1
|
Popchock AR, Hedouin S, Mao Y, Asbury CL, Stergachis AB, Biggins S. Stable centromere association of the yeast histone variant Cse4 requires its essential N-terminal domain. EMBO J 2025; 44:1488-1511. [PMID: 39809842 PMCID: PMC11876619 DOI: 10.1038/s44318-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Chromosome segregation relies on kinetochores that assemble on specialized centromeric chromatin containing a histone H3 variant. In budding yeast, a single centromeric nucleosome containing Cse4 assembles at a sequence-defined 125 bp centromere. Yeast centromeric sequences are poor templates for nucleosome formation in vitro, suggesting the existence of mechanisms that specifically stabilize Cse4 nucleosomes in vivo. The extended Cse4 N-terminal tail binds to the chaperone Scm3, and a short essential region called END within the N-terminal tail binds the inner kinetochore complex Okp1/Ame1. To address the roles of these interactions, we utilized single-molecule fluorescence assays to monitor Cse4 during kinetochore assembly. We found that Okp1/Ame1 and Scm3 independently stabilize Cse4 at centromeres via their END interaction. Scm3 and Cse4 stability at the centromere are enhanced by Ipl1/Aurora B phosphorylation of the Cse4 END, identifying a previously unknown role for Ipl1 in ensuring Cse4 stability. Strikingly, a phosphomimetic mutation in the Cse4 END restores Cse4 recruitment in mutants defective in Okp1/Ame1 binding. Together, these data suggest that a key function of the essential Cse4 N-terminus is to ensure Cse4 localization at centromeres.
Collapse
Affiliation(s)
- Andrew R Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
2
|
Park J, Prokopchuk G, Popchock AR, Hao J, Liao TW, Yan S, Hedman DJ, Larson JD, Walther BK, Becker NA, Basu A, Maher LJ, Wheeler RJ, Asbury CL, Biggins S, Lukeš J, Ha T. Probing mechanical selection in diverse eukaryotic genomes through accurate prediction of 3D DNA mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629997. [PMID: 39763889 PMCID: PMC11703244 DOI: 10.1101/2024.12.22.629997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Connections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence. Further, the model predicts intrinsic bending direction in 3D space. Using this tool, we aimed to probe mechanical selection - that is, the evolutionary selection of DNA sequence based on its mechanical properties - in diverse circumstances. First, we found that the intrinsic bend direction of DNA sequences correlated with the observed bending in known protein-DNA complex structures, suggesting that many proteins co-evolved with their DNA partners to capture DNA in its intrinsically preferred bent conformation. We then applied our model to large-scale yeast population genetics data and showed that centromere DNA element II, whose consensus sequence is unknown, leaving its sequence-specific role unclear, is under mechanical selection to increase the stability of inner-kinetochore structure and to facilitate centromeric histone recruitment. Finally, in silico evolution under strong mechanical selection discovered hallucinated sequences with cyclizability values so extreme that they required experimental validation, yet, found in nature in the densely packed mitochondrial(mt) DNA of Namystynia karyoxenos, an ocean-dwelling protist with extreme mitochondrial gene fragmentation. The need to transmit an extraordinarily large amount of mtDNA, estimated to be > 600 Mb, in combination with the absence of mtDNA compaction proteins may have pushed mechanical selection to the extreme. Similarly extreme DNA mechanics are observed in bird microchromosomes, although the functional consequence is not yet clear. The discovery of eccentric DNA mechanics in unrelated unicellular and multicellular eukaryotes suggests that we can predict extreme natural biology which can arise through strong selection. Our methods offer a way to study the biological functions of DNA mechanics in any genome and to engineer DNA sequences with desired mechanical properties.
Collapse
Affiliation(s)
- Jonghan Park
- College of Medicine, Yonsei University, Seoul, Republic of Korea
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Andrew R. Popchock
- Basic Sciences Division, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jingzhou Hao
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biophysics, Johns Hopkins University. Baltimore, MD, USA
| | - Ting-Wei Liao
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biophysics, Johns Hopkins University. Baltimore, MD, USA
| | - Sophia Yan
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Newton South High School, Newton, MA, USA
| | - Dylan J. Hedman
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Joshua D. Larson
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon K. Walther
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Richard J. Wheeler
- Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Charles L. Asbury
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Basic Sciences Division, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Taekjip Ha
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biophysics, Johns Hopkins University. Baltimore, MD, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Shukla S, Bhattacharya A, Sehrawat P, Agarwal P, Shobhawat R, Malik N, Duraisamy K, Rangan NS, Hosur RV, Kumar A. Disorder in CENP-A Cse4 tail-chaperone interaction facilitates binding with Ame1/Okp1 at the kinetochore. Structure 2024; 32:690-705.e6. [PMID: 38565139 DOI: 10.1016/j.str.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
The centromere is epigenetically marked by a histone H3 variant-CENP-A. The budding yeast CENP-A called Cse4, consists of an unusually long N-terminus that is known to be involved in kinetochore assembly. Its disordered chaperone, Scm3 is responsible for the centromeric deposition of Cse4 as well as in the maintenance of a segregation-competent kinetochore. In this study, we show that the Cse4 N-terminus is intrinsically disordered and interacts with Scm3 at multiple sites, and the complex does not gain any substantial structure. Additionally, the complex forms a synergistic association with an essential inner kinetochore component (Ctf19-Mcm21-Okp1-Ame1), and a model has been suggested to this effect. Thus, our study provides mechanistic insights into the Cse4 N-terminus-chaperone interaction and also illustrates how intrinsically disordered proteins mediate assembly of complex multiprotein networks, in general.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | | | - Parveen Sehrawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Prakhar Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Rahul Shobhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Nikita Malik
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Kalaiyarasi Duraisamy
- Centre for Advanced Protein Studies, Syngene International Limited, Bangalore, India
| | | | - Ramakrishna V Hosur
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ashutosh Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India.
| |
Collapse
|
4
|
Hirai S, Kujirai T, Akatsu M, Ogasawara M, Ehara H, Sekine SI, Ohkawa Y, Takizawa Y, Kurumizaka H. Cryo-EM and biochemical analyses of the nucleosome containing the human histone H3 variant H3.8. J Biochem 2023; 174:549-559. [PMID: 37757444 PMCID: PMC10914216 DOI: 10.1093/jb/mvad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Histone H3.8 is a non-allelic human histone H3 variant derived from H3.3. H3.8 reportedly forms an unstable nucleosome, but its structure and biochemical characteristics have not been revealed yet. In the present study, we reconstituted the nucleosome containing H3.8. Consistent with previous results, the H3.8 nucleosome is thermally unstable as compared to the H3.3 nucleosome. The entry/exit DNA regions of the H3.8 nucleosome are more accessible to micrococcal nuclease than those of the H3.3 nucleosome. Nucleosome transcription assays revealed that the RNA polymerase II (RNAPII) pausing around the superhelical location (SHL) -1 position, which is about 60 base pairs from the nucleosomal DNA entry site, is drastically alleviated. On the other hand, the RNAPII pausing around the SHL(-5) position, which is about 20 base pairs from the nucleosomal DNA entry site, is substantially increased. The cryo-electron microscopy structure of the H3.8 nucleosome explains the mechanisms of the enhanced accessibility of the entry/exit DNA regions, reduced thermal stability and altered RNAPII transcription profile.
