1
|
Deutschmann S, Täuber ST, Rimle L, Biner O, Schori M, Stanic AM, von Ballmoos C. Modulating Liposome Surface Charge for Maximized ATP Regeneration in Synthetic Nanovesicles. ACS Synth Biol 2024; 13:4061-4073. [PMID: 39592139 DOI: 10.1021/acssynbio.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In vitro reconstructed minimal respiratory chains are powerful tools to investigate molecular interactions between the different enzyme components and how they are influenced by their environment. One such system is the coreconstitution of the terminal cytochrome bo3 oxidase and the ATP synthase from Escherichia coli into liposomes, where the ATP synthase activity is driven through a proton motive force (pmf) created by the bo3 oxidase. The proton pumping activity of the bo3 oxidase is initiated using the artificial electron mediator short-chain ubiquinone and electron source DTT. Here, we extend this system and use either complex II or NDH-2 and succinate or NADH, respectively, as electron entry points employing the natural long-chain ubiquinone Q8 or Q10. By testing different lipid compositions, we identify that negatively charged lipids are a prerequisite to allow effective NDH-2 activity. Simultaneously, negatively charged lipids decrease the overall pmf formation and ATP synthesis rates. We find that orientation of the bo3 oxidase in liposomal membranes is governed by electrostatic interactions between enzyme and membrane surface, where positively charged lipids yield the desired bo3 oxidase orientation but hinder reduction of the quinone pool by NDH-2. To overcome this conundrum, we exploit ionizable lipids, which are either neutral or positively charged depending on the pH value. We first coreconstituted bo3 oxidase and ATP synthase into temporarily positively charged liposomes, followed by fusion with negatively charged empty liposomes at low pH. An increase of the pH to physiological values renders these proteoliposomes overall negatively charged, making them compatible with quinone reduction via NDH-2. Using this strategy, we not only succeeded in orienting the bo3 oxidase essentially unidirectionally into liposomes but also found up to 3-fold increased ATP synthesis rates through the usage of natural, long-chain quinones in combination with the substrate NADH compared to the synthetic electron donor/mediator pair.
Collapse
Affiliation(s)
- Sabina Deutschmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Stefan Theodore Täuber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Lukas Rimle
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Olivier Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Martin Schori
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ana-Marija Stanic
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
2
|
Schoenmakers LLJ, den Uijl MJ, Postma JL, van den Akker TAP, Huck WTS, Driessen AJM. SecYEG-mediated translocation in a model synthetic cell. Synth Biol (Oxf) 2024; 9:ysae007. [PMID: 38807757 PMCID: PMC11131593 DOI: 10.1093/synbio/ysae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Giant unilamellar vesicles (GUVs) provide a powerful model compartment for synthetic cells. However, a key challenge is the incorporation of membrane proteins that allow for transport, energy transduction, compartment growth and division. Here, we have successfully incorporated the membrane protein complex SecYEG-the key bacterial translocase that is essential for the incorporation of newly synthesized membrane proteins-in GUVs. Our method consists of fusion of small unilamellar vesicles containing reconstituted SecYEG into GUVs, thereby forming SecGUVs. These are suitable for large-scale experiments while maintaining a high protein:lipid ratio. We demonstrate that incorporation of SecYEG into GUVs does not inhibit its translocation efficiency. Robust membrane protein functionalized proteo-GUVs are promising and flexible compartments for use in the formation and growth of synthetic cells.
