high copy and/or high expression mechanisms of key genes in SSAM. Together with shifts in gene evolutionary rates and amino acid usage, these molecular mechanisms shape the current distribution and diversity of steroidal saponins in plants. Consequently, our results provide new insights into the distribution, diversity and evolutionary history of steroidal saponins in plants, and enhance our understanding of plants' resistance to abiotic and biotic stresses. Additionally, fundamental understanding of the steroidal saponin biosynthesis will facilitate their industrial production and pharmacological applications.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zihao Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Furui Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongbing Gu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weijun Tian
- Yunnan Baotian Agricultural Technology Co., Ltd, Kunming, 650101, China
| | - Weirong Tian
- Yunnan Baotian Agricultural Technology Co., Ltd, Kunming, 650101, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, 20013-7012, DC, USA
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
13
|
Lei L, Zhao L, Hou Y, Yue C, Liu P, Zheng Y, Peng W, Yang J. An Inferred Ancestral CotA Laccase with Improved Expression and Kinetic Efficiency. Int J Mol Sci 2023; 24:10901. [PMID: 37446078 DOI: 10.3390/ijms241310901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.
Collapse
Affiliation(s)
- Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lijun Zhao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiqia Hou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chen Yue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pulin Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanli Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
15
|
Mascotti ML. Resurrecting Enzymes by Ancestral Sequence Reconstruction. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2397:111-136. [PMID: 34813062 DOI: 10.1007/978-1-0716-1826-4_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ancestral Sequence Reconstruction (ASR) allows one to infer the sequences of extinct proteins using the phylogeny of extant proteins. It consists of disclosing the evolutionary history-i.e., the phylogeny-of a protein family of interest and then inferring the sequences of its ancestors-i.e., the nodes in the phylogeny. Assisted by gene synthesis, the selected ancestors can be resurrected in the lab and experimentally characterized. The crucial step to succeed with ASR is starting from a reliable phylogeny. At the same time, it is of the utmost importance to have a clear idea on the evolutionary history of the family under study and the events that influenced it. This allows us to implement ASR with well-defined hypotheses and to apply the appropriate experimental methods. In the last years, ASR has become popular to test hypotheses about the origin of functionalities, changes in activities, understanding physicochemical properties of proteins, among others. In this context, the aim of this chapter is to present the ASR approach applied to the reconstruction of enzymes-i.e., proteins with catalytic roles. The spirit of this contribution is to provide a basic, hands-to-work guide for biochemists and biologists who are unfamiliar with molecular phylogenetics.
Collapse
Affiliation(s)
- Maria Laura Mascotti
- Molecular Enzymology group, University of Groningen, Groningen, The Netherlands. .,IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
16
|
Lichman BR. Ancestral Sequence Reconstruction for Exploring Alkaloid Evolution. Methods Mol Biol 2022; 2505:165-179. [PMID: 35732944 DOI: 10.1007/978-1-0716-2349-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The complex and bioactive monoterpene indole alkaloids (MIAs) found in Catharanthus roseus and related species are the products of many millions of years of evolution through mutation and natural selection. Ancestral sequence reconstruction (ASR) is a method that combines phylogenetic analysis and experimental biochemistry to infer details about past events in protein evolution. Here, I propose that ASR could be leveraged to understand how enzymes catalyzing the formation of complex alkaloids arose over evolutionary time. I discuss the steps of ASR, including sequence selection, multiple sequence alignment, tree inference, and the generation and characterization of inferred ancestral enzymes.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| |
Collapse
|
17
|
Abstract
The reconstruction of genetic material of ancestral organisms constitutes a powerful application of evolutionary biology. A fundamental step in this inference is the ancestral sequence reconstruction (ASR), which can be performed with diverse methodologies implemented in computer frameworks. However, most of these methodologies ignore evolutionary properties frequently observed in microbes, such as genetic recombination and complex selection processes, that can bias the traditional ASR. From a practical perspective, here I review methodologies for the reconstruction of ancestral DNA and protein sequences, with particular focus on microbes, and including biases, recommendations, and software implementations. I conclude that microbial ASR is a complex analysis that should be carefully performed and that there is a need for methods to infer more realistic ancestral microbial sequences.
Collapse
Affiliation(s)
- Miguel Arenas
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain.
| |
Collapse
|
18
|
Gamiz-Arco G, Risso VA, Gaucher EA, Gavira JA, Naganathan AN, Ibarra-Molero B, Sanchez-Ruiz JM. Combining Ancestral Reconstruction with Folding-Landscape Simulations to Engineer Heterologous Protein Expression. J Mol Biol 2021; 433:167321. [PMID: 34687715 DOI: 10.1016/j.jmb.2021.167321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
Obligate symbionts typically exhibit high evolutionary rates. Consequently, their proteins may differ considerably from their modern and ancestral homologs in terms of both sequence and properties, thus providing excellent models to study protein evolution. Also, obligate symbionts are challenging to culture in the lab and proteins from uncultured organisms must be produced in heterologous hosts using recombinant DNA technology. Obligate symbionts thus replicate a fundamental scenario of metagenomics studies aimed at the functional characterization and biotechnological exploitation of proteins from the bacteria in soil. Here, we use the thioredoxin from Candidatus Photodesmus katoptron, an uncultured symbiont of flashlight fish, to explore evolutionary and engineering aspects of protein folding in heterologous hosts. The symbiont protein is a standard thioredoxin in terms of 3D-structure, stability and redox activity. However, its folding outside the original host is severely impaired, as shown by a very slow refolding in vitro and an inefficient expression in E. coli that leads mostly to insoluble protein. By contrast, resurrected Precambrian thioredoxins express efficiently in E. coli, plausibly reflecting an ancient adaptation to unassisted folding. We have used a statistical-mechanical model of the folding landscape to guide back-to-ancestor engineering of the symbiont protein. Remarkably, we find that the efficiency of heterologous expression correlates with the in vitro (i.e., unassisted) folding rate and that the ancestral expression efficiency can be achieved with only 1-2 back-to-ancestor replacements. These results demonstrate a minimal-perturbation, sequence-engineering approach to rescue inefficient heterologous expression which may potentially be useful in metagenomics efforts targeting recent adaptations.
