1
|
Taylor JS, Bargmann BOR. Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation. PHYSIOLOGIA PLANTARUM 2025; 177:e70229. [PMID: 40302163 PMCID: PMC12041631 DOI: 10.1111/ppl.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/01/2025]
Abstract
Auxin is a central regulator of plant growth, development, and responses to environmental cues. How a single phytohormone mediates such a diverse array of developmental responses has remained a longstanding question in plant biology. Somehow, perception of the same auxin signal can lead to divergent responses in different organs, tissues, and cell types. These responses are primarily mediated by the nuclear auxin signaling pathway, composed of ARF transcription factors, Aux/IAA repressors, and TIR1/AFB auxin receptors, which act together to regulate auxin-dependent transcriptional changes. Transcriptional specificity likely arises through the functional diversity within these signaling components, forming many coordinated regulatory layers to generate unique transcriptional outputs. These layers include differential binding affinities for cis-regulatory elements, protein-protein interaction-specificity, subcellular localization, co-expression patterns, and protein turnover. In this review, we explore the experimental evidence of functional diversity within auxin signaling machinery and discuss how these differences could contribute to transcriptional output specificity.
Collapse
Affiliation(s)
- Joseph S. Taylor
- Virginia TechSchool of Plant and Environmental SciencesBlacksburgVAUSA
| | | |
Collapse
|
2
|
Kubalová M, Schmidtová M, Fendrych M. Unresolved roles of Aux/IAA proteins in auxin responses. PHYSIOLOGIA PLANTARUM 2025; 177:e70221. [PMID: 40265222 PMCID: PMC12015657 DOI: 10.1111/ppl.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025]
Abstract
Aux/IAA proteins are well-known as key components of the nuclear auxin signaling pathway, repressing gene transcription when present and enabling gene activation upon their degradation. In this review, we explore the additional roles of Aux/IAA proteins in the known auxin perception pathways-the TIR1/AFBs nuclear as well as in the emerging cytoplasmic and apoplastic pathways. We summarize recent advances in understanding the regulation of Aux/IAA protein stability at the post-translational level, a critical factor in auxin-regulated transcriptional output. We further highlight the roles of auxin-nondegradable non-canonical Aux/IAAs in auxin-mediated transcription and their involvement in apoplastic auxin signalling. Additionally, we discuss the importance of Aux/IAAs for the adenylate cyclase activity of TIR1/AFB receptors and speculate on their involvement in the cytoplasmic auxin pathway. Using Arabidopsis root as a model, this work underscores the central role of Aux/IAA proteins in mediating auxin-driven developmental processes and environmental responses. Key questions for future research are proposed to further unravel the dynamic roles of Aux/IAAs in auxin signaling networks.
Collapse
Affiliation(s)
- Monika Kubalová
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyCharles UniversityPragueCzech Republic
| | - Martina Schmidtová
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Matyáš Fendrych
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyCharles UniversityPragueCzech Republic
| |
Collapse
|
3
|
Zhang J, Xu Y, Wu G, Niu C, Zhang Y, Hao J, Wang B, Liu N. Genome-Wide Identification and Expression Analysis of the Aux/IAA Gene Family in Lettuce ( Lactuca sativa L.). Int J Mol Sci 2025; 26:1687. [PMID: 40004151 PMCID: PMC11855171 DOI: 10.3390/ijms26041687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The Aux/IAA proteins are key regulators of auxin signaling transduction, mediating various physiological and developmental processes in higher plants; however, little information on Aux/IAAs is known in lettuce, an economically important vegetable. In this study, a total of 29 LsAux/IAA genes were identified from the lettuce genome. Sequence alignment and domain analyses suggested the presence of conserved Aux/IAA subdomains (Domain I-IV) in those LsIAAs, and Phylogenetic analysis indicated that members of LsAux/IAA could be classified into 10 subgroups by their homology to Arabidopsis Aux/IAAs, which is also supported by exon-intron structure, consensus motifs, and domain compositions. Transcriptome data suggested that most of the LsIAA genes were expressed in all tissues, whereas some of them were preferentially expressed in specific tissues. Analysis of cis-acting elements indicated the LsIAA genes might be regulated by hormonal treatments and abiotic stresses, which was confirmed by qRT-PCR experiments. Taken together, our study provides valuable information for further investigation of the biological roles of LsIAA genes in high-temperature conditions.
Collapse
Affiliation(s)
- Jingqing Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegeta-bles, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Vegetable Biobreeding, State Key Laboratory of Urban Agriculture (Northern China), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yikun Xu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegeta-bles, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 270108, China
| | - Guize Wu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Vegetable Biobreeding, State Key Laboratory of Urban Agriculture (Northern China), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chaoyong Niu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegeta-bles, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Vegetable Biobreeding, State Key Laboratory of Urban Agriculture (Northern China), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yibo Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegeta-bles, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, State Key Laboratory of Urban Agriculture (Northern China), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jinghong Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Baoju Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegeta-bles, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, State Key Laboratory of Urban Agriculture (Northern China), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ning Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Engineering Research Center for Vegeta-bles, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, State Key Laboratory of Urban Agriculture (Northern China), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
4
|
Song G, Montes C, Olatunji D, Malik S, Ji C, Clark NM, Pu Y, Kelley DR, Walley JW. Quantitative proteomics reveals extensive lysine ubiquitination and transcription factor stability states in Arabidopsis. THE PLANT CELL 2024; 37:koae310. [PMID: 39570863 DOI: 10.1093/plcell/koae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples. This approach identified 17,940 ubiquitinated lysine sites arising from 6,453 proteins from Arabidopsis (Arabidopsis thaliana) primary roots, seedlings, and rosette leaves. Gene ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and metabolism. We determined ubiquitinated lysine residues that directly regulate the stability of three transcription factors, CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) using in vivo degradation assays. Furthermore, codon mutation of CIB1 to create a K166R conversion to prevent ubiquitination, via CRISPR/Cas9-derived adenosine base editing, led to an early flowering phenotype and increased expression of FLOWERING LOCUS T (FT). These comprehensive site-level ubiquitinome profiles provide a wealth of data for future functional studies related to modulation of biological processes mediated by this post-translational modification in plants.