Collapse
Affiliation(s)
- Ludo L J Schoenmakers
- Physical-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Max J den Uijl
- Groningen Biomolecular Sciences and Biotechnology, Molecular Biotechnology, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jelle L Postma
- General Instrumentation, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Tim A P van den Akker
- Groningen Biomolecular Sciences and Biotechnology, Molecular Biotechnology, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Wilhelm T S Huck
- Physical-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Arnold J M Driessen
- Groningen Biomolecular Sciences and Biotechnology, Molecular Biotechnology, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
3
|
Thakur GCN, Uday A, Jurkiewicz P. FRET-GP - A Local Measure of the Impact of Transmembrane Peptide on Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18390-18402. [PMID: 38048524 DOI: 10.1021/acs.langmuir.3c02505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Reconstitution of a transmembrane protein in model lipid systems allows studying its structure and dynamics in isolation from the complexity of the natural environment. This approach also provides a well-defined environment for studying the interactions of proteins with lipids. In this work, we describe the FRET-GP method, which utilizes Förster resonance energy transfer (FRET) to specifically probe the nanoenvironment of a transmembrane domain. The tryptophan residues flanking this domain act as efficient FRET donors, while Laurdan acts as acceptor. The fluorescence of this solvatochromic probe is quantified using generalized polarization (GP) to report on lipid mobility in the vicinity of the transmembrane domain. We applied FRET-GP to study the transmembrane peptide WALP incorporated in liposomes. We found that the direct excitation of Laurdan to its second singlet state strongly contributes to GP values measured in FRET conditions. Removal of this parasitic contribution was essential for proper determination of GPFRET - the local analogue of classical GP parameter. The presence of WALP significantly increased both parameters but the local effects were considerably stronger (GPFRET ≫ GP). We conclude that WALP restricts lipid movement in its vicinity, inducing lateral inhomogeneity in membrane fluidity. WALP was also found to influence lipid phase transition. Our findings demonstrated that FRET-GP simultaneously provides local and global results, thereby enhancing the depth of information obtained from the measurement. We highlight the simplicity and sensitivity of the method, but also discuss its potential and limitations in studying protein-lipid interactions.
Collapse
Affiliation(s)
- Garima C N Thakur
- J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague 182 00, Czech Republic
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague 182 00, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague 182 00, Czech Republic
| |
Collapse
|
4
|
Stępień P, Świątek S, Robles MYY, Markiewicz-Mizera J, Balakrishnan D, Inaba-Inoue S, De Vries AH, Beis K, Marrink SJ, Heddle JG. CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38015973 PMCID: PMC10726305 DOI: 10.1021/acsami.3c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
For the successful generative engineering of functional artificial cells, a convenient and controllable means of delivering membrane proteins into membrane lipid bilayers is necessary. Here we report a delivery system that achieves this by employing membrane protein-carrying nanodiscs and the calcium-dependent fusion of phosphatidylserine lipid membranes. We show that lipid nanodiscs can fuse a transported lipid bilayer with the lipid bilayers of small unilamellar vesicles (SUVs) or giant unilamellar vesicles (GUVs) while avoiding recipient vesicles aggregation. This is triggered by a simple, transient increase in calcium concentration, which results in efficient and rapid fusion in a one-pot reaction. Furthermore, nanodiscs can be loaded with membrane proteins that can be delivered into target SUV or GUV membranes in a detergent-independent fashion while retaining their functionality. Nanodiscs have a proven ability to carry a wide range of membrane proteins, control their oligomeric state, and are highly adaptable. Given this, our approach may be the basis for the development of useful tools that will allow bespoke delivery of membrane proteins to protocells, equipping them with the cell-like ability to exchange material across outer/subcellular membranes.