Collapse
Affiliation(s)
- Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Munetaka Akatsu
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-0054, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
5
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J 2023; 42:e114534. [PMID: 37469281 PMCID: PMC10476280 DOI: 10.15252/embj.2023114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R Popchock
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| | - Joshua D Larson
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | | | - Charles L Asbury
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sue Biggins
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| |
Collapse
|
6
|
Dendooven T, Zhang Z, Yang J, McLaughlin SH, Schwab J, Scheres SHW, Yatskevich S, Barford D. Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. SCIENCE ADVANCES 2023; 9:eadg7480. [PMID: 37506202 PMCID: PMC10381965 DOI: 10.1126/sciadv.adg7480] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
The point centromere of budding yeast specifies assembly of the large kinetochore complex to mediate chromatid segregation. Kinetochores comprise the centromere-associated inner kinetochore (CCAN) complex and the microtubule-binding outer kinetochore KNL1-MIS12-NDC80 (KMN) network. The budding yeast inner kinetochore also contains the DNA binding centromere-binding factor 1 (CBF1) and CBF3 complexes. We determined the cryo-electron microscopy structure of the yeast inner kinetochore assembled onto the centromere-specific centromere protein A nucleosomes (CENP-ANuc). This revealed a central CENP-ANuc with extensively unwrapped DNA ends. These free DNA duplexes bind two CCAN protomers, one of which entraps DNA topologically, positioned on the centromere DNA element I (CDEI) motif by CBF1. The two CCAN protomers are linked through CBF3 forming an arch-like configuration. With a structural mechanism for how CENP-ANuc can also be linked to KMN involving only CENP-QU, we present a model for inner kinetochore assembly onto a point centromere and how it organizes the outer kinetochore for chromosome attachment to the mitotic spindle.
Collapse
Affiliation(s)
| | | | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
7
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524981. [PMID: 36711558 PMCID: PMC9882320 DOI: 10.1101/2023.01.20.524981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R. Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joshua D. Larson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Charles L. Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Senaratne AP, Cortes-Silva N, Drinnenberg IA. Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Semin Cell Dev Biol 2022; 127:90-99. [PMID: 35031207 DOI: 10.1016/j.semcdb.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Centromeres are specialized chromosomal regions that recruit kinetochore proteins and mediate spindle microtubule attachment to ensure faithful chromosome segregation during mitosis and meiosis. Centromeres can be restricted to one region of the chromosome. Named "monocentromere", this type represents the most commonly found centromere organization across eukaryotes. Alternatively, centromeres can also be assembled at sites chromosome-wide. This second type is called "holocentromere". Despite their early description over 100 years ago, research on holocentromeres has lagged behind that of monocentromeres. Nevertheless, the application of next generation sequencing approaches and advanced microscopic technologies enabled recent advances understanding the molecular organization and regulation of holocentromeres in different organisms. Here we review the current state of research on holocentromeres focusing on evolutionary considerations. First, we provide a brief historical perspective on the discovery of holocentric chromosomes. We then discuss models/drivers that have been proposed over the years to explain the evolutionary transition from mono- to holocentric chromosomes. We continue to review the description of holocentric chromosomes in diverse eukaryotic groups and then focus our discussion on a specific and recently characterized type of holocentromere organization in insects that functions independently of the otherwise essential centromeric marker protein CenH3, thus providing novel insights into holocentromere evolution in insects. Finally, we propose reasons to explain why the holocentric trait is not more frequent across eukaryotes despite putative selective advantages.
Collapse
Affiliation(s)
| | - Nuria Cortes-Silva
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ines A Drinnenberg
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France; Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France.
| |
Collapse
|
9
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
10
|
Konrad SF, Vanderlinden W, Lipfert J. Quantifying epigenetic modulation of nucleosome breathing by high-throughput AFM imaging. Biophys J 2022; 121:841-851. [PMID: 35065917 PMCID: PMC8943691 DOI: 10.1016/j.bpj.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F. Konrad
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Rudnizky S, Khamis H, Ginosar Y, Goren E, Melamed P, Kaplan A. Extended and dynamic linker histone-DNA Interactions control chromatosome compaction. Mol Cell 2021; 81:3410-3421.e4. [PMID: 34192510 DOI: 10.1016/j.molcel.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Chromatosomes play a fundamental role in chromatin regulation, but a detailed understanding of their structure is lacking, partially due to their complex dynamics. Using single-molecule DNA unzipping with optical tweezers, we reveal that linker histone interactions with DNA are remarkably extended, with the C-terminal domain binding both DNA linkers as far as approximately ±140 bp from the dyad. In addition to a symmetrical compaction of the nucleosome core governed by globular domain contacts at the dyad, the C-terminal domain compacts the nucleosome's entry and exit. These interactions are dynamic, exhibit rapid binding and dissociation, are sensitive to phosphorylation of a specific residue, and are crucial to determining the symmetry of the chromatosome's core. Extensive unzipping of the linker DNA, which mimics its invasion by motor proteins, shifts H1 into an asymmetric, off-dyad configuration and triggers nucleosome decompaction, highlighting the plasticity of the chromatosome structure and its potential regulatory role.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadeel Khamis
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yuval Ginosar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Efrat Goren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
12
|
Histone variant H2A.B-H2B dimers are spontaneously exchanged with canonical H2A-H2B in the nucleosome. Commun Biol 2021; 4:191. [PMID: 33580188 PMCID: PMC7881002 DOI: 10.1038/s42003-021-01707-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 01/07/2023] Open
Abstract
H2A.B is an evolutionarily distant histone H2A variant that accumulates on DNA repair sites, DNA replication sites, and actively transcribing regions in genomes. In cells, H2A.B exchanges rapidly in chromatin, but the mechanism has remained enigmatic. In the present study, we found that the H2A.B-H2B dimer incorporated within the nucleosome exchanges with the canonical H2A-H2B dimer without assistance from additional factors, such as histone chaperones and nucleosome remodelers. High-speed atomic force microscopy revealed that the H2A.B nucleosome, but not the canonical H2A nucleosome, transiently forms an intermediate "open conformation", in which two H2A.B-H2B dimers may be detached from the H3-H4 tetramer and bind to the DNA regions near the entry/exit sites. Mutational analyses revealed that the H2A.B C-terminal region is responsible for the adoption of the open conformation and the H2A.B-H2B exchange in the nucleosome. These findings provide mechanistic insights into the histone exchange of the H2A.B nucleosome.