Collapse
Affiliation(s)
- Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Damilola Olatunji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Shikha Malik
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Chonghui Ji
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Natalie M Clark
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
5
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
6
|
Pu ZX, Wang JL, Li YY, Liang LY, Tan YT, Wang ZH, Li BL, Guo GQ, Wang L, Wu L. A Bacterial Platform for Studying Ubiquitination Cascades Anchored by SCF-Type E3 Ubiquitin Ligases. Biomolecules 2024; 14:1209. [PMID: 39456142 PMCID: PMC11505812 DOI: 10.3390/biom14101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Ubiquitination is one of the most important post-translational modifications in eukaryotes. The ubiquitination cascade includes ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). The E3 ligases, responsible for substrate recognition, are the most abundant and varied proteins in the cascade and the most studied. SKP1-CUL1-F-Box (SCF)-type E3 ubiquitin ligases are multi-subunit RING (Really Interesting New Gene) E3 ubiquitin ligases, composed of CUL1 (Cullin 1), RBX1 (RING BOX 1), SKP1 (S-phase Kinase-associated Protein 1), and F-box proteins. In vitro ubiquitination assays, used for studying the specific recognition of substrate proteins by E3 ubiquitin ligases, require the purification of all components involved in the cascade, and for assays with SCF-type E3 ligases, additional proteins (several SCF complex subunits). Here, the Duet expression system was used to co-express E1, E2, ubiquitin, ubiquitylation target (substrate), and the four subunits of a SCF-type E3 ligase in E. coli. When these proteins co-exist in bacterial cells, ubiquitination occurs and can be detected by Western Blot. The effectiveness of this bacterial system for detecting ubiquitination cascade activity was demonstrated by replicating both AtSCFTIR1-mediated and human SCFFBXO28-mediated ubiquitylation in bacteria. This system provides a basic but adaptable platform for the study of SCF-type E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zuo-Xian Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun-Li Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Luo-Yu Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Ting Tan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ze-Hui Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Lin Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Wang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin 124221, China
| | - Lei Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.-X.P.); (J.-L.W.); (Y.-Y.L.); (L.-Y.L.); (Y.-T.T.); (Z.-H.W.); (B.-L.L.); (G.-Q.G.)
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Fan J, Deng M, Li B, Fan G. Genome-Wide Identification of the Paulownia fortunei Aux/IAA Gene Family and Its Response to Witches' Broom Caused by Phytoplasma. Int J Mol Sci 2024; 25:2260. [PMID: 38396939 PMCID: PMC10889751 DOI: 10.3390/ijms25042260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The typical symptom of Paulownia witches' broom (PaWB), caused by phytoplasma infection, is excessive branching, which is mainly triggered by auxin metabolism disorder. Aux/IAA is the early auxin-responsive gene that participates in regulating plant morphogenesis such as apical dominance, stem elongation, lateral branch development, and lateral root formation. However, no studies have investigated the response of the Aux/IAA gene family to phytoplasma infection in Paulownia fortunei. In this study, a total of 62 Aux/IAA genes were found in the genome. Phylogenetic analysis showed that PfAux/IAA genes could be divided into eight subgroups, which were formed by tandem duplication and fragment replication. Most of them had a simple gene structure, and several members lacked one or two conserved domains. By combining the expression of PfAux/IAA genes under phytoplasma stress and SA-treated phytoplasma-infected seedlings, we found that PfAux/IAA13/33/45 may play a vital role in the occurrence of PaWB. Functional analysis based on homologous relationships showed a strong correlation between PfAux/IAA45 and branching. Protein-protein interaction prediction showed that PfARF might be the binding partner of PfAux/IAA, and the yeast two-hybrid assay and bimolecular fluorescent complementary assay confirmed the interaction of PfAux/IAA45 and PfARF13. This study provides a theoretical basis for further understanding the function of the PfAux/IAA gene family and exploring the regulatory mechanism of branching symptoms caused by PaWB.
Collapse
Affiliation(s)
- Jiaming Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
8
|
Karami O, de Jong H, Somovilla VJ, Villanueva Acosta B, Sugiarta AB, Ham M, Khadem A, Wennekes T, Offringa R. Structure-activity relationship of 2,4-D correlates auxinic activity with the induction of somatic embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1355-1369. [PMID: 37647363 DOI: 10.1111/tpj.16430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic analogue of the plant hormone auxin that is commonly used in many in vitro plant regeneration systems, such as somatic embryogenesis (SE). Its effectiveness in inducing SE, compared to the natural auxin indole-3-acetic acid (IAA), has been attributed to the stress triggered by this compound rather than its auxinic activity. However, this hypothesis has never been thoroughly tested. Here we used a library of forty 2,4-D analogues to test the structure-activity relationship with respect to the capacity to induce SE and auxinic activity in Arabidopsis thaliana. Four analogues induced SE as effectively as 2,4-D and 13 analogues induced SE but were less effective. Based on root growth inhibition and auxin response reporter expression, the 2,4-D analogues were classified into different groups, ranging from very active to not active auxin analogues. A halogen at the 4-position of the aromatic ring was important for auxinic activity, whereas a halogen at the 3-position resulted in reduced activity. Moreover, a small substitution at the carboxylate chain was tolerated, as was extending the carboxylate chain with an even number of carbons. The auxinic activity of most 2,4-D analogues was consistent with their simulated TIR1-Aux/IAA coreceptor binding characteristics. A strong correlation was observed between SE induction efficiency and auxinic activity, which is in line with our observation that 2,4-D-induced SE and stress both require TIR1/AFB auxin co-receptor function. Our data indicate that the stress-related effects triggered by 2,4-D and considered important for SE induction are downstream of auxin signalling.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Victor J Somovilla
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Beatriz Villanueva Acosta
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Aldo Bryan Sugiarta
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Marvin Ham
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Azadeh Khadem
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
9
|
Ramans-Harborough S, Kalverda AP, Manfield IW, Thompson GS, Kieffer M, Uzunova V, Quareshy M, Prusinska JM, Roychoudhry S, Hayashi KI, Napier R, del Genio C, Kepinski S. Intrinsic disorder and conformational coexistence in auxin coreceptors. Proc Natl Acad Sci U S A 2023; 120:e2221286120. [PMID: 37756337 PMCID: PMC10556615 DOI: 10.1073/pnas.2221286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 09/29/2023] Open
Abstract
AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.
Collapse
Affiliation(s)
- Sigurd Ramans-Harborough
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Gary S. Thompson
- Wellcome Biological Nuclear Magnetic Resonance Facility, Division of Natural Sciences, University of Kent, CanterburyCT2 7NJ, United Kingdom
| | - Martin Kieffer
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Veselina Uzunova
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Suruchi Roychoudhry
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama700-0005, Japan
| | - Richard Napier
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Charo del Genio
- Centre for Fluid and Complex Systems, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Stefan Kepinski
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
10
|
Jing H, Yang X, Emenecker RJ, Feng J, Zhang J, Figueiredo MRAD, Chaisupa P, Wright RC, Holehouse AS, Strader LC, Zuo J. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genet Genomics 2023; 50:473-485. [PMID: 37187411 PMCID: PMC11070147 DOI: 10.1016/j.jgg.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Hongwei Jing
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, Duke University, Durham, NC 27008, USA.
