1
|
El-Sehemy A, Tachibana N, Ortin-Martinez A, Ringuette D, Coyaud É, Raught B, Dirks P, Wallace VA. Importin-alpha transports Norrin to the nucleus to promote proliferation and Notch signaling in glioblastoma stem cells. Oncogene 2025:10.1038/s41388-025-03427-8. [PMID: 40425833 DOI: 10.1038/s41388-025-03427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025]
Abstract
Norrin, a secreted protein encoded by NDP gene, is recognized for its established role as a paracrine canonical Frizzled-4/Wnt ligand that mediates angiogenesis and barrier function in the brain. However, emerging evidence suggests that Norrin possesses Frizzled-4-independent functions, notably impacting Notch activation and proliferation of cancer stem cells. We conducted a BioID protein-proximity screen to identify Norrin-interacting proteins. Surprisingly, a significant proportion of the proteins we identified were nuclear. Through comprehensive tagging and proximity ligation assays, we demonstrate that Norrin is transported to the nucleus through KPNA2 (member of the Importin-alpha family). Subsequently, we demonstrate that KPNA2 loss of function in patient-derived primary glioblastoma stem cells results in a nuclear to cytoplasmic shift of Norrin distribution, and a complete abrogation of its function in stimulating Notch signaling and cellular proliferation. These results indicate that Norrin is actively transported into the nucleus to regulate vital signaling pathways and cellular functions.
Collapse
Affiliation(s)
- Ahmed El-Sehemy
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Unievrsity of Toronto Department of Radiation Oncology (UTDRO), University of Toronto, Toronto, ON, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Dene Ringuette
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Bruguera ES, Mahoney JP, Weis WI. The co-receptor Tetraspanin12 directly captures Norrin to promote ligand-specific β-catenin signaling. eLife 2025; 13:RP96743. [PMID: 39745873 DOI: 10.7554/elife.96743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.
Collapse
Affiliation(s)
- Elise S Bruguera
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Jacob P Mahoney
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - William I Weis
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
3
|
Bruguera ES, Mahoney JP, Weis WI. The co-receptor Tetraspanin12 directly captures Norrin to promote ligand-specific β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578714. [PMID: 38352533 PMCID: PMC10862866 DOI: 10.1101/2024.02.03.578714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and Low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine-knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.
Collapse
Affiliation(s)
- Elise S Bruguera
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jacob P Mahoney
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - William I Weis
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Luo D, Zheng J, Lv S, Sheng R, Chen M, He X, Zhang X. Wnt specifically induces FZD5/8 endocytosis and degradation and the involvement of RSPO-ZNRF3/RNF43 and DVL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619000. [PMID: 39463927 PMCID: PMC11507892 DOI: 10.1101/2024.10.18.619000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Frizzled (FZD) proteins are the principal receptors of the Wnt signaling pathway. However, whether Wnt ligands induce FZD endocytosis and degradation remains elusive. The transmembrane E3 ubiquitin ligases ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors to inhibit Wnt signaling, and their function is antagonized by R-spondin (RSPO) proteins. However, the dependency of RSPO-ZNRF3/RNF43-mediated FZD endocytosis and degradation on Wnt stimulation, as well as the specificity of this degradation for different FZD, remains unclear. Here, we demonstrated that Wnt specifically induces FZD5/8 endocytosis and degradation in a ZNRF3/RNF43-dependent manner. ZNRF3/RNF43 selectively targets FZD5/8 for degradation upon Wnt stimulation. RSPO1 enhances Wnt signaling by specifically stabilizing FZD5/8. Wnt promotes the interaction between FZD5 and RNF43. We further demonstrated that DVL proteins promote ligand-independent endocytosis of FZD but are dispensable for Wnt-induced FZD5/8 endocytosis and degradation. Our results reveal a novel negative regulatory mechanism of Wnt signaling at the receptor level and illuminate the mechanism by which RSPO-ZNRF3/RNF43 regulates Wnt signaling, which may provide new insights into regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Shuning Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Maorong Chen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
5
|
Wood EH, Moshfeghi DM, Capone A, Williams GA, Blumenkranz MS, Sieving PA, Harper CA, Hartnett ME, Drenser KA. A Literary Pediatric Retina Fellowship With Michael T. Trese, MD. Ophthalmic Surg Lasers Imaging Retina 2023; 54:701-712. [PMID: 38113364 DOI: 10.3928/23258160-20231020-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Michael T. Trese, MD (1946-2022), a vitreoretinal surgeon, made significant contributions to the field of retina. Although most known for his work in pediatric retina surgery, he was a pioneer in areas such as medical retina, translational research, and telemedicine. This article reviews his major contributions to spread his knowledge more widely to vitreoretinal trainees and specialists. We discuss six areas where Trese made a lasting impact: lens-sparing vitrectomy, familial exudative vitreoretinopathy, congenital X-linked retinoschisis, autologous plasmin enzyme, regenerative medicine, and telemedicine. [Ophthalmic Surg Lasers Imaging Retina 2023;54:701-712.].