Collapse
|
13
|
Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q. Structural basis of nucleosome-dependent cGAS inhibition. Science 2020; 370:450-454. [PMID: 32913000 DOI: 10.1126/science.abd0609] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) recognizes cytosolic foreign or damaged DNA to activate the innate immune response to infection, inflammatory diseases, and cancer. By contrast, cGAS reactivity against self-DNA in the nucleus is suppressed by chromatin tethering. We report a 3.3-angstrom-resolution cryo-electron microscopy structure of cGAS in complex with the nucleosome core particle. The structure reveals that cGAS uses two conserved arginines to anchor to the nucleosome acidic patch. The nucleosome-binding interface exclusively occupies the strong double-stranded DNA (dsDNA)-binding surface on cGAS and sterically prevents cGAS from oligomerizing into the functionally active 2:2 cGAS-dsDNA state. These findings provide a structural basis for how cGAS maintains an inhibited state in the nucleus and further exemplify the role of the nucleosome in regulating diverse nuclear protein functions.
Collapse
Affiliation(s)
- Joshua A Boyer
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew P Cesmat
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Sato S, Tanaka N, Arimura Y, Kujirai T, Kurumizaka H. The N-terminal and C-terminal halves of histone H2A.Z independently function in nucleosome positioning and stability. Genes Cells 2020; 25:538-546. [PMID: 32500630 PMCID: PMC7496805 DOI: 10.1111/gtc.12791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/21/2023]
Abstract
Nucleosome positioning and stability affect gene regulation in eukaryotic chromatin. Histone H2A.Z is an evolutionally conserved histone variant that forms mobile and unstable nucleosomes in vivo and in vitro. In the present study, we reconstituted nucleosomes containing human H2A.Z.1 mutants, in which the N‐terminal or C‐terminal half of H2A.Z.1 was replaced by the corresponding canonical H2A region. We found that the N‐terminal portion of H2A.Z.1 is involved in flexible nucleosome positioning, whereas the C‐terminal portion leads to weak H2A.Z.1‐H2B association in the nucleosome. These results indicate that the N‐terminal and C‐terminal portions are independently responsible for the H2A.Z.1 nucleosome characteristics.
Collapse
Affiliation(s)
- Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
15
|
Yu X, Buck MJ. Pioneer factors and their in vitro identification methods. Mol Genet Genomics 2020; 295:825-835. [PMID: 32296927 DOI: 10.1007/s00438-020-01675-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/02/2020] [Indexed: 11/27/2022]
Abstract
Pioneer transcription factors are a special group of transcription factors that can interact with nucleosomal DNA and initiate regulatory events. Their binding to regulatory regions is the first event in gene activation and can occur in silent or heterochromatin regions. Several research groups have endeavored to define pioneer factors and study their binding characteristics using various techniques. In this review, we describe the in vitro methods used to define and characterize pioneer factors, paying particular attention to differences in methodologies and how these differences can affect results.
Collapse
Affiliation(s)
- Xinyang Yu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, P.R. China.
| | - Michael J Buck
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
- Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
Takizawa Y, Ho CH, Tachiwana H, Matsunami H, Kobayashi W, Suzuki M, Arimura Y, Hori T, Fukagawa T, Ohi MD, Wolf M, Kurumizaka H. Cryo-EM Structures of Centromeric Tri-nucleosomes Containing a Central CENP-A Nucleosome. Structure 2020; 28:44-53.e4. [DOI: 10.1016/j.str.2019.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
|
17
|
Tanaka H, Sato S, Koyama M, Kujirai T, Kurumizaka H. Biochemical and structural analyses of the nucleosome containing human histone H2A.J. J Biochem 2019; 167:419-427. [DOI: 10.1093/jb/mvz109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/24/2019] [Indexed: 02/02/2023] Open
Abstract
Abstract
Histone H2A.J, a histone H2A variant conserved in mammals, may function in the expression of genes related to inflammation and cell proliferation. In the present study, we purified the human histone H2A.J variant and found that H2A.J is efficiently incorporated into the nucleosome in vitro. H2A.J formed the stable nucleosome, which accommodated the DNA ends. Mutations in the H2A.J-specific residues did not affect the nucleosome stability, although the mutation of the H2A.J Ala40 residue, which is conserved in some members of the canonical H2A class, reduced the nucleosome stability. Consistently, the crystal structure of the H2A.J nucleosome revealed that the H2A.J-specific residues, including the Ala40 residue, did not affect the nucleosome structure. These results provide basic information for understanding the function of the H2A.J nucleosome.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Koyama
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
18
|
Kono H, Sakuraba S, Ishida H. Free energy profile for unwrapping outer superhelical turn of CENP-A nucleosome. Biophys Physicobiol 2019; 16:337-343. [PMID: 31984189 PMCID: PMC6975924 DOI: 10.2142/biophysico.16.0_337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic genome is packaged in a nucleus in the form of chromatin. The fundamental structural unit of the chromatin is the protein-DNA complex, nucleosome, where DNA of about 150 bp is wrapped around a histone core almost twice. In cellular processes such as gene expression, DNA repair and duplication, the nucleosomal DNA has to be unwrapped. Histone proteins have their variants, indicating there are a variety of constitutions of nucleosomes. These different constitutions are observed in different cellular processes. To investigate differences among nucleosomes, we calculated free energy profiles for unwrapping the outer superhelical turn of CENP-A nucleosome and compared them with those of the canonical nucleosome. The free energy profiles for CENP-A nucleosome suggest that CENP-A nucleosome is the most stable when 16 to 22 bps are unwrapped in total whereas the canonical nucleosome is the most stable when it is fully wrapped. This indicates that the flexible conformation of CENP-A nucleosome is ready to provide binding sites for the structural integrity of the centromere.