Collapse
Affiliation(s)
- Piotr Stępień
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Świątek
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | | | | | - Dhanasekaran Balakrishnan
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Postgraduate
School of Molecular Medicine, Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Alex H. De Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
5
|
Tosaka T, Kamiya K. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Int J Mol Sci 2023; 24:ijms24087231. [PMID: 37108393 PMCID: PMC10138308 DOI: 10.3390/ijms24087231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Membrane proteins play an important role in key cellular functions, such as signal transduction, apoptosis, and metabolism. Therefore, structural and functional studies of these proteins are essential in fields such as fundamental biology, medical science, pharmacology, biotechnology, and bioengineering. However, observing the precise elemental reactions and structures of membrane proteins is difficult, despite their functioning through interactions with various biomolecules in living cells. To investigate these properties, methodologies have been developed to study the functions of membrane proteins that have been purified from biological cells. In this paper, we introduce various methods for creating liposomes or lipid vesicles, from conventional to recent approaches, as well as techniques for reconstituting membrane proteins into artificial membranes. We also cover the different types of artificial membranes that can be used to observe the functions of reconstituted membrane proteins, including their structure, number of transmembrane domains, and functional type. Finally, we discuss the reconstitution of membrane proteins using a cell-free synthesis system and the reconstitution and function of multiple membrane proteins.
Collapse
Affiliation(s)
- Toshiyuki Tosaka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
6
|
Khemthongcharoen N, Uawithya P, Yookong N, Chanasakulniyom M, Jeamsaksiri W, Sripumkhai W, Pattamang P, Juntasaro E, Kamnerdsook A, Houngkamhang N, Promptmas C. A simple and high -performance immobilization technique of membrane protein from crude cell lysate sample for a membrane-based immunoassay application. J Immunoassay Immunochem 2023; 44:76-89. [PMID: 36318041 DOI: 10.1080/15321819.2022.2137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane proteins are difficult to be extracted and to be coated on the substrate of the immunoassay reaction chamber because of their hydrophobicity. Traditional method to prepare membrane protein sample requires many steps of protein extraction and purification that may lead to protein structure deformation and protein dysfunction. This work proposes a simple technique to prepare and immobilize the membrane protein suspended in an unprocessed crude cell lysate sample. Membrane fractions in crude cell lysate were incorporated with the large unilamellar vesicle (LUV) that was mainly composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) before coating in the polystyrene plate by passive adsorption technique. Immunofluorescence staining and the Enzyme-Linked Immunosorbent Assay (ELISA) examination of a strictly conformation-dependent integral membrane protein, Myelin Oligodendrocyte Glycoprotein (MOG), demonstrate that LUV incorporated cell lysate sample obviously promotes MOG protein immobilization in the microplate well. With LUV incorporation, the dose-response curve of the MOG transfected cell lysate coating plate can be 2-9 times differentiated from that of the untransfected cell lysate coating plate. The LUV incorporated MOG transfected cell lysate can be efficiently coated in the microplate without carbonate/bicarbonate coating buffer assistance.
Collapse
Affiliation(s)
- Numfon Khemthongcharoen
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand.,NECTEC, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Panapat Uawithya
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthapon Yookong
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mayuree Chanasakulniyom
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.,Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wutthinan Jeamsaksiri
- Thai Microelectronics Center (TMEC), NECTEC, National Science and Technology Development Agency (NSTDA), Chachoengsao, Thailand
| | - Witsaroot Sripumkhai
- Thai Microelectronics Center (TMEC), NECTEC, National Science and Technology Development Agency (NSTDA), Chachoengsao, Thailand
| | - Pattaraluck Pattamang
- Thai Microelectronics Center (TMEC), NECTEC, National Science and Technology Development Agency (NSTDA), Chachoengsao, Thailand
| | - Ekachai Juntasaro
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Ampol Kamnerdsook
- Thai Microelectronics Center (TMEC), NECTEC, National Science and Technology Development Agency (NSTDA), Chachoengsao, Thailand.,Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Nongluck Houngkamhang
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand
| | - Chamras Promptmas
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
7
|
Dolder N, Müller P, von Ballmoos C. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles. SOFT MATTER 2022; 18:5877-5893. [PMID: 35916307 PMCID: PMC9364335 DOI: 10.1039/d2sm00551d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Giant unilamellar vesicles (GUVs) are micrometer-sized model membrane systems that can be viewed directly under the microscope. They serve as scaffolds for the bottom-up creation of synthetic cells, targeted drug delivery and have been widely used to study membrane related phenomena in vitro. GUVs are also of interest for the functional investigation of membrane proteins that carry out many key cellular functions. A major hurdle to a wider application of GUVs in this field is the diversity of existing protocols that are optimized for individual proteins. Here, we compare PVA assisted and electroformation techniques for GUV formation under physiologically relevant conditions, and analyze the effect of immobilization on vesicle structure and membrane tightness towards small substrates and protons. There, differences in terms of yield, size, and leakage of GUVs produced by PVA assisted swelling and electroformation were found, dependent on salt and buffer composition. Using fusion of oppositely charged membranes to reconstitute a model membrane protein, we find that empty vesicles and proteoliposomes show similar fusion behavior, which allows for a rapid estimation of protein incorporation using fluorescent lipids.
