1
|
Méheust R, Castelle CJ, Jaffe AL, Banfield JF. Conserved and lineage-specific hypothetical proteins may have played a central role in the rise and diversification of major archaeal groups. BMC Biol 2022; 20:154. [PMID: 35790962 PMCID: PMC9258230 DOI: 10.1186/s12915-022-01348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Archaea play fundamental roles in the environment, for example by methane production and consumption, ammonia oxidation, protein degradation, carbon compound turnover, and sulfur compound transformations. Recent genomic analyses have profoundly reshaped our understanding of the distribution and functionalities of Archaea and their roles in eukaryotic evolution. RESULTS Here, 1179 representative genomes were selected from 3197 archaeal genomes. The representative genomes clustered based on the content of 10,866 newly defined archaeal protein families (that will serve as a community resource) recapitulates archaeal phylogeny. We identified the co-occurring proteins that distinguish the major lineages. Those with metabolic roles were consistent with experimental data. However, two families specific to Asgard were determined to be new eukaryotic signature proteins. Overall, the blocks of lineage-specific families are dominated by proteins that lack functional predictions. CONCLUSIONS Given that these hypothetical proteins are near ubiquitous within major archaeal groups, we propose that they were important in the origin of most of the major archaeal lineages. Interestingly, although there were clearly phylum-specific co-occurring proteins, no such blocks of protein families were shared across superphyla, suggesting a burst-like origin of new lineages early in archaeal evolution.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France.
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Huang C, Liu X, Chen Y, Zhou J, Li W, Ding N, Huang L, Chen J, Zhang Z. A Novel Family of Winged-Helix Single-Stranded DNA-Binding Proteins from Archaea. Int J Mol Sci 2022; 23:ijms23073455. [PMID: 35408816 PMCID: PMC8998557 DOI: 10.3390/ijms23073455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
The winged helix superfamily comprises a large number of structurally related nucleic acid-binding proteins. While these proteins are often shown to bind dsDNA, few are known to bind ssDNA. Here, we report the identification and characterization of Sul7s, a novel winged-helix single-stranded DNA binding protein family highly conserved in Sulfolobaceae. Sul7s from Sulfolobus islandicus binds ssDNA with an affinity approximately 15-fold higher than that for dsDNA in vitro. It prefers binding oligo(dT)30 over oligo(dC)30 or a dG-rich 30-nt oligonucleotide, and barely binds oligo(dA)30. Further, binding by Sul7s inhibits DNA strand annealing, but shows little effect on the melting temperature of DNA duplexes. The solution structure of Sul7s determined by NMR shows a winged helix-turn-helix fold, consisting of three α-helices, three β-strands, and two short wings. It interacts with ssDNA via a large positively charged binding surface, presumably resulting in ssDNA deformation. Our results shed significant light on not only non-OB fold single-stranded DNA binding proteins in Archaea, but also the divergence of the winged-helix proteins in both function and structure during evolution.
Collapse
Affiliation(s)
- Can Huang
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Xuehui Liu
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.L.); (Y.C.)
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.L.); (Y.C.)
| | - Junshi Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Wenqian Li
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Niannian Ding
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Chen
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- Correspondence: (J.C.); (Z.Z.); Tel.: +86-10-64806988 (Z.Z.)
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.C.); (Z.Z.); Tel.: +86-10-64806988 (Z.Z.)