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Huang B, Qi Y, Huang X, Yang P. Genome-wide identification and co-expression network analysis of Aux/IAA gene family in Salvia miltiorrhiza. PeerJ 2023; 11:e15212. [PMID: 37090108 PMCID: PMC10117383 DOI: 10.7717/peerj.15212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) gene family serves as a principal group of genes responsible for modulating plant growth and development through the auxin signaling pathway. Despite the significance of this gene family, the identification and characterization of members within the well-known Chinese medicinal herb Salvia miltiorrhiza (S. miltiorrhiza) have not been thoroughly investigated. In this study, we employed bioinformatics methods to identify 23 Aux/IAA genes within the genome of S. miltiorrhiza. These genes were classified into typical IAA and atypical IAA based on their domain structure. Our analysis of the promoter regions revealed that the expression of these genes is regulated not only by auxins, but also by other hormones and environmental factors. Furthermore, we found that the expression patterns of these genes varied across various tissues of S. miltiorrhiza. While our initial hypothesis suggested that the primary function of these genes was the interaction between SmIAA and ARF, gene co-expression network analysis revealed that they are also influenced by various other transcription factors, such as WRKY and ERF. The findings establish a sturdy basis for future investigations into the function of the Aux/IAA gene family and exhibit promising prospects for enhancing the genetics of this medicinal flora and its associated species.
Collapse
Affiliation(s)
- Bin Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
12
|
Caumon H, Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad132. [PMID: 37042516 DOI: 10.1093/jxb/erad132] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
As auxin is a major regulator of plant development, studying the signaling mechanisms by which auxin influences cellular activities is of primary importance. In this review, we describe the current knowledge on the different modalities of signaling, from the well-characterized canonical nuclear auxin pathway, to the more recently discovered or re-discovered non-canonical modes of auxin signaling. In particular, we discuss how both the modularity of the nuclear auxin pathway and the dynamic regulation of its core components allow to trigger specific transcriptomic responses. We highlight the fact that the diversity of modes of auxin signaling allows for a wide range of timescales of auxin responses, from second-scale cytoplasmic responses to minute/hour-scale modifications of gene expression. Finally, we question the extent to which the temporality of auxin signaling and responses contributes to development in both the shoot and the root meristems. We conclude by stressing the fact that future investigations should allow to build an integrative view not only of the spatial control, but also of the temporality of auxin-mediated regulation of plant development, from the cell to the whole organism.
Collapse
Affiliation(s)
- Hugo Caumon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
13
|
Chen WQ, Liu DP, Li ZX, Chen K, Luo J, Xu JL. Transcriptome analysis of knockout mutants of rice seed dormancy gene OsVP1 and Sdr4. PLANT CELL REPORTS 2023; 42:309-319. [PMID: 36445461 DOI: 10.1007/s00299-022-02958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
OsVP1 and Sdr4 play an important role in regulating seed dormancy that involved in multiple metabolism and regulatory pathways. Seed dormancy and germination are critical agricultural traits influencing rice grain yield. Although there are some genes have identified previously, the comprehensive understanding based on transcriptome is still deficient. In this study, we generated mutants of two representative regulators of seed germination, Oryza sativa Viviparous1 (OsVP1) and Seed dormancy 4 (Sdr4), by CRISPR/Cas9 approach and named them cr-osvp1 and cr-sdr4. The weakened dormancy of mutants indicated that the functions of OsVP1 and Sdr4 are required for normal early seed dormancy. There were 4157 and 8285 differentially expressed genes (DEGs) were identified in cr-osvp1 vs. NIP and cr-sdr4 vs. NIP groups, respectively, with a large number of overlapped DEGs between two groups. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of common DEGs in two groups showed that genes related to carbohydrate metabolic, nucleoside metabolic, amylase activity and plant hormone signal transduction were involved in the dormancy regulation. These results suggest that OsVP1 and Sdr4 play an important role in regulating seed dormancy by multiple metabolism and regulatory pathways. The systematic analysis of the transcriptional level changes provides theoretical basis for the research of seed dormancy and germination in rice.
Collapse
Affiliation(s)
- Wen-Qiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Da-Pu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi-Xin Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Ju Luo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Jian-Long Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China.
| |
Collapse
|
14
|
Chaudhary C, Sharma N, Khurana P. Genome-wide identification of Aux/IAA and ARF gene families in bread wheat (Triticum aestivum L.). PROTOPLASMA 2023; 260:257-270. [PMID: 35606614 DOI: 10.1007/s00709-022-01773-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/11/2022] [Indexed: 05/12/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important food crops in the world. Somatic embryogenesis is an event that is triggered by the presence of auxin hormone for the induction of somatic cells to get converted to embryonic cells. Somatic embryogenesis represents the most important process of totipotency of plants. The role of auxins is widely understood during various stages of embryogenesis including polarity establishment, de-differentiation, re-differentiations, and morphogenesis. Many of the Aux/IAAs and ARFs which are part of auxin signaling components have been identified to play various roles during embryogenesis. In this analysis, the Aux/IAAs and ARFs of T. aestivum have been analyzed at the genome-scale; their structure, function, and evolutionary relatedness were determined. Several Aux/IAAs and ARFs components of T. aestivum have been found to exclusively regulate axis formation, meristem commitment, and other re-differentiation processes by differential expression studies.
Collapse
Affiliation(s)
- Chanderkant Chaudhary
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Nikita Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
15
|
Niemeyer M, Parra JOF, Calderón Villalobos LIA. An In vitro Assay to Recapitulate Hormone-Triggered and SCF-Mediated Protein Ubiquitylation. Methods Mol Biol 2023; 2581:43-56. [PMID: 36413309 DOI: 10.1007/978-1-0716-2784-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Signaling proteins trigger a sequence of molecular switches in the cell, which permit development, growth, and rapid adaptation to changing environmental conditions. SCF-type E3 ubiquitin ligases recognize signaling proteins prompting changes in their fate, one of these being ubiquitylation followed by degradation by the proteasome. SCFs together with their ubiquitylation targets (substrates) often serve as phytohormone receptors, responding and/or assembling in response to fluctuating intracellular hormone concentrations. Tracing and understanding phytohormone perception and SCF-mediated ubiquitylation of proteins could provide powerful clues on the molecular mechanisms utilized for plant adaptation. Here, we describe an adaptable in vitro system that uses recombinant proteins and enables the study of hormone-triggered SCF-substrate interaction and the dynamics of protein ubiquitylation. This system can serve to predict the requirements for protein recognition and to understand how phytohormone levels have the power to control protein fate.
Collapse
Affiliation(s)
- Michael Niemeyer
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Jhonny Oscar Figueroa Parra
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
- KWS Gateway Research Center, LLC, BRDG Park at the Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
16
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
17
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
18
|
Figueiredo MRAD, Strader LC. Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics. Trends Biochem Sci 2022; 47:865-874. [PMID: 35817652 PMCID: PMC9464691 DOI: 10.1016/j.tibs.2022.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023]
Abstract
The plant hormone auxin acts through regulated degradation of Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins to regulate transcriptional events. In this review, we examine the composition and function of each Aux/IAA structural motif. We then focus on recent characterization of Aux/IAA N-terminal disordered regions, formation of secondary structure within these disordered regions, and post-translational modifications (PTMs) that affect Aux/IAA function and stability. We propose how structural variations between Aux/IAA family members may be tuned for differential transcriptional repression and degradation dynamics.