Collapse
Affiliation(s)
- Nicolas Dolder
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Philipp Müller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
8
|
Abstract
SignificanceThe discovery that amphiphilic polymers, similar to phospholipids, can self-assemble to vesicles has inspired numerous applications. For instance, these polymersomes are employed for drug delivery due to their increased chemical and mechanical stability. These polymers can be also mixed with lipids to form the so-called hybrid membranes, which provide further biocompatibility, while new properties emerge. However, the fusion of these hybrids is to date barely explored. Herein, we determined that hybrid vesicles made of poly(dimethylsiloxane)-graft-poly(ethylene oxide) and oppositely charged lipids undergo rapid fusion, surpassing the efficiency in natural membranes. We provide biophysical insights into the mechanism and demonstrate that anionic lipids are not strictly required when the process is employed for the integration of membrane proteins.
Collapse
|
9
|
Tivony R, Fletcher M, Al Nahas K, Keyser UF. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models. ACS Synth Biol 2021; 10:3105-3116. [PMID: 34761904 PMCID: PMC8609574 DOI: 10.1021/acssynbio.1c00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Cell-sized vesicles
like giant unilamellar vesicles (GUVs) are
established as a promising biomimetic model for studying cellular
phenomena in isolation. However, the presence of residual components
and byproducts, generated during vesicles preparation and manipulation,
severely limits the utility of GUVs in applications like synthetic
cells. Therefore, with the rapidly growing field of synthetic biology,
there is an emergent demand for techniques that can continuously purify
cell-like vesicles from diverse residues, while GUVs are being simultaneously
synthesized and manipulated. We have developed a microfluidic platform
capable of purifying GUVs through stream bifurcation, where a vesicles
suspension is partitioned into three fractions: purified GUVs, residual
components, and a washing solution. Using our purification approach,
we show that giant vesicles can be separated from various residues—which
range in size and chemical composition—with a very high efficiency
(e = 0.99), based on size and deformability of the
filtered objects. In addition, by incorporating the purification module
with a microfluidic-based GUV-formation method, octanol-assisted liposome
assembly (OLA), we established an integrated production-purification
microfluidic unit that sequentially produces, manipulates, and purifies
GUVs. We demonstrate the applicability of the integrated device to
synthetic biology through sequentially fusing SUVs with freshly prepared
GUVs and separating the fused GUVs from extraneous SUVs and oil droplets
at the same time.
Collapse
Affiliation(s)
- Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
10
|
|
11
|
Shim J, Zhou C, Gong T, Iserlis DA, Linjawi HA, Wong M, Pan T, Tan C. Building protein networks in synthetic systems from the bottom-up. Biotechnol Adv 2021; 49:107753. [PMID: 33857631 PMCID: PMC9558565 DOI: 10.1016/j.biotechadv.2021.107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023]
Abstract
The recent development of synthetic biology has expanded the capability to design and construct protein networks outside of living cells from the bottom-up. The new capability has enabled us to assemble protein networks for the basic study of cellular pathways, expression of proteins outside cells, and building tissue materials. Furthermore, the integration of natural and synthetic protein networks has enabled new functions of synthetic or artificial cells. Here, we review the underlying technologies for assembling protein networks in liposomes, water-in-oil droplets, and biomaterials from the bottom-up. We cover the recent applications of protein networks in biological transduction pathways, energy self-supplying systems, cellular environmental sensors, and cell-free protein scaffolds. We also review new technologies for assembling protein networks, including multiprotein purification methods, high-throughput assay screen platforms, and controllable fusion of liposomes. Finally, we present existing challenges towards building protein networks that rival the complexity and dynamic response akin to natural systems. This review addresses the gap in our understanding of synthetic and natural protein networks. It presents a vision towards developing smart and resilient protein networks for various biomedical applications.