Collapse
Affiliation(s)
- Gloria Gamiz-Arco
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jose A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain. https://twitter.com/Gavirius
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain.
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
19
|
Hyland EM, Webb AE, Kennedy KF, Gerek Ince ZN, Loscher CE, O'Connell MJ. Adaptive Evolution in TRIF Leads to Discordance between Human and Mouse Innate Immune Signaling. Genome Biol Evol 2021; 13:6454097. [PMID: 34893845 PMCID: PMC8691055 DOI: 10.1093/gbe/evab268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
The TIR domain-containing adapter inducing IFN-β (TRIF) protein is an innate immune system protein that mediates the MyD88-independent toll-like receptor response pathway in mice and humans. Previously, we identified positive selection at seven distinct residues in mouse TRIF (mTRIF), as compared with human and other mammalian orthologs, thus predicting protein functional shift in mTRIF. We reconstructed TRIF for the most recent common ancestor of mouse and human, and mutated this at the seven sites to their extant mouse/human states. We overexpressed these TRIF mutants in immortalized human and mouse cell lines and monitored TRIF-dependent cytokine production and gene expression induction. We show that optimal TRIF function in human and mouse is dependent on the identity of the positively selected sites. These data provide us with molecular data relating observed differences in response between mouse and human MyD88-independent signaling in the innate immune system with protein functional change.
Collapse
Affiliation(s)
- Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Kathy F Kennedy
- Immunomodulation Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Z Nevin Gerek Ince
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Christine E Loscher
- Immunomodulation Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Li Z, Hoshino Y, Tran L, Gaucher EA. Phylogenetic articulation of uric acid evolution in mammals and how it informs a therapeutic uricase. Mol Biol Evol 2021; 39:6413644. [PMID: 34718698 PMCID: PMC8760943 DOI: 10.1093/molbev/msab312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of uric acid during primate evolution has remained elusive ever since it was discovered over 100 years ago that humans have unusually high levels of the small molecule in our serum. It has been difficult to generate a neutral or adaptive explanation in part because the uricase enzyme evolved to become a pseudogene in apes thus masking typical signals of sequence evolution. Adding to the difficulty is a lack of clarity on the functional role of uric acid in apes. One popular hypothesis proposes that uric acid is a potent antioxidant that increased in concentration to compensate for the lack of vitamin C synthesis in primate species ∼65 million years ago (Mya). Here, we have expanded on our previous work with resurrected ancient uricase proteins to better resolve the reshaping of uricase enzymatic activity prior to ape evolution. Our results suggest that the pivotal death-knell to uricase activity occurred between 20-30 Mya despite small sequential modifications to its catalytic efficiency for the tens of millions of years since primates lost their ability to synthesize vitamin C, and thus the two appear uncorrelated. We also use this opportunity to demonstrate how molecular evolution can contribute to biomedicine by presenting ancient uricases to human immune cells that assay for innate reactivity against foreign antigens. A highly stable and highly catalytic ancient uricase is shown to elicit a lower immune response in more human haplotypes than other uricases currently in therapeutic development.
Collapse
Affiliation(s)
- Ze Li
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Yosuke Hoshino
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Lily Tran
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Eric A Gaucher
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| |
Collapse
|
21
|
Prieto-Godino LL, Schmidt HR, Benton R. Molecular reconstruction of recurrent evolutionary switching in olfactory receptor specificity. eLife 2021; 10:69732. [PMID: 34677122 PMCID: PMC8575457 DOI: 10.7554/elife.69732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Olfactory receptor repertoires exhibit remarkable functional diversity, but how these proteins have evolved is poorly understood. Through analysis of extant and ancestrally reconstructed drosophilid olfactory receptors from the Ionotropic receptor (Ir) family, we investigated evolution of two organic acid-sensing receptors, Ir75a and Ir75b. Despite their low amino acid identity, we identify a common ‘hotspot’ in their ligand-binding pocket that has a major effect on changing the specificity of both Irs, as well as at least two distinct functional transitions in Ir75a during evolution. Moreover, we show that odor specificity is refined by changes in additional, receptor-specific sites, including those outside the ligand-binding pocket. Our work reveals how a core, common determinant of ligand-tuning acts within epistatic and allosteric networks of substitutions to lead to functional evolution of olfactory receptors.
Collapse
Affiliation(s)
- Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,The Francis Crick Institute, London, United Kingdom
| | - Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Pinto GP, Corbella M, Demkiv AO, Kamerlin SCL. Exploiting enzyme evolution for computational protein design. Trends Biochem Sci 2021; 47:375-389. [PMID: 34544655 DOI: 10.1016/j.tibs.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
Recent years have seen an explosion of interest in understanding the physicochemical parameters that shape enzyme evolution, as well as substantial advances in computational enzyme design. This review discusses three areas where evolutionary information can be used as part of the design process: (i) using ancestral sequence reconstruction (ASR) to generate new starting points for enzyme design efforts; (ii) learning from how nature uses conformational dynamics in enzyme evolution to mimic this process in silico; and (iii) modular design of enzymes from smaller fragments, again mimicking the process by which nature appears to create new protein folds. Using showcase examples, we highlight the importance of incorporating evolutionary information to continue to push forward the boundaries of enzyme design studies.