| |
Collapse
|
3
|
Abstract
B-family DNA polymerases (PolBs) of different groups are widespread in Archaea, and different PolBs often coexist in the same organism. Many of these PolB enzymes remain to be investigated. One of the main groups that is poorly characterized is PolB2, whose members occur in many archaea but are predicted to be inactivated forms of DNA polymerase. Here, Sulfolobus islandicus DNA polymerase 2 (Dpo2), a PolB2 enzyme, was expressed in its native host and purified. Characterization of the purified enzyme revealed that the polymerase possesses a robust nucleotide incorporation activity but is devoid of the 3'-5' exonuclease activity. Enzyme kinetics analyses showed that Dpo2 replicates undamaged DNA templates with high fidelity, which is consistent with its inefficient nucleotide insertion activity opposite different DNA lesions. Strikingly, the polymerase is highly efficient in extending mismatches and mispaired primer termini once a nucleotide is placed opposite a damaged site. This extender polymerase represents a novel type of prokaryotic PolB specialized for DNA damage repair in Archaea. IMPORTANCE In this work, we report that Sulfolobus islandicus Dpo2, a B-family DNA polymerase once predicted to be an inactive form, is a bona fide DNA polymerase functioning in translesion synthesis. S. islandicus Dpo2 is a member of a large group of B-family DNA polymerases (PolB2) that are present in many archaea and some bacteria, and they carry variations in well-conserved amino acids in the functional domains responsible for polymerization and proofreading. However, we found that this prokaryotic B-family DNA polymerase not only replicates undamaged DNA with high fidelity but also extends mismatch and DNA lesion-containing substrates with high efficiencies. With these data, we propose this enzyme functions as an extender polymerase, the first prokaryotic enzyme of this type. Our data also suggest this PolB2 enzyme represents a functional counterpart of the eukaryotic DNA polymerase Pol zeta, an enzyme that is devoted to DNA damage repair.
Collapse
|
4
|
The combined DNA and RNA synthetic capabilities of archaeal DNA primase facilitate primer hand-off to the replicative DNA polymerase. Nat Commun 2022; 13:433. [PMID: 35064114 PMCID: PMC8782868 DOI: 10.1038/s41467-022-28093-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
Replicative DNA polymerases cannot initiate DNA synthesis de novo and rely on dedicated RNA polymerases, primases, to generate a short primer. This primer is then extended by the DNA polymerase. In diverse archaeal species, the primase has long been known to have the ability to synthesize both RNA and DNA. However, the relevance of these dual nucleic acid synthetic modes for productive primer synthesis has remained enigmatic. In the current work, we reveal that the ability of primase to polymerize DNA serves dual roles in promoting the hand-off of the primer to the replicative DNA polymerase holoenzyme. First, it creates a 5′-RNA-DNA-3′ hybrid primer which serves as an optimal substrate for elongation by the replicative DNA polymerase. Second, it promotes primer release by primase. Furthermore, modeling and experimental data indicate that primase incorporates a deoxyribonucleotide stochastically during elongation and that this switches the primase into a dedicated DNA synthetic mode polymerase. DNA primases initiate a short primer before handing off to DNA polymerases to continue replication. Here the authors reveal a unique ability of archaeal primases to first synthesize RNA before stochastically incorporating a deoxyribonucleotide and further extending the primer as DNA.
Collapse
|
5
|
Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain. Int J Mol Sci 2022; 23:ijms23020768. [PMID: 35054954 PMCID: PMC8775963 DOI: 10.3390/ijms23020768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
Collapse
|
6
|
Miyabayashi H, Sakai HD, Kurosawa N. DNA Polymerase B1 Binding Protein 1 Is Important for DNA Repair by Holoenzyme PolB1 in the Extremely Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Microorganisms 2021; 9:microorganisms9020439. [PMID: 33672533 PMCID: PMC7923795 DOI: 10.3390/microorganisms9020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
DNA polymerase B1 (PolB1) is a member of the B-family DNA polymerase family and is a replicative DNA polymerase in Crenarchaea. PolB1 is responsible for the DNA replication of both the leading and lagging strands in the thermophilic crenarchaeon Sulfolobus acidocaldarius. Recently, two subunits, PolB1-binding protein (PBP)1 and PBP2, were identified in Saccharolobus solfataricus. Previous in vitro studies suggested that PBP1 and PBP2 influence the core activity of apoenzyme PolB1 (apo-PolB1). PBP1 contains a C-terminal acidic tail and modulates the strand-displacement synthesis activity of PolB1 during the synthesis of Okazaki fragments. PBP2 modestly enhances the DNA polymerase activity of apo-PolB1. These subunits are present in Sulfolobales, Acidilobales, and Desulfurococcales, which belong to Crenarchaea. However, it has not been determined whether these subunits are essential for the activity of apo-PolB1. In this study, we constructed a pbp1 deletion strain in S. acidocaldarius and characterized its phenotypes. However, a pbp2 deletion strain was not obtained, indicating that PBP2 is essential for replication by holoenzyme PolB1. A pbp1 deletion strain was sensitive to various types of DNA damage and exhibited an increased mutation rate, suggesting that PBP1 contribute to the repair or tolerance of DNA damage by holoenzyme PolB1. The results of our study suggest that PBP1 is important for DNA repair by holoenzyme PolB1 in S. acidocaldarius.