Collapse
Affiliation(s)
- Jiyoung Shim
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Chuqing Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Ting Gong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Dasha Aleksandra Iserlis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Hamad Abdullah Linjawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Matthew Wong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America; Suzhou Institute for Advanced Research, University of Science and Technology, Suzhou, China.
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| |
Collapse
|
12
|
Current problems and future avenues in proteoliposome research. Biochem Soc Trans 2021; 48:1473-1492. [PMID: 32830854 DOI: 10.1042/bst20190966] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Membrane proteins (MPs) are the gatekeepers between different biological compartments separated by lipid bilayers. Being receptors, channels, transporters, or primary pumps, they fulfill a wide variety of cellular functions and their importance is reflected in the increasing number of drugs that target MPs. Functional studies of MPs within a native cellular context, however, is difficult due to the innate complexity of the densely packed membranes. Over the past decades, detergent-based extraction and purification of MPs and their reconstitution into lipid mimetic systems has been a very powerful tool to simplify the experimental system. In this review, we focus on proteoliposomes that have become an indispensable experimental system for enzymes with a vectorial function, including many of the here described energy transducing MPs. We first address long standing questions on the difficulty of successful reconstitution and controlled orientation of MPs into liposomes. A special emphasis is given on coreconstitution of several MPs into the same bilayer. Second, we discuss recent progress in the development of fluorescent dyes that offer sensitive detection with high temporal resolution. Finally, we briefly cover the use of giant unilamellar vesicles for the investigation of complex enzymatic cascades, a very promising experimental tool considering our increasing knowledge of the interplay of different cellular components.
Collapse
|
13
|
Berdichevskiy GM, Vasina LV, Ageev SV, Meshcheriakov AA, Galkin MA, Ishmukhametov RR, Nashchekin AV, Kirilenko DA, Petrov AV, Martynova SD, Semenov KN, Sharoyko VV. A comprehensive study of biocompatibility of detonation nanodiamonds. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Diederichs T, Tampé R. Single Cell-like Systems Reveal Active Unidirectional and Light-Controlled Transport by Nanomachineries. ACS NANO 2021; 15:6747-6755. [PMID: 33724767 PMCID: PMC8157534 DOI: 10.1021/acsnano.0c10139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cellular life depends on transport and communication across membranes, which is emphasized by the fact that membrane proteins are prime drug targets. The cell-like environment of membrane proteins has gained increasing attention based on its important role in function and regulation. As a versatile scaffold for bottom-up synthetic biology and nanoscience, giant liposomes represent minimalistic models of living cells. Nevertheless, the incorporation of fragile multiprotein membrane complexes still remains a major challenge. Here, we report on an approach for the functional reconstitution of membrane assemblies exemplified by human and bacterial ATP-binding cassette (ABC) transporters. We reveal that these nanomachineries transport substrates unidirectionally against a steep concentration gradient. Active substrate transport can be spatiotemporally resolved in single cell-like compartments by light, enabling real-time tracking of substrate export and import in individual liposomes. This approach will help to construct delicate artificial cell-like systems.