Collapse
Affiliation(s)
- Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
23
|
Identification of coagulation factor IX variants with enhanced activity through ancestral sequence reconstruction. Blood Adv 2021; 5:3333-3343. [PMID: 34477814 DOI: 10.1182/bloodadvances.2021004742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Orthologous proteins contain sequence disparity guided by natural selection. In certain cases, species-specific protein functionality predicts pharmacological enhancement, such as greater specific activity or stability. However, immunological barriers generally preclude use of nonhuman proteins as therapeutics, and difficulty exists in the identification of individual sequence determinants among the overall sequence disparity. Ancestral sequence reconstruction (ASR) represents a platform for the prediction and resurrection of ancient gene and protein sequences. Recently, we demonstrated that ASR can be used as a platform to facilitate the identification of therapeutic protein variants with enhanced properties. Specifically, we identified coagulation factor VIII (FVIII) variants with improved specific activity, biosynthesis, stability, and resistance to anti-human FVIII antibody-based inhibition. In the current study, we resurrected a panel of ancient mammalian coagulation factor IX (FIX) variants with the goal of identifying improved pharmaceutical candidates. One variant (An96) demonstrated 12-fold greater FIX activity production than human FIX. Addition of the R338L Padua substitution further increased An96 activity, suggesting independent but additive mechanisms. after adeno-associated virus 2 (AAV2)/8-FIX gene therapy, 10-fold greater plasma FIX activity was observed in hemophilia B mice administered AAV2/8-An96-Padua as compared with AAV2/8-human FIX-Padua. Furthermore, phenotypic correction conferred by the ancestral variant was confirmed using a saphenous vein bleeding challenge and thromboelastography. Collectively, these findings validate the ASR drug discovery platform as well as identify an ancient FIX candidate for pharmaceutical development.
Collapse
|
24
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:e66961. [PMID: 34288868 PMCID: PMC8294853 DOI: 10.7554/elife.66961] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
25
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:66961. [PMID: 34288868 DOI: 10.1101/2021.01.26.428286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
26
|
Lecocq M, Groussin M, Gouy M, Brochier-Armanet C. The Molecular Determinants of Thermoadaptation: Methanococcales as a Case Study. Mol Biol Evol 2021; 38:1761-1776. [PMID: 33450027 PMCID: PMC8097290 DOI: 10.1093/molbev/msaa312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous reports have shown that environmental temperature impacts proteome evolution in Bacteria and Archaea. However, it is unknown whether thermoadaptation mainly occurs via the sequential accumulation of substitutions, massive horizontal gene transfers, or both. Measuring the real contribution of amino acid substitution to thermoadaptation is challenging, because of confounding environmental and genetic factors (e.g., pH, salinity, genomic G + C content) that also affect proteome evolution. Here, using Methanococcales, a major archaeal lineage, as a study model, we show that optimal growth temperature is the major factor affecting variations in amino acid frequencies of proteomes. By combining phylogenomic and ancestral sequence reconstruction approaches, we disclose a sequential substitutional scheme in which lysine plays a central role by fine tuning the pool of arginine, serine, threonine, glutamine, and asparagine, whose frequencies are strongly correlated with optimal growth temperature. Finally, we show that colonization to new thermal niches is not associated with high amounts of horizontal gene transfers. Altogether, although the acquisition of a few key proteins through horizontal gene transfer may have favored thermoadaptation in Methanococcales, our findings support sequential amino acid substitutions as the main factor driving thermoadaptation.
Collapse
Affiliation(s)
- Michel Lecocq
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolo Gouy
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| |
Collapse
|
27
|
Carletti MS, Monzon AM, Garcia-Rios E, Benitez G, Hirsh L, Fornasari MS, Parisi G. Revenant: a database of resurrected proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5828294. [PMID: 32400867 PMCID: PMC7218706 DOI: 10.1093/database/baaa031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Revenant is a database of resurrected proteins coming from extinct organisms. Currently, it contains a manually curated collection of 84 resurrected proteins derived from bibliographic data. Each protein is extensively annotated, including structural, biochemical and biophysical information. Revenant contains a browse capability designed as a timeline from where the different proteins can be accessed. The oldest Revenant entries are between 4200 and 3500 million years ago, while the younger entries are between 8.8 and 6.3 million years ago. These proteins have been resurrected using computational tools called ancestral sequence reconstruction techniques combined with wet-laboratory synthesis and expression. Resurrected proteins are commonly used, with a noticeable increase during the past years, to explore and test different evolutionary hypotheses such as protein stability, to explore the origin of new functions, to get biochemical insights into past metabolisms and to explore specificity and promiscuous behaviour of ancient proteins.
Collapse
Affiliation(s)
- Matias Sebastian Carletti
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova, I-35131, Padova, Italy
| | - Emilio Garcia-Rios
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Guillermo Benitez
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Layla Hirsh
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
28
|
Abstract
Steroids are one of three major lipid components of the eukaryotic cellular membrane, along with glycerophospolipids and sphingolipids. Steroids have critical roles in eukaryotic endocytosis and thus may have been structural prerequisites for the endocytic acquisition of mitochondria during eukaryogenesis. The evolutionary history of the eukaryotic cellular membrane is poorly understood and, as such, has limited our understanding of eukaryogenesis. We address the evolution of steroid biosynthesis by combining ancestral sequence reconstruction and phylogenetic analyses of steroid biosynthesis genes. Our results indicate that steroid biosynthesis evolved within bacteria in response to the rise of oxygen and was later horizontally transferred to eukaryotes. Membrane properties of early eukaryotes are inferred to have been different than that of modern eukaryotes. Steroids are components of the eukaryotic cellular membrane and have indispensable roles in the process of eukaryotic endocytosis by regulating membrane fluidity and permeability. In particular, steroids may have been a structural prerequisite for the acquisition of mitochondria via endocytosis during eukaryogenesis. While eukaryotes are inferred to have evolved from an archaeal lineage, there is little similarity between the eukaryotic and archaeal cellular membranes. As such, the evolution of eukaryotic cellular membranes has limited our understanding of eukaryogenesis. Despite evolving from archaea, the eukaryotic cellular membrane is essentially a fatty acid bacterial-type membrane, which implies a substantial bacterial contribution to the evolution of the eukaryotic cellular membrane. Here, we address the evolution of steroid biosynthesis in eukaryotes by combining ancestral sequence reconstruction and comprehensive phylogenetic analyses of steroid biosynthesis genes. Contrary to the traditional assumption that eukaryotic steroid biosynthesis evolved within eukaryotes, most steroid biosynthesis genes are inferred to be derived from bacteria. In particular, aerobic deltaproteobacteria (myxobacteria) seem to have mediated the transfer of key genes for steroid biosynthesis to eukaryotes. Analyses of resurrected steroid biosynthesis enzymes suggest that the steroid biosynthesis pathway in early eukaryotes may have been similar to the pathway seen in modern plants and algae. These resurrected proteins also experimentally demonstrate that molecular oxygen was required to establish the modern eukaryotic cellular membrane during eukaryogenesis. Our study provides unique insight into relationships between early eukaryotes and other bacteria in addition to the well-known endosymbiosis with alphaproteobacteria.