Collapse
Affiliation(s)
- Hidetoshi Kono
- Molecular Modelling and Simulation Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 Japan
| | - Shun Sakuraba
- Molecular Modelling and Simulation Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 Japan
| | - Hisashi Ishida
- Molecular Modelling and Simulation Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 Japan
| |
Collapse
|
19
|
Lee PD, Wei H, Tan D, Harrison SC. Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis. J Mol Biol 2019; 431:4444-4454. [PMID: 31425683 PMCID: PMC7004469 DOI: 10.1016/j.jmb.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023]
Abstract
Kinetochores are the multiprotein complexes that link chromosomal centromeres to mitotic-spindle microtubules. Budding yeast centromeres comprise three sequential "centromere-determining elements", CDEI, II, and III. CDEI (8 bp) and CDEIII (∼25 bp) are conserved between Kluyveromyces lactis and Saccharomyces cerevisiae, but CDEII in the former is twice as long (160 bp) as CDEII in the latter (80 bp). The CBF3 complex recognizes CDEIII and is required for assembly of a centromeric nucleosome, which in turn recruits other kinetochore components. To understand differences in centromeric nucleosome assembly between K. lactis and S. cerevisiae, we determined the structure of a K. lactis CBF3 complex by electron cryomicroscopy at ∼4 Å resolution and compared it with published structures of S. cerevisiae CBF3. We show differences in the pose of Ndc10 and discuss potential models of the K. lactis centromeric nucleosome that account for the extended CDEII length.
Collapse
Affiliation(s)
- Phong D. Lee
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA,Graduate Program in Virology Harvard Medical School Boston MA 02115 USA
| | - Hui Wei
- The National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center New York NY 10027 USA
| | - Dongyan Tan
- Department of Pharmacological Sciences Stony Brook University School of Medicine Stony Brook NY 11794 USA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA,Howard Hughes Medical Institute Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
20
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
21
|
Pan D, Walstein K, Take A, Bier D, Kaiser N, Musacchio A. Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing. Nat Commun 2019; 10:4046. [PMID: 31492860 PMCID: PMC6731319 DOI: 10.1038/s41467-019-12019-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Nucleosomes containing the histone H3 variant CENP-A are the epigenetic mark of centromeres, the kinetochore assembly sites required for chromosome segregation. HJURP is the CENP-A chaperone, which associates with Mis18α, Mis18β, and M18BP1 to target centromeres and deposit new CENP-A. How these proteins interact to promote CENP-A deposition remains poorly understood. Here we show that two repeats in human HJURP proposed to be functionally distinct are in fact interchangeable and bind concomitantly to the 4:2:2 Mis18α:Mis18β:M18BP1 complex without dissociating it. HJURP binds CENP-A:H4 dimers, and therefore assembly of CENP-A:H4 tetramers must be performed by two Mis18αβ:M18BP1:HJURP complexes, or by the same complex in consecutive rounds. The Mis18α N-terminal tails blockade two identical HJURP-repeat binding sites near the Mis18αβ C-terminal helices. These were identified by photo-cross-linking experiments and mutated to separate Mis18 from HJURP centromere recruitment. Our results identify molecular underpinnings of eukaryotic chromosome inheritance and shed light on how centromeres license CENP-A deposition. The CENP-A chaperone HJURP associates with Mis18α, Mis18β, and M18BP1 to target centromeres and deposit new CENP-A. Here the authors provide evidence that two repeats in human HJURP previously proposed to be functionally distinct are interchangeable and bind concomitantly to the 4:2:2 Mis18α:Mis18β:M18BP1 complex without dissociating it.
Collapse
Affiliation(s)
- Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Annika Take
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - David Bier
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Nadine Kaiser
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany. .,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141, Essen, Germany.
| |
Collapse
|
22
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Structure-based design of an H2A.Z.1 mutant stabilizing a nucleosome in vitro and in vivo. Biochem Biophys Res Commun 2019; 515:719-724. [DOI: 10.1016/j.bbrc.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 11/20/2022]
|
24
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
25
|
Hinshaw SM, Harrison SC. The structure of the Ctf19c/CCAN from budding yeast. eLife 2019; 8:44239. [PMID: 30762520 PMCID: PMC6407923 DOI: 10.7554/elife.44239] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic kinetochores connect spindlemicrotubules to chromosomal centromeres. A group of proteins called the Ctf19 complex (Ctf19c) in yeast and the constitutive centromere associated network (CCAN) in other organisms creates the foundation of a kinetochore. The Ctf19c/CCAN influences the timing of kinetochore assembly, sets its location by associating with a specialized nucleosome containing the histone H3 variant Cse4/CENP-A, and determines the organization of the microtubule attachment apparatus. We present here the structure of a reconstituted 13-subunit Ctf19c determined by cryo-electron microscopy at ~4 Å resolution. The structure accounts for known and inferred contacts with the Cse4 nucleosome and for an observed assembly hierarchy. We describe its implications for establishment of kinetochores and for their regulation by kinases throughout the cell cycle.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
26
|
Yan K, Zhang Z, Yang J, McLaughlin SH, Barford D. Architecture of the CBF3-centromere complex of the budding yeast kinetochore. Nat Struct Mol Biol 2018; 25:1103-1110. [PMID: 30478265 PMCID: PMC6292502 DOI: 10.1038/s41594-018-0154-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
Kinetochores are multicomponent complexes responsible for coordinating the attachment of centromeric DNA to mitotic-spindle microtubules. The point centromeres of budding yeast are organized into three centromeric determining elements (CDEs), and are associated with the centromere-specific nucleosome Cse4. Deposition of Cse4 at CEN loci is dependent on the CBF3 complex that engages CDEIII to direct Cse4 nucleosomes to CDEII. To understand how CBF3 recognizes CDEIII and positions Cse4, we determined a cryo-EM structure of a CBF3-CEN complex. CBF3 interacts with CEN DNA as a head-to-head dimer that includes the whole of CDEIII and immediate 3' regions. Specific CEN-binding of CBF3 is mediated by a Cep3 subunit of one of the CBF3 protomers that forms major groove interactions with the conserved and essential CCG and TGT motifs of CDEIII. We propose a model for a CBF3-Cse4-CEN complex with implications for understanding CBF3-directed deposition of the Cse4 nucleosome at CEN loci.