Collapse
Affiliation(s)
- Tim Diederichs
- Institute of Biochemistry, Biocenter,
Goethe-University Frankfurt, Max-von Laue-Straße 9,
60438 Frankfurt a.M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter,
Goethe-University Frankfurt, Max-von Laue-Straße 9,
60438 Frankfurt a.M., Germany
| |
Collapse
|
15
|
Abstract
ATP synthase is an essential enzyme found in all known forms of life, generating the majority of cellular energy via a rotary catalytic mechanism. Here, we describe the in-depth methods for expression, purification, and functional assessment of E. coli ATP synthase.
Collapse
|
16
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
17
|
Rapid functionalisation and detection of viruses via a novel Ca 2+-mediated virus-DNA interaction. Sci Rep 2019; 9:16219. [PMID: 31700064 PMCID: PMC6838052 DOI: 10.1038/s41598-019-52759-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022] Open
Abstract
Current virus detection methods often take significant time or can be limited in sensitivity and specificity. The increasing frequency and magnitude of viral outbreaks in recent decades has resulted in an urgent need for diagnostic methods that are facile, sensitive, rapid and inexpensive. Here, we describe and characterise a novel, calcium-mediated interaction of the surface of enveloped viruses with DNA, that can be used for the functionalisation of intact virus particles via chemical groups attached to the DNA. Using DNA modified with fluorophores, we have demonstrated the rapid and sensitive labelling and detection of influenza and other viruses using single-particle tracking and particle-size determination. With this method, we have detected clinical isolates of influenza in just one minute, significantly faster than existing rapid diagnostic tests. This powerful technique is easily extendable to a wide range of other enveloped pathogenic viruses and holds significant promise as a future diagnostic tool.
Collapse
|
18
|
Enhancement of membrane protein reconstitution on 3D free-standing lipid bilayer array in a microfluidic channel. Biosens Bioelectron 2019; 141:111404. [DOI: 10.1016/j.bios.2019.111404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
|
19
|
Mousseau F, Berret JF, Oikonomou EK. Design and Applications of a Fluorescent Labeling Technique for Lipid and Surfactant Preformed Vesicles. ACS OMEGA 2019; 4:10485-10493. [PMID: 31460145 PMCID: PMC6648494 DOI: 10.1021/acsomega.9b01094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
Amphiphilic molecules such as surfactants, lipids, and block copolymers can be assembled into bilayers and form vesicles. Fluorescent membrane labeling methods require the use of dye molecules that can be inserted into the bilayers at different stages of synthesis. To our knowledge, there is no generalized method for labeling preformed vesicles. Herein, we develop a versatile protocol that is suitable to both surfactant and lipid preformed vesicles and requires no separation or purification steps. On the basis of the lipophilic carbocyanine green dye PKH67, the methodology is assessed on zwitterionic phosphatidylcholine vesicles. To demonstrate its versatility, it is applied to dispersions of anionic or cationic vesicles, such as a drug administrated to premature infants with respiratory distress syndrome, or a vesicle formulation used as a fabric softener for home care applications. By means of fluorescence microscopy, we then visualize the interaction mechanisms of nanoparticles crossing live cell membranes and of surfactants adsorbed on a cotton fabric. These results highlight the advantages of a membrane labeling technique that is simple and applicable to a large number of soft matter systems.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| | - Jean-François Berret
- Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| | - Evdokia K. Oikonomou
- Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| |
Collapse
|
20
|
Otrin L, Kleineberg C, Caire da Silva L, Landfester K, Ivanov I, Wang M, Bednarz C, Sundmacher K, Vidaković-Koch T. Artificial Organelles for Energy Regeneration. ACTA ACUST UNITED AC 2019; 3:e1800323. [PMID: 32648709 DOI: 10.1002/adbi.201800323] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Indexed: 01/03/2023]
Abstract
One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and Pi , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD+ ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Minhui Wang
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
21
|
Kamiya K, Osaki T, Nakao K, Kawano R, Fujii S, Misawa N, Hayakawa M, Takeuchi S. Electrophysiological measurement of ion channels on plasma/organelle membranes using an on-chip lipid bilayer system. Sci Rep 2018; 8:17498. [PMID: 30504856 PMCID: PMC6269590 DOI: 10.1038/s41598-018-35316-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
Ion channels are located in plasma membranes as well as on mitochondrial, lysosomal, and endoplasmic reticulum membranes. They play a critical role in physiology and drug targeting. It is particularly challenging to measure the current mediated by ion channels in the lysosomal and the endoplasmic reticulum membranes using the conventional patch clamp method. In this study, we show that our proposed device is applicable for an electrophysiological measurement of various types of ion channel in plasma and organelle membranes. We designed an on-chip device that can form multiple electrical contacts with a measurement system when placed on a mount system. Using crude cell membranes containing ion channels extracted from cultured cells without detergents, we detected open/close signals of the hERG, TRPV1, and NMDA channels on plasma membranes, those of the TRPML1 channels on lysosomal membranes, and open/close signals of the RyR channels on SR membranes. This method will provide a highly versatile drug screening system for ion channels expressed by various cell membranes, including plasma, SR, mitochondrial, Golgi, and lysosomal membranes.