Collapse
|
29
|
Aadland K, Kolaczkowski B. Alignment-Integrated Reconstruction of Ancestral Sequences Improves Accuracy. Genome Biol Evol 2021; 12:1549-1565. [PMID: 32785673 PMCID: PMC7523730 DOI: 10.1093/gbe/evaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral sequences. Here, we show that errors in sequence alignment can produce errors in ASR across a range of realistic and simplified evolutionary scenarios. Importantly, sequence reconstruction errors can lead to errors in estimates of structural and functional properties of ancestral proteins, potentially undermining the reliability of analyses relying on ASR. We introduce an alignment-integrated ASR approach that combines information from many different sequence alignments. We show that integrating alignment uncertainty improves ASR accuracy and the accuracy of downstream structural and functional inferences, often performing as well as highly accurate structure-guided alignment. Given the growing evidence that sequence alignment errors can impact the reliability of ASR studies, we recommend that future studies incorporate approaches to mitigate the impact of alignment uncertainty. Probabilistic modeling of insertion and deletion events has the potential to radically improve ASR accuracy when the model reflects the true underlying evolutionary history, but further studies are required to thoroughly evaluate the reliability of these approaches under realistic conditions.
Collapse
Affiliation(s)
- Kelsey Aadland
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida
| |
Collapse
|
30
|
Carrijo de Oliveira L, Figueiredo Costa MA, Gonçalves Pedersolli N, Heleno Batista FA, Migliorini Figueira AC, Salgado Ferreira R, Alves Pinto Nagem R, Alves Nahum L, Bleicher L. Reenacting the Birth of a Function: Functional Divergence of HIUases and Transthyretins as Inferred by Evolutionary and Biophysical Studies. J Mol Evol 2021; 89:370-383. [PMID: 33956179 DOI: 10.1007/s00239-021-10010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Transthyretin was discovered in the 1940s, named after its ability to bind thyroid hormones and retinol. In the genomic era, transthyretins were found to be part of a larger family with homologs of no obvious function, then called transthyretin-related proteins. Thus, it was proposed that the transthyretin gene could be the result of gene duplication of an ancestral of this newly identified homolog, later found out to be an enzyme involved in uric acid degradation, then named HIUase (5-hydroxy-isourate hydrolase). Here, we sought to re-enact the evolutionary history of this protein family by reconstructing, from a phylogeny inferred from 123 vertebrate sequences, three ancestors corresponding to key moments in their evolution-before duplication; the common transthyretin ancestor after gene duplication and the common ancestor of Eutheria transthyretins. Experimental and computational characterization showed the reconstructed ancestor before duplication was unable to bind thyroxine and likely presented the modern HIUase reaction mechanism, while the substitutions after duplication prevented that activity and were enough to provide stable thyroxine binding, as confirmed by calorimetry and x-ray diffraction. The Eutheria transthyretin ancestor was less prone to characterization, but limited data suggested thyroxine binding as expected. Sequence/structure analysis suggests an early ability to bind the Retinol Binding Protein. We solved the X-ray structures from the two first ancestors, the first at 1.46 resolution, the second at 1.55 resolution with well-defined electron density for thyroxine, providing a useful tool for the understanding of structural adaptation from enzyme to hormone distributor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laila Alves Nahum
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Lucas Bleicher
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
31
|
Tong CL, Lee KH, Seelig B. De novo proteins from random sequences through in vitro evolution. Curr Opin Struct Biol 2021; 68:129-134. [PMID: 33517151 DOI: 10.1016/j.sbi.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Natural proteins are the result of billions of years of evolution. The earliest predecessors of today's proteins are believed to have emerged from random polypeptides. While we have no means to determine how this process exactly happened, there is great interest in understanding how it reasonably could have happened. We are reviewing how researchers have utilized in vitro selection and molecular evolution methods to investigate plausible scenarios for the emergence of early functional proteins. The studies range from analyzing general properties and structural features of unevolved random polypeptides to isolating de novo proteins with specific functions from synthetic randomized sequence libraries or generating novel proteins by combining evolution with rational design. While the results are exciting, more work is needed to fully unravel the mechanisms that seeded protein-dominated biology.
Collapse
Affiliation(s)
- Cher Ling Tong
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Kun-Hwa Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
32
|
Selberg AGA, Gaucher EA, Liberles DA. Ancestral Sequence Reconstruction: From Chemical Paleogenetics to Maximum Likelihood Algorithms and Beyond. J Mol Evol 2021; 89:157-164. [PMID: 33486547 PMCID: PMC7828096 DOI: 10.1007/s00239-021-09993-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
As both a computational and an experimental endeavor, ancestral sequence reconstruction remains a timely and important technique. Modern approaches to conduct ancestral sequence reconstruction for proteins are built upon a conceptual framework from journal founder Emile Zuckerkandl. On top of this, work on maximum likelihood phylogenetics published in Journal of Molecular Evolution in 1996 was one of the first approaches for generating maximum likelihood ancestral sequences of proteins. From its computational history, future model development needs as well as potential applications in areas as diverse as computational systems biology, molecular community ecology, infectious disease therapeutics and other biomedical applications, and biotechnology are discussed. From its past in this journal, there is a bright future for ancestral sequence reconstruction in the field of evolutionary biology.