Collapse
Affiliation(s)
- Kaige Yan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
27
|
Zasadzińska E, Huang J, Bailey AO, Guo LY, Lee NS, Srivastava S, Wong KA, French BT, Black BE, Foltz DR. Inheritance of CENP-A Nucleosomes during DNA Replication Requires HJURP. Dev Cell 2018; 47:348-362.e7. [PMID: 30293838 PMCID: PMC6219920 DOI: 10.1016/j.devcel.2018.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/26/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Centromeric chromatin defines the site of kinetochore formation and ensures faithful chromosome segregation. Centromeric identity is epigenetically specified by the incorporation of CENP-A nucleosomes. DNA replication presents a challenge for inheritance of centromeric identity because nucleosomes are removed to allow for replication fork progression. Despite this challenge, CENP-A nucleosomes are stably retained through S phase. We used BioID to identify proteins transiently associated with CENP-A during DNA replication. We found that during S phase, HJURP transiently associates with centromeres and binds to pre-existing CENP-A, suggesting a distinct role for HJURP in CENP-A retention. We demonstrate that HJURP is required for centromeric nucleosome inheritance during S phase. HJURP co-purifies with the MCM2-7 helicase complex and, together with the MCM2 subunit, binds CENP-A simultaneously. Therefore, pre-existing CENP-A nucleosomes require an S phase function of the HJURP chaperone and interaction with MCM2 to ensure faithful inheritance of centromere identity through DNA replication.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jiehuan Huang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lucie Y Guo
- Department of Biochemistry and Biophysics and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy S Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Shashank Srivastava
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kelvin A Wong
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bradley T French
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Ichikawa Y, Saitoh N, Kaufman PD. An asymmetric centromeric nucleosome. eLife 2018; 7:37911. [PMID: 30136924 PMCID: PMC6125124 DOI: 10.7554/elife.37911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/22/2018] [Indexed: 02/03/2023] Open
Abstract
Nucleosomes contain two copies of each core histone, held together by a naturally symmetric, homodimeric histone H3-H3 interface. This symmetry has complicated efforts to determine the regulatory potential of this architecture. Through molecular design and in vivo selection, we recently generated obligately heterodimeric H3s, providing a powerful tool for discovery of the degree to which nucleosome symmetry regulates chromosomal functions in living cells (Ichikawa et al., 2017). We now have extended this tool to the centromeric H3 isoform (Cse4/CENP-A) in budding yeast. These studies indicate that a single Cse4 N- or C-terminal extension per pair of Cse4 molecules is sufficient for kinetochore function, and validate previous experiments indicating that an octameric centromeric nucleosome is required for viability in this organism. These data also support the generality of the H3 asymmetric interface for probing general questions in chromatin biology.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Paul D Kaufman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
29
|
Cao S, Zhou K, Zhang Z, Luger K, Straight AF. Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Mol Biol Cell 2018; 29:751-762. [PMID: 29343552 PMCID: PMC6003232 DOI: 10.1091/mbc.e17-10-0596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic centromeres are defined by the presence of nucleosomes containing the histone H3 variant, centromere protein A (CENP-A). Once incorporated at centromeres, CENP-A nucleosomes are remarkably stable, exhibiting no detectable loss or exchange over many cell cycles. It is currently unclear whether this stability is an intrinsic property of CENP-A containing chromatin or whether it arises from proteins that specifically associate with CENP-A chromatin. Two proteins, CENP-C and CENP-N, are known to bind CENP-A human nucleosomes directly. Here we test the hypothesis that CENP-C or CENP-N stabilize CENP-A nucleosomes in vitro and in living cells. We show that CENP-N stabilizes CENP-A nucleosomes alone and additively with CENP-C in vitro. However, removal of CENP-C and CENP-N from cells, or mutating CENP-A so that it no longer interacts with CENP-C or CENP-N, had no effect on centromeric CENP-A stability in vivo. Thus, the stability of CENP-A nucleosomes in chromatin does not arise solely from its interactions with CENP-C or CENP-N.
Collapse
Affiliation(s)
- Shengya Cao
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Keda Zhou
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Zhening Zhang
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309 .,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
30
|
Koyama M, Kurumizaka H. Structural diversity of the nucleosome. J Biochem 2017; 163:85-95. [DOI: 10.1093/jb/mvx081] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Masako Koyama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
31
|
Rudnizky S, Malik O, Bavly A, Pnueli L, Melamed P, Kaplan A. Nucleosome mobility and the regulation of gene expression: Insights from single-molecule studies. Protein Sci 2017; 26:1266-1277. [PMID: 28329910 DOI: 10.1002/pro.3159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
Nucleosomes at the promoters of genes regulate the accessibility of the transcription machinery to DNA, and function as a basic layer in the complex regulation of gene expression. Our understanding of the role of the nucleosome's spontaneous, thermally driven position changes in modulating expression is lacking. This is the result of the paucity of experimental data on these dynamics, at high-resolution, and for DNA sequences that belong to real, transcribed genes. We have developed an assay that uses partial, reversible unzipping of nucleosomes with optical tweezers to repeatedly probe a nucleosome's position over time. Using the nucleosomes at the promoters of two model genes, Cga and Lhb, we show that the mobility of nucleosomes is modulated by the sequence of DNA and by the use of alternative histone variants, and describe how the mobility can affect transcription, at the initiation and elongation phases.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Omri Malik
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Adaiah Bavly
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
32
|
Moreno-Moreno O, Torras-Llort M, Azorín F. Variations on a nucleosome theme: The structural basis of centromere function. Bioessays 2017; 39. [PMID: 28220502 DOI: 10.1002/bies.201600241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere-specific histone H3 variant, CENP-A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP-A nucleosomes have flexible DNA ends due to the short αN helix of CENP-A. The higher flexibility of the DNA ends of centromeric nucleosomes impairs binding of linker histones H1, while it facilitates binding of other essential centromeric proteins, such as CENP-C, and is required for mitotic fidelity. This work extends previous observations indicating that the differential structural properties of CENP-A nucleosomes are on the basis of its contribution to centromere identity and function. Here, we discuss the implications of this work and the questions arising from it.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|
33
|
Chassé MH, Muthurajan UM, Clark NJ, Kramer MA, Chakravarthy S, Irving T, Luger K. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin. Methods Mol Biol 2017; 1608:231-253. [PMID: 28695514 DOI: 10.1007/978-1-4939-6993-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.