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryuji Kawano
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Masatoshi Hayakawa
- Research and Development Department, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kanagawa, 213-0012, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan. .,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
22
|
Osella S, Di Meo F, Murugan NA, Fabre G, Ameloot M, Trouillas P, Knippenberg S. Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. J Chem Theory Comput 2018; 14:5350-5359. [DOI: 10.1021/acs.jctc.8b00553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvio Osella
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Florent Di Meo
- Faculty of Pharmacy, UMR 1248 INSERM, Limoges University, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - N. Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Gabin Fabre
- LCSN-EA1069, Faculty of Pharmacy, Limoges University, 2, rue du Dr. Marcland, 87025 Limoges Cedex, France
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Patrick Trouillas
- Faculty of Pharmacy, UMR 1248 INSERM, Limoges University, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
- Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Stefan Knippenberg
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Biomedical Research Institute, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
23
|
Puvanendran D, Cece Q, Picard M. Reconstitution of the activity of RND efflux pumps: a “bottom-up” approach. Res Microbiol 2018; 169:442-449. [DOI: 10.1016/j.resmic.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/11/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
|
24
|
Galkin MA, Russell AN, Vik SB, Berry RM, Ishmukhametov RR. Detergent-free Ultrafast Reconstitution of Membrane Proteins into Lipid Bilayers Using Fusogenic Complementary-charged Proteoliposomes. J Vis Exp 2018. [PMID: 29683454 PMCID: PMC5933413 DOI: 10.3791/56909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Detergents are indispensable for delivery of membrane proteins into 30-100 nm small unilamellar vesicles, while more complex, larger model lipid bilayers are less compatible with detergents. Here we describe a strategy for bypassing this fundamental limitation using fusogenic oppositely charged liposomes bearing a membrane protein of interest. Fusion between such vesicles occurs within 5 min in a low ionic strength buffer. Positively charged fusogenic liposomes can be used as simple shuttle vectors for detergent-free delivery of membrane proteins into biomimetic target lipid bilayers, which are negatively charged. We also show how to reconstitute membrane proteins into fusogenic proteoliposomes with a fast 30-min protocol. Combining these two approaches, we demonstrate a fast assembly of an electron transport chain consisting of two membrane proteins from E. coli, a primary proton pump bo3-oxidase and F1Fo ATP synthase, in membranes of vesicles of various sizes, ranging from 0.1 to >10 microns, as well as ATP production by this chain.