Collapse
|
6
|
Huang Y, Xue Q, Chang J, Wang X, Miao C. Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis. Cytokine 2023; 172:156381. [PMID: 37806072 DOI: 10.1016/j.cyto.2023.156381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Wnt5a is a member of the Wnt protein family, which acts on classical or multiple non-classical Wnt signaling pathways by binding to different receptors. The expression regulation and signal transduction of Wnt5a is closely related to the inflammatory response. Abnormal activation of Wnt5a signaling is an important part of inflammation and rheumatoid arthritis (RA). OBJECTIVES This paper mainly focuses on Wnt5a protein and its mediated signaling pathway, summarizes the latest research progress of Wnt5a in the pathological process of inflammation and RA, and looks forward to the main directions of Wnt5a in RA research, aiming to provide a theoretical basis for the prevention and treatment of RA diseases by targeting Wnt5a. RESULTS Wnt5a is highly expressed in activated blood vessels, histocytes and synoviocytes in inflammatory diseases such as sepsis, sepsis, atherosclerosis and rheumatoid arthritis. It mediates the production of pro-inflammatory cytokines and chemokines, regulates the migration and recruitment of various immune effector cells, and thus participates in the inflammatory response. Wnt5a plays a pathological role in synovial inflammation and bone destruction of RA, and may be an important clinical therapeutic target for RA. CONCLUSION Wnt5a is involved in the pathological process of inflammation and interacts with inflammatory factors. Wnt5a may be a new target for regulating the progression of RA disease and intervening therapy because of its multi-modal effects on the etiology of RA, especially as a regulator of osteoclast activity and inflammation.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Ding J, Lee SJ, Vlahos L, Yuki K, Rada CC, van Unen V, Vuppalapaty M, Chen H, Sura A, McCormick AK, Tomaske M, Alwahabi S, Nguyen H, Nowatzke W, Kim L, Kelly L, Vollrath D, Califano A, Yeh WC, Li Y, Kuo CJ. Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD 4-selective WNT surrogate in mice. Nat Commun 2023; 14:2947. [PMID: 37268690 PMCID: PMC10238527 DOI: 10.1038/s41467-023-37689-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/27/2023] [Indexed: 06/04/2023] Open
Abstract
Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/β-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.
Collapse
Affiliation(s)
- Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Jin Lee
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vincent van Unen
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Hui Chen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Aaron K McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Huy Nguyen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - William Nowatzke
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lily Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa Kelly
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Wen-Chen Yeh
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Berlin I, Sapmaz A, Stévenin V, Neefjes J. Ubiquitin and its relatives as wizards of the endolysosomal system. J Cell Sci 2023; 136:288517. [PMID: 36825571 PMCID: PMC10022685 DOI: 10.1242/jcs.260101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.
Collapse
Affiliation(s)
- Ilana Berlin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Virginie Stévenin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
9
|
Bats ML, Peghaire C, Delobel V, Dufourcq P, Couffinhal T, Duplàa C. Wnt/frizzled Signaling in Endothelium: A Major Player in Blood-Retinal- and Blood-Brain-Barrier Integrity. Cold Spring Harb Perspect Med 2022; 12:a041219. [PMID: 35074794 PMCID: PMC9121893 DOI: 10.1101/cshperspect.a041219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Wnt/frizzled signaling pathway is one of the major regulators of endothelial biology, controlling key cellular activities. Many secreted Wnt ligands have been identified and can initiate diverse signaling via binding to a complex set of Frizzled (Fzd) transmembrane receptors and coreceptors. Roughly, Wnt signaling is subdivided into two pathways: the canonical Wnt/β-catenin signaling pathway whose main downstream effector is the transcriptional coactivator β-catenin, and the noncanonical Wnt signaling pathway, which is subdivided into the Wnt/Ca2+ pathway and the planar cell polarity pathway. Here, we will focus on its cross talk with other angiogenic pathways and on its role in blood-retinal- and blood-brain-barrier formation and its maintenance in a differentiated state. We will unravel how retinal vascular pathologies and neurovascular degenerative diseases result from disruption of the Wnt pathway related to vascular instability, and highlight current research into therapeutic options.