Collapse
Affiliation(s)
- Avery G A Selberg
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
33
|
Gamiz-Arco G, Gutierrez-Rus LI, Risso VA, Ibarra-Molero B, Hoshino Y, Petrović D, Justicia J, Cuerva JM, Romero-Rivera A, Seelig B, Gavira JA, Kamerlin SCL, Gaucher EA, Sanchez-Ruiz JM. Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nat Commun 2021; 12:380. [PMID: 33452262 PMCID: PMC7810902 DOI: 10.1038/s41467-020-20630-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. Here, we present the exceptional properties of a putative ancestor of bacterial and eukaryotic family-1 glycosidases. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the ∼5500 reported crystallographic structures of ∼1400 modern glycosidases show a bound porphyrin. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein reconstructions to reveal valuable but unexpected biomolecular features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed. Family 1 glycosidases (GH1) are present in the three domains of life and share classical TIM-barrel fold. Structural and biochemical analyses of a resurrected ancestral GH1 enzyme reveal heme binding, not known in its modern descendants. Heme rigidifies the TIM-barrel and allosterically enhances catalysis.
Collapse
Affiliation(s)
- Gloria Gamiz-Arco
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Luis I Gutierrez-Rus
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Valeria A Risso
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Yosuke Hoshino
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dušan Petrović
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden.,Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, 431 50, Gothenburg, Sweden
| | - Jose Justicia
- Departamento de Quimica Organica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Juan Manuel Cuerva
- Departamento de Quimica Organica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Adrian Romero-Rivera
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America, & BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Jose A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Avenida de las Palmeras 4, Granada, 18100, Armilla, Spain
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden.
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
34
|
Garrett Vieira F, Samaniego Castruita JA, Gilbert MTP. Using in silico predicted ancestral genomes to improve the efficiency of paleogenome reconstruction. Ecol Evol 2020; 10:12700-12709. [PMID: 33304488 PMCID: PMC7713980 DOI: 10.1002/ece3.6925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/20/2023] Open
Abstract
Paleogenomics is the nascent discipline concerned with sequencing and analysis of genome-scale information from historic, ancient, and even extinct samples. While once inconceivable due to the challenges of DNA damage, contamination, and the technical limitations of PCR-based Sanger sequencing, following the dawn of the second-generation sequencing revolution, it has rapidly become a reality. However, a significant challenge facing ancient DNA studies on extinct species is the lack of closely related reference genomes against which to map the sequencing reads from ancient samples. Although bioinformatic efforts to improve the assemblies have focused mainly in mapping algorithms, in this article we explore the potential of an alternative approach, namely using reconstructed ancestral genome as reference for mapping DNA sequences of ancient samples. Specifically, we present a preliminary proof of concept for a general framework and demonstrate how under certain evolutionary divergence thresholds, considerable mapping improvements can be easily obtained.
Collapse
Affiliation(s)
- Filipe Garrett Vieira
- Section for Evolutionary GenomicsThe GLOBE InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - José Alfredo Samaniego Castruita
- Section for Evolutionary GenomicsThe GLOBE InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary GenomicsThe GLOBE InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
35
|
Non-conservation of folding rates in the thioredoxin family reveals degradation of ancestral unassisted-folding. Biochem J 2020; 476:3631-3647. [PMID: 31750876 PMCID: PMC6906118 DOI: 10.1042/bcj20190739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
Evolution involves not only adaptation, but also the degradation of superfluous features. Many examples of degradation at the morphological level are known (vestigial organs, for instance). However, the impact of degradation on molecular evolution has been rarely addressed. Thioredoxins serve as general oxidoreductases in all cells. Here, we report extensive mutational analyses on the folding of modern and resurrected ancestral bacterial thioredoxins. Contrary to claims from recent literature, in vitro folding rates in the thioredoxin family are not evolutionarily conserved, but span at least a ∼100-fold range. Furthermore, modern thioredoxin folding is often substantially slower than ancestral thioredoxin folding. Unassisted folding, as probed in vitro, thus emerges as an ancestral vestigial feature that underwent degradation, plausibly upon the evolutionary emergence of efficient cellular folding assistance. More generally, our results provide evidence that degradation of ancestral features shapes, not only morphological evolution, but also the evolution of individual proteins.
Collapse
|
36
|
Moshe A, Pupko T. Ancestral sequence reconstruction: accounting for structural information by averaging over replacement matrices. Bioinformatics 2020; 35:2562-2568. [PMID: 30590382 DOI: 10.1093/bioinformatics/bty1031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Ancestral sequence reconstruction (ASR) is widely used to understand protein evolution, structure and function. Current ASR methodologies do not fully consider differences in evolutionary constraints among positions imposed by the three-dimensional (3D) structure of the protein. Here, we developed an ASR algorithm that allows different protein sites to evolve according to different mixtures of replacement matrices. We show that assigning replacement matrices to protein positions based on their solvent accessibility leads to ASR with higher log-likelihoods compared to naïve models that assume a single replacement matrix for all sites. Improved ASR log-likelihoods are also demonstrated when solvent accessibility is predicted from protein sequences rather than inferred from a known 3D structure. Finally, we show that using such structure-aware mixture models results in substantial differences in the inferred ancestral sequences. AVAILABILITY AND IMPLEMENTATION http://fastml.tau.ac.il. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Asher Moshe
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Zou Z, Zhang H, Guan Y, Zhang J. Deep Residual Neural Networks Resolve Quartet Molecular Phylogenies. Mol Biol Evol 2020; 37:1495-1507. [PMID: 31868908 PMCID: PMC8453599 DOI: 10.1093/molbev/msz307] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phylogenetic inference is of fundamental importance to evolutionary as well as other fields of biology, and molecular sequences have emerged as the primary data for this task. Although many phylogenetic methods have been developed to explicitly take into account substitution models of sequence evolution, such methods could fail due to model misspecification or insufficiency, especially in the face of heterogeneities in substitution processes across sites and among lineages. In this study, we propose to infer topologies of four-taxon trees using deep residual neural networks, a machine learning approach needing no explicit modeling of the subject system and having a record of success in solving complex nonlinear inference problems. We train residual networks on simulated protein sequence data with extensive amino acid substitution heterogeneities. We show that the well-trained residual network predictors can outperform existing state-of-the-art inference methods such as the maximum likelihood method on diverse simulated test data, especially under extensive substitution heterogeneities. Reassuringly, residual network predictors generally agree with existing methods in the trees inferred from real phylogenetic data with known or widely believed topologies. Furthermore, when combined with the quartet puzzling algorithm, residual network predictors can be used to reconstruct trees with more than four taxa. We conclude that deep learning represents a powerful new approach to phylogenetic reconstruction, especially when sequences evolve via heterogeneous substitution processes. We present our best trained predictor in a freely available program named Phylogenetics by Deep Learning (PhyDL, https://gitlab.com/ztzou/phydl; last accessed January 3, 2020).