Collapse
|
19
|
Plant proteostasis: a proven and promising target for crop improvement. Essays Biochem 2022; 66:75-85. [PMID: 35929615 DOI: 10.1042/ebc20210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
The Green Revolution of the 1960s accomplished dramatic increases in crop yields through genetic improvement, chemical fertilisers, irrigation, and mechanisation. However, the current trajectory of population growth, against a backdrop of climate change and geopolitical unrest, predicts that agricultural production will be insufficient to ensure global food security in the next three decades. Improvements to crops that go beyond incremental gains are urgently needed. Plant biology has also undergone a revolution in recent years, through the development and application of powerful technologies including genome sequencing, a pantheon of 'omics techniques, precise genome editing, and step changes in structural biology and microscopy. Proteostasis - the collective processes that control the protein complement of the cell, comprising synthesis, modification, localisation, and degradation - is a field that has benefitted from these advances. This special issue presents a selection of the latest research in this vibrant field, with a particular focus on protein degradation. In the current article, we highlight the diverse and widespread contributions of plant proteostasis to agronomic traits, suggest opportunities and strategies to manipulate different elements of proteostatic mechanisms for crop improvement, and discuss the challenges involved in bringing these ideas into practice.
Collapse
|
20
|
Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. Auxin response factors are keys to the many auxin doors. THE NEW PHYTOLOGIST 2022; 235:402-419. [PMID: 35434800 DOI: 10.1111/nph.18159] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In plants, most developmental programs depend on the action of auxin. The best described model of the auxin signaling pathway, which explains most, but not all, of the auxin transcriptional responses, relies on a de-repression mechanism. The auxin/indole-3-acetic acid repressors (Aux/IAAs) interact with the auxin response factors (ARFs), the transcription factors of the auxin signaling pathway, leading to repression of the ARF-controlled genes. Auxin induces Aux/IAA degradation, releases ARFs and activates transcription. However, this elegant model is not suitable for all ARFs. Indeed, in Arabidopsis, which has 22 ARFs, only five of them fit into the model since they are the ones able to interact with Aux/IAAs. The remaining 17 have a limited capacity to interact with the repressors, and their mechanisms of action are still unclear. The differential interactions between ARF and Aux/IAA proteins constitute one of many examples of the biochemical and structural diversification of ARFs that affect their action and therefore affect auxin transcriptional responses. A deeper understanding of the structural properties of ARFs is fundamental to obtaining a better explanation of the action of auxin in plants.
Collapse
Affiliation(s)
- Coralie Cancé
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| | - Raquel Martin-Arevalillo
- Laboratoire de Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Univ. Lyon, Lyon, France
| | - Kenza Boubekeur
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| | - Renaud Dumas
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| |
Collapse
|
21
|
Liu B, Zhu J, Lin L, Yang Q, Hu B, Wang Q, Zou XX, Zou SQ. Genome-Wide Identification and Co-Expression Analysis of ARF and IAA Family Genes in Euscaphis konishii: Potential Regulators of Triterpenoids and Anthocyanin Biosynthesis. Front Genet 2022; 12:737293. [PMID: 35069676 PMCID: PMC8766721 DOI: 10.3389/fgene.2021.737293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Euscaphis konishii is an evergreen plant that is widely planted as an industrial crop in Southern China. It produces red fruits with abundant secondary metabolites, giving E. konishii high medicinal and ornamental value. Auxin signaling mediated by members of the AUXIN RESPONSE FACTOR (ARF) and auxin/indole-3-acetic acid (Aux/IAA) protein families plays important roles during plant growth and development. Aux/IAA and ARF genes have been described in many plants but have not yet been described in E. konishii. In this study, we identified 34 EkIAA and 29 EkARF proteins encoded by the E. konishii genome through database searching using HMMER. We also performed a bioinformatic characterization of EkIAA and EkARF genes, including their phylogenetic relationships, gene structures, chromosomal distribution, and cis-element analysis, as well as conserved motifs in the proteins. Our results suggest that EkIAA and EkARF genes have been relatively conserved over evolutionary history. Furthermore, we conducted expression and co-expression analyses of EkIAA and EkARF genes in leaves, branches, and fruits, which identified a subset of seven EkARF genes as potential regulators of triterpenoids and anthocyanin biosynthesis. RT-qPCR, yeast one-hybrid, and transient expression analyses showed that EkARF5.1 can directly interact with auxin response elements and regulate downstream gene expression. Our results may pave the way to elucidating the function of EkIAA and EkARF gene families in E. konishii, laying a foundation for further research on high-yielding industrial products and E. konishii breeding.
Collapse
Affiliation(s)
- Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Juanli Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Lina Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Qixin Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Bangping Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Qingying Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Xiao-Xing Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Shuang-Quan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| |
Collapse
|
22
|
Andres J, Zurbriggen MD. Genetically Encoded Biosensors for the Quantitative Analysis of Auxin Dynamics in Plant Cells. Methods Mol Biol 2022; 2379:183-195. [PMID: 35188663 DOI: 10.1007/978-1-0716-1791-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants, as sessile organisms, possess complex and intertwined signaling networks to react and adapt their behavior toward different internal and external stimuli. Due to this high level of complexity, the implementation of quantitative molecular tools in planta remains challenging. Synthetic biology as an ever-growing interdisciplinary field applies basic engineering principles in life sciences. A plethora of synthetic switches, circuits, and even higher order networks has been implemented in different organisms, such as bacteria and mammalian cells, and facilitates the study of signaling and metabolic pathways. However, the application of such tools in plants lags behind, and thus only a few genetically encoded biosensors and switches have been engineered toward the quantitative investigation of plant signaling. Here, we present a protocol for the quantitative analysis of auxin signaling in Arabidopsis thaliana protoplasts. We implemented genetically encoded, ratiometric, degradation-based luminescent biosensors and applied them for studying auxin perception dynamics. For this, we utilized three different Aux/IAAs as sensor modules and analyzed their degradation behavior in response to auxin. Our experimental approach requires simple hardware and experimental reagents and can thus be implemented in every plant-related or cell culture laboratory. The system allows for the analysis of auxin perception and signaling aspects on various levels and can be easily expanded to other hormones, as for example strigolactones. In addition, the modular sensor design enables the implementation of sensor modules in a straightforward and time-saving approach.
Collapse
Affiliation(s)
- Jennifer Andres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
23
|
Cao L, Tian J, Liu Y, Chen X, Li S, Persson S, Lu D, Chen M, Luo Z, Zhang D, Yuan Z. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1083-1096. [PMID: 34538009 DOI: 10.1111/tpj.15496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates (JAs) are key phytohormones that regulate plant responses and development. JASMONATE-ZIM DOMAIN (JAZ) proteins safeguard JA signaling by repressing JA-responsive gene expression in the absence of JA. However, the interaction and cooperative roles of JAZ repressors remain unclear during plant development. Here, we found that OsJAZ6 interacts with OsJAZ1 depending on a single amino acid in the so-called ZIM domain of OsJAZ6 in rice JA signaling transduction and JA-regulated rice spikelet development. In vivo protein distribution analysis revealed that the OsJAZ6 content is efficiently regulated during spikelet development, and biochemical and genetic evidence showed that OsJAZ6 is more sensitive to JA-mediated degradation than OsJAZ1. Through over- and mis-expression experiments, we further showed that the protein stability and levels of OsJAZ6 orchestrate the output of JA signaling during rice spikelet development. A possible mechanism, which outlines how OsJAZ repressors interact and function synergistically in specifying JA signaling output through degradation titration, is also discussed.