Collapse
Affiliation(s)
- Maggie H Chassé
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.,Van Andel Research Institute, Grand Rapids, MI, USA
| | - Uma M Muthurajan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | | | | | - Srinivas Chakravarthy
- BioCAT, CSRRI and Department BCS, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas Irving
- BioCAT, CSRRI and Department BCS, Illinois Institute of Technology, Chicago, IL, USA
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
34
|
Zasadzińska E, Foltz DR. Orchestrating the Specific Assembly of Centromeric Nucleosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:165-192. [PMID: 28840237 DOI: 10.1007/978-3-319-58592-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
35
|
Bloom K, Costanzo V. Centromere Structure and Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:515-539. [PMID: 28840251 DOI: 10.1007/978-3-319-58592-5_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is the genetic locus that specifies the site of kinetochore assembly, where the chromosome will attach to the kinetochore microtubule. The pericentromere is the physical region responsible for the geometry of bi-oriented sister kinetochores in metaphase. In budding yeast the 125 bp point centromere is sufficient to specify kinetochore assembly. The flanking region is enriched (3X) in cohesin and condensin relative to the remaining chromosome arms. The enrichment spans about 30-50 kb around each centromere. We refer to the flanking chromatin as the pericentromere in yeast. In mammals, a 5-10 Mb region dictates where the kinetochore is built. The kinetochore interacts with a very small fraction of DNA on the surface of the centromeric region. The remainder of the centromere lies between the sister kinetochores. This is typically called centromere chromatin. The chromatin sites that directly interface to microtubules cannot be identified due to the repeated sequence within the mammalian centromere. However in both yeast and mammals, the total amount of DNA between the sites of microtubule attachment in metaphase is highly conserved. In yeast the 16 chromosomes are clustered into a 250 nm diameter region, and 800 kb (16 × 50 kb) or ~1 Mb of DNA lies between sister kinetochores. In mammals, 5-10 Mb lies between sister kinetochores. In both organisms the sister kinetochores are separated by about 1 μm. Thus, centromeres of different organisms differ in how they specify kinetochore assembly, but there may be important centromere chromatin functions that are conserved throughout phylogeny. Recently, centromeric chromatin has been reconstituted in vitro using alpha satellite DNA revealing unexpected features of centromeric DNA organization, replication, and response to stress. We will focus on the conserved features of centromere in this review.
Collapse
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, 623 Fordham Hall CB#3280, Chapel Hill, NC, 27599-3280, USA.
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM, The FIRC Institute of Molecular Oncology, Vai Adamello 16, 21139, Milan, Italy
| |
Collapse
|
36
|
Koyama M, Nagakura W, Tanaka H, Kujirai T, Chikashige Y, Haraguchi T, Hiraoka Y, Kurumizaka H. In vitro reconstitution and biochemical analyses of the Schizosaccharomyces pombe nucleosome. Biochem Biophys Res Commun 2016; 482:896-901. [PMID: 27890612 DOI: 10.1016/j.bbrc.2016.11.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Schizosaccharomyces pombe, which has a small genome but shares many physiological functions with higher eukaryotes, is a useful single-cell, model eukaryotic organism. In particular, many features concerning chromatin structure and dynamics, including heterochromatin, centromeres, telomeres, and DNA replication origins, are well conserved between S. pombe and higher eukaryotes. However, the S. pombe nucleosome, the fundamental structural unit of chromatin, has not been reconstituted in vitro. In the present study, we established the method to purify S. pombe histones H2A, H2B, H3, and H4, and successfully reconstituted the S. pombe nucleosome in vitro. Our thermal stability assay and micrococcal nuclease treatment assay revealed that the S. pombe nucleosome is markedly unstable and its DNA ends are quite accessible, as compared to the canonical human nucleosome. These findings are important to understand the mechanisms of epigenetic genomic DNA regulation in fission yeast.
Collapse
Affiliation(s)
- Masako Koyama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Nagakura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoya Kujirai
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
37
|
CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS One 2016; 11:e0165078. [PMID: 27820823 PMCID: PMC5098787 DOI: 10.1371/journal.pone.0165078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension relative to their H3 canonical counterparts. Here, we directly test this hypothesis by subjecting CENP-A and H3 octameric nucleosomes, assembled on random or on centromeric DNA sequences, to varying amounts of applied force by using single-molecule magnetic tweezers. We monitor individual disassembly events of CENP-A and H3 nucleosomes. Regardless of the DNA sequence, the force-mediated disassembly experiments for CENP-A and H3 nucleosomes demonstrate similar rupture forces, life time residency and disassembly steps. From these experiments, we conclude that CENP-A does not, by itself, contribute unique structural features to the nucleosome that lead to a significant resistance against force-mediated disruption. The data present insights into the mechanistic basis for how CENP-A nucleosomes might contribute to the structural foundation of the centromere in vivo.
Collapse
|
38
|
Brennan LD, Forties RA, Patel SS, Wang MD. DNA looping mediates nucleosome transfer. Nat Commun 2016; 7:13337. [PMID: 27808093 PMCID: PMC5097161 DOI: 10.1038/ncomms13337] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023] Open
Abstract
Proper cell function requires preservation of the spatial organization of chromatin modifications. Maintenance of this epigenetic landscape necessitates the transfer of parental nucleosomes to newly replicated DNA, a process that is stringently regulated and intrinsically linked to replication fork dynamics. This creates a formidable setting from which to isolate the central mechanism of transfer. Here we utilized a minimal experimental system to track the fate of a single nucleosome following its displacement, and examined whether DNA mechanics itself, in the absence of any chaperones or assembly factors, may serve as a platform for the transfer process. We found that the nucleosome is passively transferred to available dsDNA as predicted by a simple physical model of DNA loop formation. These results demonstrate a fundamental role for DNA mechanics in mediating nucleosome transfer and preserving epigenetic integrity during replication.