Collapse
Affiliation(s)
- Zhengting Zou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
38
|
Gardner JM, Biler M, Risso VA, Sanchez-Ruiz JM, Kamerlin SCL. Manipulating Conformational Dynamics To Repurpose Ancient Proteins for Modern Catalytic Functions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00722] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jasmine M. Gardner
- Department of Chemistry - BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Michal Biler
- Department of Chemistry - BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A. Risso
- Departamento de Quı́mica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quı́mica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Jose M. Sanchez-Ruiz
- Departamento de Quı́mica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quı́mica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Shina C. L. Kamerlin
- Department of Chemistry - BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
39
|
Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol 2019; 2:429. [PMID: 31799431 PMCID: PMC6874671 DOI: 10.1038/s42003-019-0677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) - a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Collapse
Affiliation(s)
- Adam Thomas
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Rhys Cutlan
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - William Finnigan
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Mark van der Giezen
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
- Centre for Organelle Research, University of Stavanger, Richard Johnsens gate 4, Stavanger, 4021 Norway
| | - Nicholas Harmer
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
40
|
Garcia AK, Kaçar B. How to resurrect ancestral proteins as proxies for ancient biogeochemistry. Free Radic Biol Med 2019; 140:260-269. [PMID: 30951835 DOI: 10.1016/j.freeradbiomed.2019.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/11/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Throughout the history of life, enzymes have served as the primary molecular mediators of biogeochemical cycles by catalyzing the metabolic pathways that interact with geochemical substrates. The byproducts of enzymatic activities have been preserved as chemical and isotopic signatures in the geologic record. However, interpretations of these signatures are limited by the assumption that such enzymes have remained functionally conserved over billions of years of molecular evolution. By reconstructing ancient genetic sequences in conjunction with laboratory enzyme resurrection, preserved biogeochemical signatures can instead be related to experimentally constrained, ancestral enzymatic properties. We may thereby investigate instances within molecular evolutionary trajectories potentially tied to significant biogeochemical transitions evidenced in the geologic record. Here, we survey recent enzyme resurrection studies to provide a reasoned assessment of areas of success and common pitfalls relevant to ancient biogeochemical applications. We conclude by considering the Great Oxidation Event, which provides a constructive example of a significant biogeochemical transition that warrants investigation with ancestral enzyme resurrection. This event also serves to highlight the pitfalls of facile interpretation of paleophenotype models and data, as applied to two examples of enzymes that likely both influenced and were influenced by the rise of atmospheric oxygen - RuBisCO and nitrogenase.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
41
|
Polaski JT, Kletzien OA, Drogalis LK, Batey RT. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity. Nucleic Acids Res 2019; 46:9094-9105. [PMID: 29945209 PMCID: PMC6158498 DOI: 10.1093/nar/gky539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Riboswitches are structured mRNA sequences that regulate gene expression by directly binding intracellular metabolites. Generating the appropriate regulatory response requires the RNA rapidly and stably acquire higher-order structure to form the binding pocket, bind the appropriate effector molecule and undergo a structural transition to inform the expression machinery. These requirements place riboswitches under strong kinetic constraints, likely restricting the sequence space accessible by recurrent structural modules such as the kink turn and the T-loop. Class-II cobalamin riboswitches contain two T-loop modules: one directing global folding of the RNA and another buttressing the ligand binding pocket. While the T-loop module directing folding is highly conserved, the T-loop associated with binding is substantially less so, with no clear consensus sequence. To further understand the functional role of the binding-associated module, a functional genetic screen of a library of riboswitches with the T-loop and its interacting nucleotides was used to build an experimental phylogeny comprised of sequences that possess a wide range of cobalamin-dependent regulatory activity. Our results reveal conservation patterns of the T-loop and its interaction with the binding core that allow for rapid tertiary structure formation and demonstrate its importance for generating strong ligand-dependent repression of mRNA expression.
Collapse
Affiliation(s)
- Jacob T Polaski
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Otto A Kletzien
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Lea K Drogalis
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
42
|
Savory FR, Milner DS, Miles DC, Richards TA. Ancestral Function and Diversification of a Horizontally Acquired Oomycete Carboxylic Acid Transporter. Mol Biol Evol 2019; 35:1887-1900. [PMID: 29701800 PMCID: PMC6063262 DOI: 10.1093/molbev/msy082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer (HGT) can equip organisms with novel genes, expanding the repertoire of genetic material available for evolutionary innovation and allowing recipient lineages to colonize new environments. However, few studies have characterized the functions of HGT genes experimentally or examined postacquisition functional divergence. Here, we report the use of ancestral sequence reconstruction and heterologous expression in Saccharomyces cerevisiae to examine the evolutionary history of an oomycete transporter gene family that was horizontally acquired from fungi. We demonstrate that the inferred ancestral oomycete HGT transporter proteins and their extant descendants transport dicarboxylic acids which are intermediates of the tricarboxylic acid cycle. The substrate specificity profile of the most ancestral protein has largely been retained throughout the radiation of oomycetes, including in both plant and animal pathogens and in a free-living saprotroph, indicating that the ancestral HGT transporter function has been maintained by selection across a range of different lifestyles. No evidence of neofunctionalization in terms of substrate specificity was detected for different HGT transporter paralogues which have different patterns of temporal expression. However, a striking expansion of substrate range was observed for one plant pathogenic oomycete, with a HGT derived paralogue from Pythium aphanidermatum encoding a protein that enables tricarboxylic acid uptake in addition to dicarboxylic acid uptake. This demonstrates that HGT acquisitions can provide functional additions to the recipient proteome as well as the foundation material for the evolution of expanded protein functions.