Collapse
Affiliation(s)
- Lichun Cao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Tian
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilin Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siqi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Guo W, Wang W, Zhang W, Li W, Wang Y, Zhang S, Chang J, Ye Q, Gan J. Mechanisms of the enantioselective effects of phenoxyalkanoic acid herbicides DCPP and MCPP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147735. [PMID: 34029804 DOI: 10.1016/j.scitotenv.2021.147735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Phenoxyalkanoic acids (PAAs), synthetic indole-3-acetic acid (IAA) auxin mimics, are widely used as herbicides. Many PAAs are chiral molecules and show strong enantioselectivity in their herbicidal activity; however, there is a lack of understanding of mechanisms driving enantioselectivity. This study aimed to obtain a mechanistic understanding of PAA enantioselectivity using dichlorprop and mecoprop as model PAA compounds. Molecular docking, in vitro 3H-IAA binding assay, and surface plasmon resonance analysis showed that the R enantiomer was preferentially combined with TIR1-IAA7 (Transport Inhibitor Response1- Auxin-Responsive Protein IAA7) than the S enantiomer. In vivo tracking using 14C-PAAs showed a greater absorption of the R enantiomer by Arabidopsis thaliana, and further comparatively enhanced translocation of the R enantiomer to the nucleus where the auxin co-receptor is located. These observations imply that TIR1-IAA7 is a prior target for DCPP and MCPP, and that PAA enantioselectivity occurs because the R enantiomer has a stronger binding affinity for TIR1-IAA7 as well as a greater plant absorption and translocation capability than the S enantiomer. The improved understanding of PAA enantioselectivity is of great significance, as the knowledge may be used to design "green" molecules, such as R enantiomer enriched products, leading to improved plant management and environmental sustainability.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Department of Applied Bioscience, College of agriculture and biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Weiwei Zhang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Li
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yichen Wang
- Hangzhou Botanical Garden, No.1, Taoyuan, Xihu District, Hangzhou 310012, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianghai Chang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Abstract
Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.
Collapse
|
26
|
Ramos Báez R, Nemhauser JL. Expansion and innovation in auxin signaling: where do we grow from here? Development 2021; 148:dev187120. [PMID: 33712444 PMCID: PMC7970066 DOI: 10.1242/dev.187120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phytohormone auxin plays a role in almost all growth and developmental responses. The primary mechanism of auxin action involves the regulation of transcription via a core signaling pathway comprising proteins belonging to three classes: receptors, co-receptor/co-repressors and transcription factors. Recent studies have revealed that auxin signaling can be traced back at least as far as the transition to land. Moreover, studies in flowering plants have highlighted how expansion of the gene families encoding auxin components is tied to functional diversification. As we review here, these studies paint a picture of auxin signaling evolution as a driver of innovation.
Collapse
Affiliation(s)
- Román Ramos Báez
- University of Washington, Department of Biology, Seattle, WA 98105-1800, USA
| | | |
Collapse
|
27
|
He D, Damaris RN, Li M, Khan I, Yang P. Advances on Plant Ubiquitylome-From Mechanism to Application. Int J Mol Sci 2020; 21:E7909. [PMID: 33114409 PMCID: PMC7663383 DOI: 10.3390/ijms21217909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins enable modulation of their structure, function, localization and turnover. To date, over 660 PTMs have been reported, among which, reversible PTMs are regarded as the key players in cellular signaling. Signaling mediated by PTMs is faster than re-initiation of gene expression, which may result in a faster response that is particularly crucial for plants due to their sessile nature. Ubiquitylation has been widely reported to be involved in many aspects of plant growth and development and it is largely determined by its target protein. It is therefore of high interest to explore new ubiquitylated proteins/sites to obtain new insights into its mechanism and functions. In the last decades, extensive protein profiling of ubiquitylation has been achieved in different plants due to the advancement in ubiquitylated proteins (or peptides) affinity and mass spectrometry techniques. This obtained information on a large number of ubiquitylated proteins/sites helps crack the mechanism of ubiquitylation in plants. In this review, we have summarized the latest advances in protein ubiquitylation to gain comprehensive and updated knowledge in this field. Besides, the current and future challenges and barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA;
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| |
Collapse
|
28
|
Orosa B, Üstün S, Calderón Villalobos LIA, Genschik P, Gibbs D, Holdsworth MJ, Isono E, Lois M, Trujillo M, Sadanandom A. Plant proteostasis - shaping the proteome: a research community aiming to understand molecular mechanisms that control protein abundance. THE NEW PHYTOLOGIST 2020; 227:1028-1033. [PMID: 32662105 DOI: 10.1111/nph.16664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Beatriz Orosa
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Suayib Üstün
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Luz I A Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), 06120, Germany
| | - Pascal Genschik
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg, 67084, France
| | - Daniel Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Box 602, Konstanz, 78457, Germany
| | - Maria Lois
- Centre for Research in Agronomical Genomics, Universidad Autonoma de Barcelona, Cerdanyola, Barcelona, 08193, Spain
| | - Marco Trujillo
- Faculty of Biology, Institute for Biology II, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
29
|
Identification and expression analysis of auxin-responsive GH3 family genes in Chinese hickory (Carya cathayensis) during grafting. Mol Biol Rep 2020; 47:4495-4506. [PMID: 32444977 DOI: 10.1007/s11033-020-05529-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The GH3 genes play vital roles in auxin homeostasis by conjugating excess auxin to amino acids. However, how GH3 genes function during grafting in Chinese hickory (Carya cathayensis) is largely unknown. Here, based on the transcriptome database, a comprehensive identification and expression profiling analysis of 12 GH3 genes in Chinese hickory were performed. Phylogenetic analysis indicated that CcGH3-x exists in a specific subfamily. To understand the roles of CcGH3 genes, tissue-specific expression and the response to different phytohormones were determined. Expression profiles of GH3 genes of Chinese hickory during grafting were analysed. The data suggested that 10 CcGH3 genes were down-regulated at an early stage of grafting, indicating that auxin homeostasis regulated by the CcGH3 family might be inhibited at initial stages. At the completion of grafting, expression levels of members of the CcGH3 family were restored to normal levels. Endogenous auxin levels were also measured, and the data showed that free auxin decreased to the lowest level at an early stage of grafting, and then increased during grafting. Auxin amino acid conjugation increased at an early stage of grafting in rootstock, and then decreased with progression of the graft union. Our results demonstrate that the reduced expression of CcGH3 family genes during grafting might contribute to the release of free auxin, making an important contribution to the recovery of auxin levels after grafting.