Collapse
Affiliation(s)
- Marie-Lise Bats
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
- Department of Biochemistry, Pellegrin Hospital, University Hospital of Bordeaux, 33076 Bordeaux Cedex, France
| | - Claire Peghaire
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Valentin Delobel
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Pascale Dufourcq
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France
| | - Cécile Duplàa
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| |
Collapse
|
10
|
Gong Y, Liu Z, Zhang X, Shen S, Xu Q, Zhao H, Shang J, Li W, Wang Y, Chen J, Liu X, Zheng QY. Endolymphatic Hydrop Phenotype in Familial Norrie Disease Caused by Large Fragment Deletion of NDP. Front Aging Neurosci 2022; 14:771328. [PMID: 35517050 PMCID: PMC9062296 DOI: 10.3389/fnagi.2022.771328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Norrie disease (ND; OMIM 310600), a rare X-linked recessive genetic disorder, is characterized by congenital blindness and occasionally, sensorineural hearing loss, and developmental delay. The congenital blindness of ND patients is almost untreatable; thus, hearing is particularly important for them. However, the mechanism of hearing loss of ND patients is unclear, and no good treatment is available except wearing hearing-aid. Therefore, revealing the mechanism of hearing loss in ND patients and exploring effective treatment methods are greatly important. In addition, as a serious monogenic genetic disease, convenient gene identification method is important for ND patients and their family members, as well as prenatal diagnosis and preimplantation genetic diagnosis to block intergenerational transmission of pathogenic genes. In this study, a Norrie family with two male patients was reported. This pedigree was ND caused by large fragment deletion of NDP (norrin cystine knot growth factor NDP) gene. In addition to typical severe ophthalmologic and audiologic defects, the patients showed new pathological features of endolymphatic hydrops (EH), and they also showed acoustic nerves abnormal as described in a very recent report. PCR methods were developed to analyze and diagnose the variation of the family members. This study expands the understanding of the clinical manifestation and pathogenesis of ND and provides a new idea for the treatment of patients in this family and a convenient method for the genetic screen for this ND family.
Collapse
Affiliation(s)
- Yuerong Gong
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhang Liu
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaolin Zhang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Shuang Shen
- Institute of Hearing and Speech Rehabilitation, College of Special Education, Binzhou Medical University, Yantai, China
| | - Qijun Xu
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongchun Zhao
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Shang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Weiguo Li
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanfei Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Jun Chen,
| | - Xiuzhen Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Xiuzhen Liu,
| | - Qing Yin Zheng
- Department of Otolaryngology Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Sim SL, Blumenthal A, Kaur S, Khosrotehrani K. Myeloid Wls expression is dispensable for skin wound healing and blood vessel regeneration. Front Endocrinol (Lausanne) 2022; 13:957833. [PMID: 36082070 PMCID: PMC9446346 DOI: 10.3389/fendo.2022.957833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling controls blood vessel growth, regression and patterning during embryonic and postnatal life. Macrophages are major producers of Wnt ligands and angiogenic growth factors. It regulates vascular development and specification during embryogenesis and wound healing. Macrophage dysregulation in wound healing impairs vessel regeneration and delay wound closure. During cutaneous wound healing, the endovascular progenitors (EVPs) proliferate and differentiate into mature endothelial (D) cells in response to signals produced by perivascular cells, including macrophages, governing blood vessels regeneration. However, the role of macrophage's Wnt production on endothelial cells, especially the EVPs during wound healing is currently unknown. Here we used a cutaneous excisional wound model in mice with conditional deletion of Wnt secretion by myeloid cells (Wlsfl/flLysM-Cre+ ) to assess the kinetics of endothelial subpopulations (including EVP), myeloid infiltration, collagen deposition and wound closure. Deletion of Wls expression by myeloid cells did not affect wound closure and collagen deposition, indicating that myeloid Wls expression does not promote wound healing and regeneration. Myeloid-specific Wls deletion elevated the EVP population during the peak of angiogenesis, yet without affecting blood vessel density. Wounds in Wlsfl/flLysM-Cre+ animals showed unperturbed myeloid infiltration and differentiation. Overall, our data indicate that macrophage Wnt production shapes EVP kinetics without major relevance to wound healing. These findings extend the knowledge of macrophage and endothelial molecular crosstalk and position myeloid-derived Wnt production as a regulator of endovascular progenitor.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Simranpreet Kaur
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
- *Correspondence: Kiarash Khosrotehrani,
| |
Collapse
|
12
|
Yemanyi F, Bora K, Blomfield AK, Wang Z, Chen J. Wnt Signaling in Inner Blood-Retinal Barrier Maintenance. Int J Mol Sci 2021; 22:11877. [PMID: 34769308 PMCID: PMC8584977 DOI: 10.3390/ijms222111877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