Collapse
Affiliation(s)
| | - Aidan N Russell
- Clarendon Laboratory, Department of Physics, Oxford University
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University
| | - Richard M Berry
- Clarendon Laboratory, Department of Physics, Oxford University
| | | |
Collapse
|
25
|
Kim HO, Lim JW, Choi J, Lee H, Son HY, Kim J, Park G, Chun H, Song D, Huh YM, Haam S. Anchored protease-activatable polymersomes for molecular diagnostics of metastatic cancer cells. J Mater Chem B 2017; 5:9571-9578. [DOI: 10.1039/c7tb01675a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have designed unique protease-activatable polymersomes (PeptiSomes) forin situquantitative analysis with high selectivity towards MT1-MMP.
Collapse
Affiliation(s)
- Hyun-Ouk Kim
- Department of Chemical & Biomolecular Engineering
- Yonsei University
- Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical & Biomolecular Engineering
- Yonsei University
- Republic of Korea
| | - Jihye Choi
- Research Institute of Radiological Science
- College of Medicine
- Yonsei University
- Republic of Korea
| | - Hwunjae Lee
- Korea Basic Science Institute (KBSI)
- Republic of Korea
| | - Hye Young Son
- Department of Radiology
- College of Medicine
- Yonsei University
- Republic of Korea
| | - Jihye Kim
- Department of Chemical & Biomolecular Engineering
- Yonsei University
- Republic of Korea
| | - Geunseon Park
- Department of Chemical & Biomolecular Engineering
- Yonsei University
- Republic of Korea
| | - Haejin Chun
- Department of Chemical & Biomolecular Engineering
- Yonsei University
- Republic of Korea
| | - Daesub Song
- Department of Pharmacy
- College of Pharmacy, Korea University
- Republic of Korea
| | - Yong-Min Huh
- Department of Radiology
- College of Medicine
- Yonsei University
- Republic of Korea
| | - Seungjoo Haam
- Department of Chemical & Biomolecular Engineering
- Yonsei University
- Republic of Korea
| |
Collapse
|
26
|
Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 2016; 5. [PMID: 28001127 PMCID: PMC5214741 DOI: 10.7554/elife.21598] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk’s ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides. DOI:http://dx.doi.org/10.7554/eLife.21598.001 ATP synthase is a biological motor that produces a molecule called adenosine tri-phosphate (ATP for short), which acts as the major store of chemical energy in cells. A single molecule of ATP contains three phosphate groups: the cell can remove one of these phosphates to make a molecule called adenosine di-phosphate (ADP) and release energy to drive a variety of biological processes. ATP synthase sits in the membranes that separate cell compartments or form barriers around cells. When cells break down food they transport hydrogen ions across these membranes so that each side of the membrane has a different level (or “concentration”) of hydrogen ions. Movement of hydrogen ions from an area with a high concentration to a low concentration causes ATP synthase to rotate like a turbine. This rotation of the enzyme results in ATP synthase adding a phosphate group to ADP to make a new molecule of ATP. In certain conditions cells need to switch off the ATP synthase and this is done by changing the shape of the central shaft in a process called autoinhibition, which blocks the rotation. The ATP synthase from a bacterium known as E. coli – which is commonly found in the human gut –has been used as a model to study how this biological motor works. However, since the precise details of the three-dimensional structure of ATP synthase have remained unclear it has been difficult to interpret the results of these studies. Sobti et al. used a technique called Cryo-electron microscopy to investigate the structure of ATP synthase from E. coli. This made it possible to develop a three-dimensional model of the ATP synthase in its autoinhibited form. The structural data could also be split into three distinct shapes that relate to dwell points in the rotation of the motor where the rotation has been inhibited. These models further our understanding of ATP synthases and provide a template to understand the findings of previous studies. Further work will be needed to understand this essential biological process at the atomic level in both its inhibited and uninhibited form. This will reveal the inner workings of a marvel of the natural world and may also lead to the discovery of new antibiotics against related bacteria that cause diseases in humans. DOI:http://dx.doi.org/10.7554/eLife.21598.002
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Callum Smits
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Andrew Sw Wong
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Robert Ishmukhametov
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniela Stock
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Sara Sandin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|