Collapse
Affiliation(s)
- Fiona R Savory
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David S Milner
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel C Miles
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
43
|
Vialle RA, Tamuri AU, Goldman N. Alignment Modulates Ancestral Sequence Reconstruction Accuracy. Mol Biol Evol 2019; 35:1783-1797. [PMID: 29618097 PMCID: PMC5995191 DOI: 10.1093/molbev/msy055] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accurate reconstruction of ancestral states is a critical evolutionary analysis when studying ancient proteins and comparing biochemical properties between parental or extinct species and their extant relatives. It relies on multiple sequence alignment (MSA) which may introduce biases, and it remains unknown how MSA methodological approaches impact ancestral sequence reconstruction (ASR). Here, we investigate how MSA methodology modulates ASR using a simulation study of various evolutionary scenarios. We evaluate the accuracy of ancestral protein sequence reconstruction for simulated data and compare reconstruction outcomes using different alignment methods. Our results reveal biases introduced not only by aligner algorithms and assumptions, but also tree topology and the rate of insertions and deletions. Under many conditions we find no substantial differences between the MSAs. However, increasing the difficulty for the aligners can significantly impact ASR. The MAFFT consistency aligners and PRANK variants exhibit the best performance, whereas FSA displays limited performance. We also discover a bias towards reconstructed sequences longer than the true ancestors, deriving from a preference for inferring insertions, in almost all MSA methodological approaches. In addition, we find measures of MSA quality generally correlate highly with reconstruction accuracy. Thus, we show MSA methodological differences can affect the quality of reconstructions and propose MSA methods should be selected with care to accurately determine ancestral states with confidence.
Collapse
Affiliation(s)
- Ricardo Assunção Vialle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Asif U Tamuri
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Research IT Services, University College London, London, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
44
|
Following the Evolutionary Track of a Highly Specific l-Arginine Oxidase by Reconstruction and Biochemical Analysis of Ancestral and Native Enzymes. Appl Environ Microbiol 2019; 85:AEM.00459-19. [PMID: 30979835 DOI: 10.1128/aem.00459-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/27/2019] [Indexed: 02/02/2023] Open
Abstract
Following the evolutionary track of enzymes can help elucidate how enzymes attain their characteristic functions, such as thermal adaptation and substrate selectivity, during the evolutionary process. Ancestral sequence reconstruction (ASR) is effective for following evolutionary processes if sufficient sequence data are available. Selecting sequences from the data to generate a curated sequence library is necessary for the successful design of artificial proteins by ASR. In this study, we tried to follow the evolutionary track of l-arginine oxidase (AROD), a flavin adenine dinucleotide (FAD)-dependent amino acid oxidase (LAAO) that exhibits high specificity for l-arginine. The library was generated by selecting sequences in which the 15th, 50th, 332nd, and 580th residues are Gly, Ser, Trp, and Thr, respectively. We excluded sequences that are either extremely short or long and those with a low degree of sequence identity. Three ancestral ARODs (AncARODn0, AncARODn1, and AncARODn2) were designed using the library. Subsequently, we expressed the ancestral ARODs as well as native Oceanobacter kriegii AROD (OkAROD) in bacteria. AncARODn0 is phylogenetically most remote from OkAROD, whereas AncARODn2 is most similar to OkAROD. Thermal stability was gradually increased by extending AROD sequences back to the progenitor, while the temperature at which the residual activity is half of the maximum measured activity (T 1/2) of AncARODn0 was >20°C higher than that of OkAROD. Remarkably, only AncARODn0 exhibited broad substrate selectivity similar to that of conventional promiscuous LAAO. Taken together, our findings led us to infer that AROD may have evolved from a highly thermostable and promiscuous LAAO.IMPORTANCE In this study, we attempted to infer the molecular evolution of a recently isolated FAD-dependent l-arginine oxidase (AROD) that oxidizes l-arginine to 2-ketoarginine. Utilizing 10 candidate AROD sequences, we obtained a total of three ancestral ARODs. In addition, one native AROD was obtained by cloning one of the candidate ARODs. The candidate sequences were selected utilizing a curation method defined in this study. All the ARODs were successfully expressed in Escherichia coli for analysis of their biochemical functions. The catalytic activity of our bacterially expressed ancestral ARODs suggests that our ASR was successful. The ancestral AROD that is phylogenetically most remote from a native AROD has the highest thermal stability and substrate promiscuity. Our findings led us to infer that AROD evolved from a highly thermostable and promiscuous LAAO. As an application, we can design artificial ARODs with improved functions compared with those of native ones.
Collapse
|
45
|
Doroshkov AV, Konstantinov DK, Afonnikov DA, Gunbin KV. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC PLANT BIOLOGY 2019; 19:53. [PMID: 30813891 PMCID: PMC6393967 DOI: 10.1186/s12870-019-1640-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The variation in structure and function of gene regulatory networks (GRNs) participating in organisms development is a key for understanding species-specific evolutionary strategies. Even the tiniest modification of developmental GRN might result in a substantial change of a complex morphogenetic pattern. Great variety of trichomes and their accessibility makes them a useful model for studying the molecular processes of cell fate determination, cell cycle control and cellular morphogenesis. Nowadays, a large number of genes regulating the morphogenesis of A. thaliana trichomes are described. Here we aimed at a study the evolution of the GRN defining the trichome formation, and evaluation its importance in other developmental processes. RESULTS In study of the evolution of trichomes formation GRN we combined classical phylogenetic analysis with information on the GRN topology and composition in major plants taxa. This approach allowed us to estimate both times of evolutionary emergence of the GRN components which are mainly proteins, and the relative rate of their molecular evolution. Various simplifications of protein structure (based on the position of amino acid residues in protein globula, secondary structure type, and structural disorder) allowed us to demonstrate the evolutionary associations between changes in protein globules and speciations/duplications events. We discussed their potential involvement in protein-protein interactions and GRN function. CONCLUSIONS We hypothesize that the divergence and/or the specialization of the trichome-forming GRN is linked to the emergence of plant taxa. Information about the structural targets of the protein evolution in the GRN may predict switching points in gene networks functioning in course of evolution. We also propose a list of candidate genes responsible for the development of trichomes in a wide range of plant species.