The retina is a light-sensing ocular tissue that sends information to the brain to enable vision. The blood-retinal barrier (BRB) contributes to maintaining homeostasis in the retinal microenvironment by selectively regulating flux of molecules between systemic circulation and the retina. Maintaining such physiological balance is fundamental to visual function by facilitating the delivery of nutrients and oxygen and for protection from blood-borne toxins. The inner BRB (iBRB), composed mostly of inner retinal vasculature, controls substance exchange mainly via transportation processes between (paracellular) and through (transcellular) the retinal microvascular endothelium. Disruption of iBRB, characterized by retinal edema, is observed in many eye diseases and disturbs the physiological quiescence in the retina's extracellular space, resulting in vision loss. Consequently, understanding the mechanisms of iBRB formation, maintenance, and breakdown is pivotal to discovering potential targets to restore function to compromised physiological barriers. These unraveled targets can also inform potential drug delivery strategies across the BRB and the blood-brain barrier into retinas and brain tissues, respectively. This review summarizes mechanistic insights into the development and maintenance of iBRB in health and disease, with a specific focus on the Wnt signaling pathway and its regulatory role in both paracellular and transcellular transport across the retinal vascular endothelium.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.Y.); (K.B.); (A.K.B.); (Z.W.)
| |
Collapse
|
13
|
Kassumeh S, Priglinger SG, Ohlmann A. Norrin mediates opposing effects on tumor progression of glioblastoma stem cells. J Clin Invest 2021; 130:2814-2815. [PMID: 32391807 DOI: 10.1172/jci137254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is the most common human brain cancer entity and is maintained by a glioblastoma stem cell (GSC) subpopulation. In this issue of the JCI, El-Sehemy and colleagues explored the effects that Norrin, a well-characterized activator of Wnt/β-catenin signaling, had on tumor growth. Norrin inhibited cell growth via β-catenin signaling in GSCs that had low expression levels of the transcription factor ASCL1. However, Norrin had the opposite effect in GSCs with high ASCL1 expression levels. The modulation of Norrin expression, with respect to high or low ASCL1 levels in GSCs, significantly reduced tumor growth in vivo, and subsequently increased the survival rate of mice. Notably, Norrin mediates enhanced tumor growth of glioblastomas by activating the Notch pathway. This study clarifies the opposing effects of Norrin on glioblastoma tumor growth and provides potential therapeutic targets for glioblastoma treatment.
Collapse
|
14
|
Cottarelli A, Corada M, Beznoussenko GV, Mironov AA, Globisch MA, Biswas S, Huang H, Dimberg A, Magnusson PU, Agalliu D, Lampugnani MG, Dejana E. Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/β-catenin signaling. Development 2020; 147:dev.185140. [PMID: 32747434 DOI: 10.1242/dev.185140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/β-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/β-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/β-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNS regions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/β-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/β-catenin activity.
Collapse
Affiliation(s)
- Azzurra Cottarelli
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy.,Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Monica Corada
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | | | | | - Maria A Globisch
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hua Huang
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Anna Dimberg
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Peetra U Magnusson
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA .,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Grazia Lampugnani
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy .,Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy .,Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden.,Department of Oncology and Haemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| |
Collapse
|
15
|
Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X, Lou S. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol 2020; 235:8938-8950. [PMID: 32342523 DOI: 10.1002/jcp.29739] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
GPR81 (also named as HCA1) is a member of a subfamily of orphan G-protein coupled receptors (GPCRs), coupled to Gi -type G proteins. GPR81 was discovered in 2001 and identified as the only known endogenous receptor of lactate under physiological conditions in 2008, which opened a new field of research on how lactate may act as a signal molecule along with the GPR81 expression in the roles of metabolic process and inflammatory response. Recent studies showed that the physiological functions of GPR81 include lipid metabolism in adipose tissues, metabolic excitability in the brain, cellular development, and inflammatory response modulation. These findings may reveal a novel therapeutic strategy to treat clinical, metabolic, and inflammatory diseases. This article will summarize past research on GPR81, including its characteristics of distribution and expression, functional residues, pharmacological, and physiological agonists, involvement in signal transduction, and pharmacological applications.