Collapse
|
30
|
Niemeyer M, Moreno Castillo E, Ihling CH, Iacobucci C, Wilde V, Hellmuth A, Hoehenwarter W, Samodelov SL, Zurbriggen MD, Kastritis PL, Sinz A, Calderón Villalobos LIA. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nat Commun 2020; 11:2277. [PMID: 32385295 PMCID: PMC7210949 DOI: 10.1038/s41467-020-16147-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states. Auxin-mediated recruitment of AUX/IAAs by the F-box protein TIR1 prompts rapid AUX/IAA ubiquitylation and degradation. By resolving auxin receptor topology, the authors show that intrinsically disordered regions near the degrons of two Aux/IAA proteins reinforce complex assembly and position Aux/IAAs for ubiquitylation.
Collapse
Affiliation(s)
- Michael Niemeyer
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Elena Moreno Castillo
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Verona Wilde
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Antje Hellmuth
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Sophia L Samodelov
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Panagiotis L Kastritis
- ZIK HALOMEM & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
31
|
Li N, Cao L, Miu W, Cao R, Peng M, Wan W, Huang LJ. Molecular Rewiring of the Jasmonate Signaling Pathway to Control Auxin-Responsive Gene Expression. Cells 2020; 9:cells9030641. [PMID: 32155843 PMCID: PMC7140437 DOI: 10.3390/cells9030641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/02/2023] Open
Abstract
The plant hormone jasmonic acid (JA) has an important role in many aspects of plant defense response and developmental process. JA triggers interaction between the F-box protein COI1 and the transcriptional repressors of the JAZ family that leads the later to proteasomal degradation. The Jas-motif of JAZs is critical for mediating the COI1 and JAZs interaction in the presence of JA. Here, by using the protoplast transient gene expression system we reported that the Jas-motif of JAZ1 was necessary and sufficient to target a foreign reporter protein for COI1-facilitated degradation. We fused the Jas-motif to the SHY2 transcriptional repressor of auxin signaling pathway to create a chimeric protein JaSHY. Interestingly, JaSHY retained the transcriptional repressor function while become degradable by the JA coreceptor COI1 in a JA-dependent fashion. Moreover, the JA-induced and COI1-facilitated degradation of JaSHY led to activation of a synthetic auxin-responsive promoter activity. These results showed that the modular components of JA signal transduction pathway can be artificially redirected to regulate auxin signaling pathway and control auxin-responsive gene expression. Our work provides a general strategy for using synthetic biology approaches to explore and design cell signaling networks to generate new cellular functions in plant systems.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Linggai Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China;
| | - Wenzhuo Miu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Ruibin Cao
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Mingbo Peng
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Wenkai Wan
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
- Correspondence:
| |
Collapse
|
32
|
Lv B, Yu Q, Liu J, Wen X, Yan Z, Hu K, Li H, Kong X, Li C, Tian H, De Smet I, Zhang X, Ding Z. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J 2020; 39:e101515. [PMID: 31617603 PMCID: PMC6939196 DOI: 10.15252/embj.2019101515] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022] Open
Abstract
The phytohormone auxin controls plant growth and development via TIR1-dependent protein degradation of canonical AUX/IAA proteins, which normally repress the activity of auxin response transcription factors (ARFs). IAA33 is a non-canonical AUX/IAA protein lacking a TIR1-binding domain, and its role in auxin signaling and plant development is not well understood. Here, we show that IAA33 maintains root distal stem cell identity and negatively regulates auxin signaling by interacting with ARF10 and ARF16. IAA33 competes with the canonical AUX/IAA repressor IAA5 for binding to ARF10/16 to protect them from IAA5-mediated inhibition. In contrast to auxin-dependent degradation of canonical AUX/IAA proteins, auxin stabilizes IAA33 protein via MITOGEN-ACTIVATED PROTEIN KINASE 14 (MPK14) and does not affect IAA33 gene expression. Taken together, this study provides insight into the molecular functions of non-canonical AUX/IAA proteins in auxin signaling transduction.
Collapse
Affiliation(s)
- Bingsheng Lv
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Qianqian Yu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
- College of Life SciencesLiaocheng UniversityLiaochengShandongChina
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Xuejing Wen
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Zhenwei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Kongqin Hu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Hanbing Li
- Department of BiochemistryUniversity of MissouriColumbiaMOUSA
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Ive De Smet
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Xian‐Sheng Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’ anShandongChina
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| |
Collapse
|
33
|
Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn 2019; 249:483-495. [PMID: 31774605 PMCID: PMC7187202 DOI: 10.1002/dvdy.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin‐response outputs. The nuclear auxin signaling pathway controls auxin‐responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F‐BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity. A review of recent updates to our understanding of auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.,Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
34
|
Williams C, Fernández-Calvo P, Colinas M, Pauwels L, Goossens A. Jasmonate and auxin perception: how plants keep F-boxes in check. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3401-3414. [PMID: 31173086 DOI: 10.1093/jxb/erz272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 05/24/2023]
Abstract
Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.
Collapse
Affiliation(s)
- Clara Williams
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Centre for Plant Biotechnology and Genomics, Parque Cientifico y Tecnologico, UPM Campus de Montegancedo, Madrid, Spain
| | - Maite Colinas
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
35
|
Hamm MO, Moss BL, Leydon AR, Gala HP, Lanctot A, Ramos R, Klaeser H, Lemmex AC, Zahler ML, Nemhauser JL, Wright RC. Accelerating structure-function mapping using the ViVa webtool to mine natural variation. PLANT DIRECT 2019; 3:e00147. [PMID: 31372596 PMCID: PMC6658840 DOI: 10.1002/pld3.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 05/13/2023]
Abstract
Thousands of sequenced genomes are now publicly available capturing a significant amount of natural variation within plant species; yet, much of these data remain inaccessible to researchers without significant bioinformatics experience. Here, we present a webtool called ViVa (Visualizing Variation) which aims to empower any researcher to take advantage of the amazing genetic resource collected in the Arabidopsis thaliana 1001 Genomes Project (http://1001genomes.org). ViVa facilitates data mining on the gene, gene family, or gene network level. To test the utility and accessibility of ViVa, we assembled a team with a range of expertise within biology and bioinformatics to analyze the natural variation within the well-studied nuclear auxin signaling pathway. Our analysis has provided further confirmation of existing knowledge and has also helped generate new hypotheses regarding this well-studied pathway. These results highlight how natural variation could be used to generate and test hypotheses about less-studied gene families and networks, especially when paired with biochemical and genetic characterization. ViVa is also readily extensible to databases of interspecific genetic variation in plants as well as other organisms, such as the 3,000 Rice Genomes Project ( http://snp-seek.irri.org/) and human genetic variation ( https://www.ncbi.nlm.nih.gov/clinvar/).