Collapse
Affiliation(s)
- Hiroka Miyabayashi
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
| | - Norio Kurosawa
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
- Correspondence: ; Tel.: +81-42-691-8175
| |
Collapse
|
7
|
Miyabayashi H, Jain R, Suzuki S, Grogan DW, Kurosawa N. PolB1 Is Sufficient for DNA Replication and Repair Under Normal Growth Conditions in the Extremely Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Front Microbiol 2020; 11:613375. [PMID: 33424816 PMCID: PMC7785828 DOI: 10.3389/fmicb.2020.613375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The thermophilic crenarchaeon Sulfolobus acidocaldarius has four DNA polymerases (DNAPs): PolB1, PolB2, PolB3, and Dbh (PolY). Previous in vitro studies suggested that PolB1 is the main replicative DNAP of Sulfolobales whereas PolB2 and Y-family polymerases Dpo4 (Saccharolobus solfataricus) or Dbh are involved in DNA repair and translesion DNA synthesis. On the other hand, there are various opinions about the role of PolB3, which remains to be clearly resolved. In order to examine the roles of the DNAPs of S. acidocaldarius through in vivo experiments, we constructed polB2, polB3, and dbh deletion strains and characterized their phenotypes. Efforts to construct a polB1 deletion strain were not successful; in contrast, it was possible to isolate triple gene-deletion strains lacking polB2, polB3, and dbh. The growth of these strains was nearly the same as that of the parent strains under normal growth conditions. The polB2, polB3, and dbh single-deletion strains were sensitive to some types of DNA-damaging treatments, but exhibited normal sensitivity to UV irradiation and several other damaging treatments. Overall, the genotype which exhibited the greatest sensitivity to the DNA-damaging treatments we tested was the ΔpolB2 ΔpolB3 combination, providing the first evidence of overlapping function for these two DNAPs in vivo. The results of our study strongly suggest that PolB1 is responsible for the DNA replication of both the leading and lagging strands and is sufficient to complete the repair of most DNA damage under normal growth conditions in S. acidocaldarius.