Collapse
Affiliation(s)
- Lucy D Brennan
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Robert A Forties
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Michelle D Wang
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
39
|
Sun B, Wang MD. Single-Molecule Optical-Trapping Techniques to Study Molecular Mechanisms of a Replisome. Methods Enzymol 2016; 582:55-84. [PMID: 28062045 DOI: 10.1016/bs.mie.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replisome is a multiprotein molecular machinery responsible for the replication of DNA. It is composed of several specialized proteins each with dedicated enzymatic activities, and in particular, helicase unwinds double-stranded DNA and DNA polymerase catalyzes the synthesis of DNA. Understanding how a replisome functions in the process of DNA replication requires methods to dissect the mechanisms of individual proteins and of multiproteins acting in concert. Single-molecule optical-trapping techniques have proved to be a powerful approach, offering the unique ability to observe and manipulate biomolecules at the single-molecule level and providing insights into the mechanisms of molecular motors and their interactions and coordination in a complex. Here, we describe a practical guide to applying these techniques to study the dynamics of individual proteins in the bacteriophage T7 replisome, as well as the coordination among them. We also summarize major findings from these studies, including nucleotide-specific helicase slippage and new lesion bypass pathway in T7 replication.
Collapse
Affiliation(s)
- B Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - M D Wang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States; Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
40
|
Ye F, Badman R, Inman JT, Soltani M, Killian JL, Wang MD. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation. NANO LETTERS 2016; 16:6661-6667. [PMID: 27689302 PMCID: PMC5515237 DOI: 10.1021/acs.nanolett.6b03470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The advent of nanophotonic evanescent field trapping and transport platforms has permitted increasingly complex single molecule and single cell studies on-chip. Here, we present the next generation of nanophotonic Standing Wave Array Traps (nSWATs) representing a streamlined CMOS fabrication process and compact biocompatible design. These devices utilize silicon nitride (Si3N4) waveguides, operate with a biofriendly 1064 nm laser, allow for several watts of input power with minimal absorption and heating, and are protected by an anticorrosive layer for sustained on-chip microelectronics in aqueous salt buffers. In addition, due to Si3N4's negligible nonlinear effects, these devices can generate high stiffness traps while resolving subnanometer displacements for each trapped particle. In contrast to traditional table-top counterparts, the stiffness of each trap in an nSWAT device scales linearly with input power and is independent of the number of trapping centers. Through a unique integration of microcircuitry and photonics, the nSWAT can robustly trap, and controllably position, a large number of nanoparticles along the waveguide surface, operating in an all-optical, constant-force mode without need for active feedback. By reducing device fabrication cost, minimizing trapping laser specimen heating, increasing trapping force, and implementing commonly used trapping techniques, this new generation of nSWATs significantly advances the development of a high performance, low cost optical tweezers array laboratory on-chip.
Collapse
Affiliation(s)
- Fan Ye
- Department of Physics – LASSP, Cornell University, Ithaca, New York 14853
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853
| | - Ryan Badman
- Department of Physics – LASSP, Cornell University, Ithaca, New York 14853
| | - James T. Inman
- Department of Physics – LASSP, Cornell University, Ithaca, New York 14853
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853
| | - Mohammad Soltani
- Department of Physics – LASSP, Cornell University, Ithaca, New York 14853
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853
| | - Jessica L. Killian
- Department of Physics – LASSP, Cornell University, Ithaca, New York 14853
| | - Michelle D. Wang
- Department of Physics – LASSP, Cornell University, Ithaca, New York 14853
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
41
|
Zhao H, Winogradoff D, Bui M, Dalal Y, Papoian GA. Promiscuous Histone Mis-Assembly Is Actively Prevented by Chaperones. J Am Chem Soc 2016; 138:13207-13218. [PMID: 27454815 PMCID: PMC7757119 DOI: 10.1021/jacs.6b05355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone proteins are essential for the organization, expression, and inheritance of genetic material for eukaryotic cells. A centromere-specific H3 histone variant, centromere protein A (CENP-A), shares about 50% amino acid sequence identity with H3. CENP-A is required for packaging the centromere and for the proper separation of chromosomes during mitosis. Despite their distinct biological functions, previously reported crystal structures of the CENP-A/H4 and H3/H4 dimers reveal a high degree of similarity. In this work, we characterize the structural dynamics of CENP-A/H4 and H3/H4 dimers based on a dual-resolution approach, using both microsecond-scale explicit-solvent all-atom and coarse-grained (CG) molecular dynamics (MD) simulations. Our data show that the H4 histone is significantly more rigid compared with the H3 histone and its variant CENP-A, hence, serving as a reinforcing structural element within the histone core. We report that the CENP-A/H4 dimer is significantly more dynamic than its canonical counterpart H3/H4, and our results provide a physical explanation for this flexibility. Further, we observe that the centromere-specific chaperone Holliday Junction Recognition Protein (HJURP) stabilizes the CENP-A/H4 dimer by forming a specific electrostatic interaction network. Finally, replacing CENP-A S68 with E68 disrupts the binding interface between CENP-A and HJURP in all-atom MD simulation, and consistently, in vivo experiments demonstrate that replacing CENP-A S68 with E68 disrupts CENP-A's localization to the centromere. Based on all our results, we propose that, during the CENP-A/H4 deposition process, the chaperone HJURP protects various substructures of the dimer, serving both as a folding and binding chaperone.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David Winogradoff
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Minh Bui
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
42
|
Rudnizky S, Bavly A, Malik O, Pnueli L, Melamed P, Kaplan A. H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes. Nat Commun 2016; 7:12958. [PMID: 27653784 PMCID: PMC5036153 DOI: 10.1038/ncomms12958] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/19/2016] [Indexed: 01/17/2023] Open
Abstract
The structure and dynamics of promoter chromatin have a profound effect on the expression levels of genes. Yet, the contribution of DNA sequence, histone post-translational modifications, histone variant usage and other factors in shaping the architecture of chromatin, and the mechanisms by which this architecture modulates expression of specific genes are not yet completely understood. Here we use optical tweezers to study the roles that DNA sequence and the histone variant H2A.Z have in shaping the chromatin landscape at the promoters of two model genes, Cga and Lhb. Guided by MNase mapping of the promoters of these genes, we reconstitute nucleosomes that mimic those located near the transcriptional start site and immediately downstream (+1), and measure the forces required to disrupt these nucleosomes, and their mobility along the DNA sequence. Our results indicate that these genes are basally regulated by two distinct strategies, making use of H2A.Z to modulate separate phases of transcription, and highlight how DNA sequence, alternative histone variants and remodelling machinery act synergistically to modulate gene expression.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Adaiah Bavly
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Malik
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
43
|
Licensing of Centromeric Chromatin Assembly through the Mis18α-Mis18β Heterotetramer. Mol Cell 2016; 61:774-787. [PMID: 26942680 DOI: 10.1016/j.molcel.2016.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/31/2015] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-β C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18β form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-β heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-β heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.