Collapse
Affiliation(s)
- Morgan O. Hamm
- Department of BiologyUniversity of WashingtonSeattleWashington
| | | | | | - Hardik P. Gala
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Amy Lanctot
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Román Ramos
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Hannah Klaeser
- Department of BiologyWhitman CollegeWalla WallaWashington
| | | | | | | | - R. Clay Wright
- Biological Systems EngineeringVirginia TechBlacksburgVirginia
| |
Collapse
|
36
|
Wang L, Xu K, Li Y, Cai W, Zhao Y, Yu B, Zhu Y. Genome-Wide Identification of the Aux/IAA Family Genes (MdIAA) and Functional Analysis of MdIAA18 for Apple Tree Ideotype. Biochem Genet 2019; 57:709-733. [PMID: 30997626 DOI: 10.1007/s10528-019-09919-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
The Aux/IAA (auxin/indole-3-acetic acid) gene family is one of the early auxin-responsive gene families, which play a central role in auxin response. Few reports are involved in Aux/IAA genes in fruit trees, especially in apple (Malus × domestica Borkh.). A total of 33 MdIAA members were identified, of which 27 members contained four conserved domains, whereas the others lost one or two conserved domains. Several cis-elements in promoters of MdIAAs were predicted responsive to hormones and abiotic stress. Tissue-specific expression patterns of MdIAAs in different apple tree ideotypes were investigated by quantitative real-time PCR. A large number of MdIAAs were highly expressed in leaf buds and reproductive organs, and MdIAAs clustered in same group showed similar expression profiles. Overexpression of MdIAA18 in Arabidopsis resulted in compact phenotype. These results indicated that MdIAA genes may be involved in vegetative and reproductive growth of apple. Taken together, the results provide useful clues to reveal the function of MdIAAs in apple and control apple tree architecture by manipulation of MdIAAs.
Collapse
Affiliation(s)
- Limin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Ke Xu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongzhou Li
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Wenbo Cai
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yanan Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Boyang Yu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
37
|
Kelley DR. E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants. Mol Cell Proteomics 2018; 17:1047-1054. [PMID: 29514858 PMCID: PMC5986243 DOI: 10.1074/mcp.mr117.000476] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. Although E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered.
Collapse
Affiliation(s)
- Dior R Kelley
- From the ‡Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
38
|
Yuan H, Zhao L, Chen J, Yang Y, Xu D, Tao S, Zheng S, Shen Y, He Y, Shen C, Yan D, Zheng B. Identification and expression profiling of the Aux/IAA gene family in Chinese hickory (Carya cathayensis Sarg.) during the grafting process. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:55-63. [PMID: 29549758 DOI: 10.1016/j.plaphy.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Auxin is an essential regulator in various aspects of organism growth and development. Members of the Aux/IAA family of genes encode short-lived nuclear proteins and mediate the responses of auxin-regulated gene expression. Here, the first identification and characterization of 22 cDNAs encoding the open reading frame of the Aux/IAA family in Chinese hickory (named as CcIAA) has been performed. The proteins encoded by these genes contain four whole or partially conserved domains of the Aux/IAA family. Phylogenetic analysis indicated that CcIAAs were unevenly distributed among eight different subgroups. The spatio-specific expression profiles showed that most of the CcIAAs preferentially expressed in specific tissues. Three CcIAA genes, including CcIAA11, CcIAA27a2 and CcIAAx, were predominantly expressed in stem. The predominant expression of CcIAA genes in stems might play important roles in vascular reconnection during the graft process. Furthermore, expression profiles of Aux/IAA genes during the grafting process of Chinese hickory have been analysed. Our data suggested that 19 CcIAAs were down-regulated and 3 CcIAAs (including CcIAA28, CcIAA8a and CcIAA27b) were induced, indicating their specializations during the grafting process. The involvement of CcIAA genes at the early stage after grafting gives us an opportunity to understand the role of auxin signalling in the grafting process.
Collapse
Affiliation(s)
- Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Shenchen Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Yirui Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China.
| |
Collapse
|
39
|
Nemhauser JL. Back to basics: what is the function of an Aux/IAA in auxin response? THE NEW PHYTOLOGIST 2018; 218:1295-1297. [PMID: 29738089 DOI: 10.1111/nph.15172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
40
|
Abstract
Light cues from neighboring vegetation rapidly initiate plant shade-avoidance responses. Despite our detailed knowledge of the early steps of this response, the molecular events under prolonged shade are largely unclear. Here we show that persistent neighbor cues reinforce growth responses in addition to promoting auxin-responsive gene expression in Arabidopsis and soybean. However, while the elevation of auxin levels is well established as an early event, in Arabidopsis, the response to prolonged shade occurs when auxin levels have declined to the prestimulation values. Remarkably, the sustained low activity of phytochrome B under prolonged shade led to (i) decreased levels of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in the cotyledons (the organs that supply auxin) along with increased levels in the vascular tissues of the stem, (ii) elevated expression of the PIF4 targets INDOLE-3-ACETIC ACID 19 (IAA19) and IAA29, which in turn reduced the expression of the growth-repressive IAA17 regulator, (iii) reduced abundance of AUXIN RESPONSE FACTOR 6, (iv) reduced expression of MIR393 and increased abundance of its targets, the auxin receptors, and (v) elevated auxin signaling as indicated by molecular markers. Mathematical and genetic analyses support the physiological role of this system-level rearrangement. We propose that prolonged shade rewires the connectivity between light and auxin signaling to sustain shade avoidance without enhanced auxin levels.
Collapse
|
41
|
Kowarschik K, Hoehenwarter W, Marillonnet S, Trujillo M. UbiGate: a synthetic biology toolbox to analyse ubiquitination. THE NEW PHYTOLOGIST 2018; 217:1749-1763. [PMID: 29194629 DOI: 10.1111/nph.14900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post-translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process. Here, we present UbiGate - a synthetic biology toolbox, together with an inducible bacterial expression system - to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by 'Golden Gate' cloning. This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression. We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time- and cost-effective manner.
Collapse
Affiliation(s)
- Kathrin Kowarschik
- Independent Junior Research Group - Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics Group, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Synthetic Biology Group, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group - Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| |
Collapse
|
42
|
Stoeckle D, Thellmann M, Vermeer JE. Breakout-lateral root emergence in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:67-72. [PMID: 28968512 DOI: 10.1016/j.pbi.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
Lateral roots are determinants of plant root system architecture. Besides providing anchorage, they are a plant's means to explore the soil environment for water and nutrients. Lateral roots form post-embryonically and initiate deep within the root. On its way to the surface, the newly formed organ needs to grow through three overlying cell layers; the endodermis, cortex and epidermis. A picture is emerging that a tight integration of chemical and mechanical signalling between the lateral root and the surrounding tissue is essential for proper organogenesis. Here we review the latest progress made towards our understanding of the fascinating biology underlying lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Dorothee Stoeckle
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Joop Em Vermeer
- Department of Plant and Microbial Biology, University of Zurich, Switzerland; Cell Biology and Developmental Biology, Wageningen University, The Netherlands.
| |
Collapse
|
43
|
Luo J, Zhou JJ, Zhang JZ. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int J Mol Sci 2018; 19:ijms19010259. [PMID: 29337875 PMCID: PMC5796205 DOI: 10.3390/ijms19010259] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ. Multiple links between shade avoidance and auxin networks. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:213-228. [PMID: 29036463 DOI: 10.1093/jxb/erx295] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade-avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection between light and auxin signalling. Low activity of photo-sensory receptors caused by the presence of neighbouring vegetation enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs), which directly promote the expression of genes involved in auxin biosynthesis, conjugation, transport, perception, and signalling. In seedlings, neighbour signals increase auxin levels in the foliage, which then moves to the stem, where it reaches epidermal tissues to promote growth. However, this model only partially accounts for shade-avoidance responses (which may also occur in the absence of increased auxin levels), and understanding the whole picture will require further insight into the functional significance of the multiple links between shade and auxin networks.