Collapse
Affiliation(s)
- Alexey V. Doroshkov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrii K. Konstantinov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrij A. Afonnikov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Konstantin V. Gunbin
- Novosibirsk State University (NSU), Novosibirsk, Russia
- School of Life Science, Immanuel Kant Federal Baltic University, Kaliningrad, Russia
- Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
46
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
47
|
High-Throughput Reconstruction of Ancestral Protein Sequence, Structure, and Molecular Function. Methods Mol Biol 2019; 1851:135-170. [PMID: 30298396 DOI: 10.1007/978-1-4939-8736-8_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ancestral protein sequence reconstruction is a powerful technique for explicitly testing hypotheses about the evolution of molecular function, allowing researchers to meticulously dissect how historical changes in protein sequence impacted functional repertoire by altering the protein's 3D structure. These techniques have provided concrete, experimentally validated insights into ancient evolutionary processes and help illuminate the complex relationship between protein sequence, structure, and function. Inferring the protein family phylogenies on which ancestral sequence reconstruction depends and reconstructing the sequences, themselves, are amenable to high-throughput computational analysis. However, determining the structures of ancestral-reconstructed proteins and characterizing their functions typically rely on time-consuming and expensive laboratory analyses, limiting most current studies to examining a relatively small number of specific hypotheses. For this reason, we have little detailed, unbiased information about how molecular function evolves across large protein family phylogenies. Here we describe a generalized protocol that integrates ancestral sequence reconstruction with structural homology modeling and structure-based molecular affinity prediction to characterize historical changes in protein function across families with thousands of individual sequences. We highlight key steps in the analysis protocol requiring particularly careful attention to avoid introducing potential errors as well as steps for which computationally efficient subroutines can be substituted for more intensive approaches, allowing researchers to scale the analysis up or down, depending on available resources and requirements for reproducibility and scientific rigor. In our view, this approach provides a compelling compliment to more laboratory-intensive procedures, generating important contextual information that can help guide detailed experiments.
Collapse
|
48
|
Whole genome engineering by synthesis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1515-1527. [PMID: 30465231 DOI: 10.1007/s11427-018-9403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
Abstract
Whole genome engineering is now feasible with the aid of genome editing and synthesis tools. Synthesizing a genome from scratch allows modifications of the genomic structure and function to an extent that was hitherto not possible, which will finally lead to new insights into the basic principles of life and enable valuable applications. With several recent genome synthesis projects as examples, the technical details to synthesize a genome and applications of synthetic genome are addressed in this perspective. A series of ongoing or future synthetic genomics projects, including the different genomes to be synthesized in GP-write, synthetic minimal genome, massively recoded genome, chimeric genome and synthetic genome with expanded genetic alphabet, are also discussed here with a special focus on theoretical and technical impediments in the design and synthesis process. Synthetic genomics will become a commonplace to engineer pathways and genomes according to arbitrary sets of design principles with the development of high-efficient, low-cost genome synthesis and assembly technologies.
Collapse
|
49
|
Cappellini E, Prohaska A, Racimo F, Welker F, Pedersen MW, Allentoft ME, de Barros Damgaard P, Gutenbrunner P, Dunne J, Hammann S, Roffet-Salque M, Ilardo M, Moreno-Mayar JV, Wang Y, Sikora M, Vinner L, Cox J, Evershed RP, Willerslev E. Ancient Biomolecules and Evolutionary Inference. Annu Rev Biochem 2018; 87:1029-1060. [PMID: 29709200 DOI: 10.1146/annurev-biochem-062917-012002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.
Collapse
Affiliation(s)
- Enrico Cappellini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Ana Prohaska
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Fernando Racimo
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Frido Welker
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | | | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Peter de Barros Damgaard
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Petra Gutenbrunner
- Computational Systems Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julie Dunne
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;
| | - Simon Hammann
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom; .,Department of Anthropology and Archaeology, University of Bristol, Bristol BS8 1UU, United Kingdom
| | - Mélanie Roffet-Salque
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;
| | - Melissa Ilardo
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Yucheng Wang
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; ,
| | - Jürgen Cox
- Computational Systems Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Richard P Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; , .,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| |
Collapse
|
50
|
Kaltenbach M, Burke JR, Dindo M, Pabis A, Munsberg FS, Rabin A, Kamerlin SCL, Noel JP, Tawfik DS. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat Chem Biol 2018; 14:548-555. [PMID: 29686356 DOI: 10.1038/s41589-018-0042-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022]
Abstract
The emergence of catalysis in a noncatalytic protein scaffold is a rare, unexplored event. Chalcone isomerase (CHI), a key enzyme in plant flavonoid biosynthesis, is presumed to have evolved from a nonenzymatic ancestor related to the widely distributed fatty-acid binding proteins (FAPs) and a plant protein family with no isomerase activity (CHILs). Ancestral inference supported the evolution of CHI from a protein lacking isomerase activity. Further, we identified four alternative founder mutations, i.e., mutations that individually instated activity, including a mutation that is not phylogenetically traceable. Despite strong epistasis in other cases of protein evolution, CHI's laboratory reconstructed mutational trajectory shows weak epistasis. Thus, enantioselective CHI activity could readily emerge despite a catalytically inactive starting point. Accordingly, X-ray crystallography, NMR, and molecular dynamics simulations reveal reshaping of the active site toward a productive substrate-binding mode and repositioning of the catalytic arginine that was inherited from the ancestral fatty-acid binding proteins.
Collapse
Affiliation(s)
- Miriam Kaltenbach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Jason R Burke
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mirco Dindo
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.,Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Anna Pabis
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Fabian S Munsberg
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Avigayel Rabin
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shina C L Kamerlin
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Dan S Tawfik
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|