Collapse
|
44
|
Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus. Mol Cell Biol 2016; 36:1287-96. [PMID: 26884462 DOI: 10.1128/mcb.00835-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/25/2016] [Indexed: 02/02/2023] Open
Abstract
Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo.
Collapse
|
45
|
Kujirai T, Horikoshi N, Sato K, Maehara K, Machida S, Osakabe A, Kimura H, Ohkawa Y, Kurumizaka H. Structure and function of human histone H3.Y nucleosome. Nucleic Acids Res 2016; 44:6127-41. [PMID: 27016736 PMCID: PMC5291245 DOI: 10.1093/nar/gkw202] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo. Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Horikoshi
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
46
|
Abstract
Chromatin regulatory processes, like all biological reactions, are dynamic and stochastic in nature but can give rise to stable and inheritable changes in gene expression patterns. A molecular understanding of those processes is key for fundamental biological insight into gene regulation, epigenetic inheritance, lineage determination, and therapeutic intervention in the case of disease. In recent years, great progress has been made in identifying important molecular players involved in key chromatin regulatory pathways. Conversely, we are only beginning to understand the dynamic interplay between protein effectors, transcription factors, and the chromatin substrate itself. Single-molecule approaches employing both highly defined chromatin substrates in vitro, as well as direct observation of complex regulatory processes in vivo, open new avenues for a molecular view of chromatin regulation. This review highlights recent applications of single-molecule methods and related techniques to investigate fundamental chromatin regulatory processes.
Collapse
Affiliation(s)
- Beat Fierz
- Laboratory
of Biophysical
Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Muthurajan U, Mattiroli F, Bergeron S, Zhou K, Gu Y, Chakravarthy S, Dyer P, Irving T, Luger K. In Vitro Chromatin Assembly: Strategies and Quality Control. Methods Enzymol 2016; 573:3-41. [PMID: 27372747 DOI: 10.1016/bs.mie.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin accessibility is modulated by structural transitions that provide timely access to the genetic and epigenetic information during many essential nuclear processes. These transitions are orchestrated by regulatory proteins that coordinate intricate structural modifications and signaling pathways. In vitro reconstituted chromatin samples from defined components are instrumental in defining the mechanistic details of such processes. The bottleneck to appropriate in vitro analysis is the production of high quality, and quality-controlled, chromatin substrates. In this chapter, we describe methods for in vitro chromatin reconstitution and quality control. We highlight the strengths and weaknesses of various approaches and emphasize quality control steps that ensure reconstitution of a bona fide homogenous chromatin preparation. This is essential for optimal reproducibility and reliability of ensuing experiments using chromatin substrates.
Collapse
Affiliation(s)
- U Muthurajan
- University of Colorado at Boulder, Boulder, CO, United States
| | - F Mattiroli
- University of Colorado at Boulder, Boulder, CO, United States
| | - S Bergeron
- University of Colorado at Boulder, Boulder, CO, United States
| | - K Zhou
- University of Colorado at Boulder, Boulder, CO, United States; Colorado State University, Fort Collins, CO, United States
| | - Y Gu
- University of Colorado at Boulder, Boulder, CO, United States; Colorado State University, Fort Collins, CO, United States
| | - S Chakravarthy
- Illinois Institute of Technology, Chicago, IL, United States
| | - P Dyer
- University of Colorado at Boulder, Boulder, CO, United States
| | - T Irving
- Illinois Institute of Technology, Chicago, IL, United States
| | - K Luger
- University of Colorado at Boulder, Boulder, CO, United States; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, United States; Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
48
|
Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome. Sci Rep 2015; 5:17038. [PMID: 26602160 PMCID: PMC4658507 DOI: 10.1038/srep17038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 01/01/2023] Open
Abstract
The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.
Collapse
|
49
|
Mattiroli F, D'Arcy S, Luger K. The right place at the right time: chaperoning core histone variants. EMBO Rep 2015; 16:1454-66. [PMID: 26459557 DOI: 10.15252/embr.201540840] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Sheena D'Arcy
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
50
|
Brehove M, Wang T, North J, Luo Y, Dreher SJ, Shimko JC, Ottesen JJ, Luger K, Poirier MG. Histone core phosphorylation regulates DNA accessibility. J Biol Chem 2015; 290:22612-21. [PMID: 26175159 PMCID: PMC4566235 DOI: 10.1074/jbc.m115.661363] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/13/2015] [Indexed: 01/02/2023] Open
Abstract
Nucleosome unwrapping dynamics provide transient access to the complexes involved in DNA transcription, repair, and replication, whereas regulation of nucleosome unwrapping modulates occupancy of these complexes. Histone H3 is phosphorylated at tyrosine 41 (H3Y41ph) and threonine 45 (H3T45ph). H3Y41ph is implicated in regulating transcription, whereas H3T45ph is involved in DNA replication and apoptosis. These modifications are located in the DNA-histone interface near where the DNA exits the nucleosome, and are thus poised to disrupt DNA-histone interactions. However, the impact of histone phosphorylation on nucleosome unwrapping and accessibility is unknown. We find that the phosphorylation mimics H3Y41E and H3T45E, and the chemically correct modification, H3Y41ph, significantly increase nucleosome unwrapping. This enhances DNA accessibility to protein binding by 3-fold. H3K56 acetylation (H3K56ac) is also located in the same DNA-histone interface and increases DNA unwrapping. H3K56ac is implicated in transcription regulation, suggesting that H3Y41ph and H3K56ac could function together. We find that the combination of H3Y41ph with H3K56ac increases DNA accessibility by over an order of magnitude. These results suggest that phosphorylation within the nucleosome DNA entry-exit region increases access to DNA binding complexes and that the combination of phosphorylation with acetylation has the potential to significantly influence DNA accessibility to transcription regulatory complexes.
Collapse
Affiliation(s)
| | - Tao Wang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | | | - Yi Luo
- Biophysics Graduate Program
| | | | - John C Shimko
- Ohio State Biochemistry Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210 and
| | - Jennifer J Ottesen
- Biophysics Graduate Program, Ohio State Biochemistry Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210 and
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523 the Howard Hughes Medical Institute and
| | - Michael G Poirier
- From the Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210 and
| |
Collapse
|