Collapse
Affiliation(s)
- Hiroka Miyabayashi
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Rupal Jain
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Shoji Suzuki
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Dennis W. Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Norio Kurosawa
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| |
Collapse
|
8
|
Cranford MT, Kaszubowski JD, Trakselis MA. A hand-off of DNA between archaeal polymerases allows high-fidelity replication to resume at a discrete intermediate three bases past 8-oxoguanine. Nucleic Acids Res 2020; 48:10986-10997. [PMID: 32997110 PMCID: PMC7641752 DOI: 10.1093/nar/gkaa803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/22/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
During DNA replication, the presence of 8-oxoguanine (8-oxoG) lesions in the template strand cause the high-fidelity (HiFi) DNA polymerase (Pol) to stall. An early response to 8-oxoG lesions involves ‘on-the-fly’ translesion synthesis (TLS), in which a specialized TLS Pol is recruited and replaces the stalled HiFi Pol for lesion bypass. The length of TLS must be long enough for effective bypass, but it must also be regulated to minimize replication errors by the TLS Pol. The exact position where the TLS Pol ends and the HiFi Pol resumes (i.e. the length of the TLS patch) has not been described. We use steady-state and pre-steady-state kinetic assays to characterize lesion bypass intermediates formed by different archaeal polymerase holoenzyme complexes that include PCNA123 and RFC. After bypass of 8-oxoG by TLS PolY, products accumulate at the template position three base pairs beyond the lesion. PolY is catalytically poor for subsequent extension from this +3 position beyond 8-oxoG, but this inefficiency is overcome by rapid extension of HiFi PolB1. The reciprocation of Pol activities at this intermediate indicates a defined position where TLS Pol extension is limited and where the DNA substrate is handed back to the HiFi Pol after bypass of 8-oxoG.
Collapse
Affiliation(s)
- Matthew T Cranford
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place, #97348, Waco, TX 76798, USA
| | - Joseph D Kaszubowski
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place, #97348, Waco, TX 76798, USA
| | - Michael A Trakselis
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place, #97348, Waco, TX 76798, USA
| |
Collapse
|
9
|
Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Front Microbiol 2020; 11:1585. [PMID: 32793138 PMCID: PMC7390963 DOI: 10.3389/fmicb.2020.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Feng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Koonin EV, Krupovic M, Ishino S, Ishino Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol 2020; 18:61. [PMID: 32517760 PMCID: PMC7281927 DOI: 10.1186/s12915-020-00800-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Origin of DNA replication is an enigma because the replicative DNA polymerases (DNAPs) are not homologous among the three domains of life, Bacteria, Archaea, and Eukarya. The homology between the archaeal replicative DNAP (PolD) and the large subunits of the universal RNA polymerase (RNAP) responsible for transcription suggests a parsimonious evolutionary scenario. Under this model, RNAPs and replicative DNAPs evolved from a common ancestor that functioned as an RNA-dependent RNA polymerase in the RNA-protein world that predated the advent of DNA replication. The replicative DNAP of the Last Universal Cellular Ancestor (LUCA) would be the ancestor of the archaeal PolD.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
11
|
Abstract
It is now well recognized that the information processing machineries of archaea are far more closely related to those of eukaryotes than to those of their prokaryotic cousins, the bacteria. Extensive studies have been performed on the structure and function of the archaeal DNA replication origins, the proteins that define them, and the macromolecular assemblies that drive DNA unwinding and nascent strand synthesis. The results from various archaeal organisms across the archaeal domain of life show surprising levels of diversity at many levels-ranging from cell cycle organization to chromosome ploidy to replication mode and nature of the replicative polymerases. In the following, we describe recent advances in the field, highlighting conserved features and lineage-specific innovations.
Collapse
Affiliation(s)
- Mark D Greci
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Stephen D Bell
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA; .,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
12
|
Kim DM, Yoo SM. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives. Crit Rev Biotechnol 2020; 40:787-803. [DOI: 10.1080/07388551.2020.1764485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Madru C, Henneke G, Raia P, Hugonneau-Beaufet I, Pehau-Arnaudet G, England P, Lindahl E, Delarue M, Carroni M, Sauguet L. Structural basis for the increased processivity of D-family DNA polymerases in complex with PCNA. Nat Commun 2020; 11:1591. [PMID: 32221299 PMCID: PMC7101311 DOI: 10.1038/s41467-020-15392-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Replicative DNA polymerases (DNAPs) have evolved the ability to copy the genome with high processivity and fidelity. In Eukarya and Archaea, the processivity of replicative DNAPs is greatly enhanced by its binding to the proliferative cell nuclear antigen (PCNA) that encircles the DNA. We determined the cryo-EM structure of the DNA-bound PolD–PCNA complex from Pyrococcus abyssi at 3.77 Å. Using an integrative structural biology approach — combining cryo-EM, X-ray crystallography, protein–protein interaction measurements, and activity assays — we describe the molecular basis for the interaction and cooperativity between a replicative DNAP and PCNA. PolD recruits PCNA via a complex mechanism, which requires two different PIP-boxes. We infer that the second PIP-box, which is shared with the eukaryotic Polα replicative DNAP, plays a dual role in binding either PCNA or primase, and could be a master switch between an initiation and a processive phase during replication. Replicative DNA polymerases (DNAPs) have evolved the ability to copy the genome with high processivity and fidelity. Here, the authors present a cryo-EM structure of the DNA-bound PolD–PCNA complex from Pyrococcus abyssi to reveal the molecular basis for the interaction and cooperativity between a replicative DNAP and PCNA.