Collapse
Affiliation(s)
- María José Iglesias
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Argentina
| | - Romina Sellaro
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Germany
| | - Jorge José Casal
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Argentina
| |
Collapse
|
45
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
46
|
Qiao L, Zhang W, Li X, Zhang L, Zhang X, Li X, Guo H, Ren Y, Zheng J, Chang Z. Characterization and Expression Patterns of Auxin Response Factors in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1395. [PMID: 30283490 PMCID: PMC6157421 DOI: 10.3389/fpls.2018.01395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/03/2018] [Indexed: 05/22/2023]
Abstract
Auxin response factors (ARFs) are important transcription factors involved in both the auxin signaling pathway and the regulatory development of various plant organs. In this study, 23 TaARF members encoded by a total of 68 homeoalleles were isolated from 18 wheat chromosomes (excluding chromosome 4). The TaARFs, including their conserved domains, exon/intron structures, related microRNAs, and alternative splicing (AS) variants, were then characterized. Phylogenetic analysis revealed that members of the TaARF family share close homology with ARFs in other grass species. qRT-PCR analyses revealed that 20 TaARF members were expressed in different organs and tissues and that the expression of some members significantly differed in the roots, stems, and leaves of wheat seedlings in response to exogenous auxin treatment. Moreover, protein network analyses and co-expression results showed that TaTIR1-TaARF15/18/19-TaIAA13 may interact at both the protein and genetic levels. The results of subsequent evolutionary analyses showed that three transcripts of TaARF15 in the A subgenome of wheat exhibited high evolutionary rate and underwent positive selection. Transgenic analyses indicated that TaARF15-A.1 promoted the growth of roots and leaves of Arabidopsis thaliana and was upregulated in the overexpression plants after auxin treatment. Our results will provide reference information for subsequent research and utilization of the TaARF gene family.
Collapse
Affiliation(s)
- Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Li
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Plant Protection, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaojun Zhang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Xin Li
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Huijuan Guo
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yuan Ren
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Jun Zheng
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| | - Zhijian Chang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| |
Collapse
|
47
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
48
|
Bagchi R, Melnyk CW, Christ G, Winkler M, Kirchsteiner K, Salehin M, Mergner J, Niemeyer M, Schwechheimer C, Calderón Villalobos LIA, Estelle M. The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J 2017; 37:255-268. [PMID: 29233834 DOI: 10.15252/embj.201797159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
The cullin-RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin-conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1 We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.
Collapse
Affiliation(s)
- Rammyani Bagchi
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | | | - Gideon Christ
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Martin Winkler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany.,Institute of Biology, Structural Biology/Biochemistry, Humboldt-University Berlin, Berlin, Germany
| | - Kerstin Kirchsteiner
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - Mohammad Salehin
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - Julia Mergner
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Michael Niemeyer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | | | | | - Mark Estelle
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Qiao L, Zhang L, Zhang X, Zhang L, Li X, Chang J, Zhan H, Guo H, Zheng J, Chang Z. Evolution of the Aux/IAA Gene Family in Hexaploid Wheat. J Mol Evol 2017; 85:107-119. [PMID: 29085968 DOI: 10.1007/s00239-017-9810-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
The Aux/IAA (IAA) gene family, involved in the auxin signalling pathway, acts as an important regulator in plant growth and development. In this study, we explored the evolutionary trajectory of the IAA family in common wheat. The results showed ten pairs of paralogs among 34 TaIAA family members. Seven of the pairs might have undergone segmental duplication, and the other three pairs appear to have experienced tandem duplication. Except for TaIAA15-16, these duplication events occurred in the ancestral genomes before the divergence of Triticeae. After that point, two polyploidization events shaped the current TaIAA family consisting of three subgenomic copies. The structure or expression pattern of the TaIAA family begins to differentiate in the hexaploid genome, where TaIAAs in the D genome lost more genes (eight) and protein secondary structures (α1, α3 and β5) than did the other two genomes. Expression analysis showed that six members of the TaIAA family were not expressed, and members such as TaIAA8, 15, 16, 28 and 33 exhibited tissue-specific expression patterns. In addition, three of the ten pairs of paralogs (TaIAA5-12, TaIAA15-16 and TaIAA29-30) showed similar expression patterns, and another five paralog pairs displayed differential expression patterns. Phylogenetic analysis showed that paralog pairs with high rates of evolution (ω > ω 0), particularly TaIAA15-16 and TaIAA29-30, experienced greater motif loss, with only zero to two interacting IAA proteins. In contrast, most paralogous genes with low ω, such as TaIAA5-12, had more complete motifs and higher degrees of interaction with other family members.
Collapse
Affiliation(s)
- Linyi Qiao
- Department of Biological Sciences, College of Life Science, Shanxi University, Taiyuan, 030006, China.,Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Li Zhang
- Department of Crop Genetics and Breeding, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojun Zhang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Lei Zhang
- Department of Plant Protection, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin Li
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Jianzhong Chang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Haixian Zhan
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Huijuan Guo
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Jun Zheng
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China.
| | - Zhijian Chang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China.
| |
Collapse
|
50
|
Wright RC, Zahler ML, Gerben SR, Nemhauser JL. Insights into the Evolution and Function of Auxin Signaling F-Box Proteins in Arabidopsis thaliana Through Synthetic Analysis of Natural Variants. Genetics 2017; 207:583-591. [PMID: 28760746 PMCID: PMC5629325 DOI: 10.1534/genetics.117.300092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
The evolution of complex body plans in land plants has been paralleled by gene duplication and divergence within nuclear auxin-signaling networks. A deep mechanistic understanding of auxin signaling proteins therefore may allow rational engineering of novel plant architectures. Toward that end, we analyzed natural variation in the auxin receptor F-box family of wild accessions of the reference plant Arabidopsis thaliana and used this information to populate a structure/function map. We employed a synthetic assay to identify natural hypermorphic F-box variants and then assayed auxin-associated phenotypes in accessions expressing these variants. To more directly measure the impact of the strongest variant in our synthetic assay on auxin sensitivity, we generated transgenic plants expressing this allele. Together, our findings link evolved sequence variation to altered molecular performance and auxin sensitivity. This approach demonstrates the potential for combining synthetic biology approaches with quantitative phenotypes to harness the wealth of available sequence information and guide future engineering efforts of diverse signaling pathways.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Mollye L Zahler
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Stacey R Gerben
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | | |
Collapse
|