Collapse
Affiliation(s)
- Clément Madru
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France
| | - Ghislaine Henneke
- CNRS, Ifremer, Université de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Pierre Raia
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France.,Sorbonne Université, École Doctorale Complexité du Vivant (ED515), Paris, France
| | - Inès Hugonneau-Beaufet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France
| | | | - Patrick England
- Molecular Biophysics Platform, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France.
| |
Collapse
|
14
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
15
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
16
|
Daimon K, Ishino S, Imai N, Nagumo S, Yamagami T, Matsukawa H, Ishino Y. Two Family B DNA Polymerases From Aeropyrum pernix, Based on Revised Translational Frames. Front Mol Biosci 2018; 5:37. [PMID: 29713633 PMCID: PMC5911459 DOI: 10.3389/fmolb.2018.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/28/2018] [Indexed: 11/23/2022] Open
Abstract
Living organisms are divided into three domains, Bacteria, Eukarya, and Archaea. Comparative studies in the three domains have provided useful information to understand the evolution of the DNA replication machinery. DNA polymerase is the central enzyme of DNA replication. The presence of multiple family B DNA polymerases is unique in Crenarchaeota, as compared with other archaeal phyla, which have a single enzyme each for family B (PolB) and family D (PolD). We analyzed PolB1 and PolB3 in the hyperthermophilic crenarchaeon, Aeropyrum pernix, and found that they are larger proteins than those predicted from the coding regions in our previous study and from public database annotations. The recombinant larger PolBs exhibited the same DNA polymerase activities as previously reported. However, the larger PolB3 showed remarkably higher thermostability, which made this enzyme applicable to PCR. In addition, the high tolerance to salt and heparin suggests that PolB3 will be useful for amplification from the samples with contaminants, and therefore it has a great potential for diagnostic use in the medical and environmental field.
Collapse
Affiliation(s)
- Katsuya Daimon
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Imai
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiyo Nagumo
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Matsukawa
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Abstract
The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
18
|
Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, Kirkegaard RH, de la Torre JR, Daims H, Wagner M. Cultivation and Genomic Analysis of " Candidatus Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland. Front Microbiol 2018; 9:193. [PMID: 29491853 PMCID: PMC5817080 DOI: 10.3389/fmicb.2018.00193] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as "Candidatus Nitrosocaldus islandicus," is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. "Ca. N. islandicus" encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as "Ca. N. islandicus" is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that "Ca. N. islandicus" has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.
Collapse
Affiliation(s)
- Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Craig W. Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Julia Vierheilig
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Christopher J. Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Rasmus H. Kirkegaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - José R. de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, Pfeifer K, Schleper C. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome. Front Microbiol 2018; 9:28. [PMID: 29434576 PMCID: PMC5797428 DOI: 10.3389/fmicb.2018.00028] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.
Collapse
Affiliation(s)
- Sophie S Abby
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Grenoble, France
| | - Michael Melcher
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Melina Kerou
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Michaela Stieglmeier
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Claudia Rossel
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Kevin Pfeifer
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|