Collapse
Affiliation(s)
- Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuran Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, Shandong, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruifang Ji
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
16
|
The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence. Curr Opin Ophthalmol 2020; 31:207-214. [PMID: 32205471 DOI: 10.1097/icu.0000000000000656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to review and discuss the history, current state, and future implications of promising biomedical offerings in the field of retina. RECENT FINDINGS The technologies discussed are some of the more recent promising biomedical developments within the field of retina. There is a US Food and Drug Administration-approved gene therapy product and artificial intelligence device for retina, with many other offerings in the pipeline. SUMMARY Signaling pathway therapies, genetic therapies, mitochondrial therapies, and artificial intelligence have shaped retina care as we know it and are poised to further impact the future of retina care. Retina specialists have the privilege and responsibility of shaping this future for the visual health of current and future generations.
Collapse
|
17
|
Bao Y, Yang J, Chen L, Chen M, Zhao P, Qiu S, Zhang L, Zhang G. A Novel Mutation in the NDP Gene is Associated with Familial Exudative Vitreoretinopathy in a Southern Chinese Family. Genet Test Mol Biomarkers 2019; 23:850-856. [PMID: 31821093 DOI: 10.1089/gtmb.2019.0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: To report a clinical and genetic investigation of a southern Chinese family with X-linked recessive exudative vitreoretinopathy and vitreous hemorrhage. Materials and Methods: We collected clinical data from a proband and his family. Complete ophthalmic examinations were carried out on the proband. Genomic DNA was sampled from either peripheral blood or buccal swabs of 13 individuals, and whole exome sequencing was performed on the proband and his parents. Sanger sequencing was utilized to validate the probable mutation in the proband and the remaining family members. Results: Seventeen family members, with three affected individuals were included in this study. The predominant phenotypes, with highly variable expressivity, were vitreoretinopathy, vitreous hemorrhage, retinal detachment, and even phthisis. A Y53C mutation in the NDP gene (HGNC:7678; NM_000266.3:exon2:c.A158G:p.Y53C;NP_000257.1:p.Tyr53Cys) was identified as being the most probable pathogenic mutation. Co-segregation of the mutation with the variable phenotype was confirmed within the proband's family. Conclusions: The clinical appearance of familial exudative vitreoretinopathy was highly variable, among the three affected male family members. A novel missense mutation in the NDP gene was identified as the pathogenic mutation.
Collapse
Affiliation(s)
- Yun Bao
- Shanghai Center for Clinical Laboratory, Department of Molecular Biology, Shanghai, China
| | - Jingmin Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Genetic Counselling, Shanghai WeHealth BioMedical Technology Co.,Ltd., Shanghai, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Miaohong Chen
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuiping Qiu
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Lu Zhang
- Department of Genetic Counselling, Shanghai WeHealth BioMedical Technology Co.,Ltd., Shanghai, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| |
Collapse
|
18
|
Zhang C, Lai MB, Pedler MG, Johnson V, Adams RH, Petrash JM, Chen Z, Junge HJ. Endothelial Cell-Specific Inactivation of TSPAN12 (Tetraspanin 12) Reveals Pathological Consequences of Barrier Defects in an Otherwise Intact Vasculature. Arterioscler Thromb Vasc Biol 2019; 38:2691-2705. [PMID: 30354230 PMCID: PMC6221394 DOI: 10.1161/atvbaha.118.311689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Blood-CNS (central nervous system) barrier defects are implicated in retinopathies, neurodegenerative diseases, stroke, and epilepsy, yet, the pathological mechanisms downstream of barrier defects remain incompletely understood. Blood-retina barrier (BRB) formation and retinal angiogenesis require β-catenin signaling induced by the ligand norrin (NDP [Norrie disease protein]), the receptor FZD4 (frizzled 4), coreceptor LRP5 (low-density lipoprotein receptor-like protein 5), and the tetraspanin TSPAN12 (tetraspanin 12). Impaired NDP/FZD4 signaling causes familial exudative vitreoretinopathy, which may lead to blindness. This study seeked to define cell type-specific functions of TSPAN12 in the retina. Approach and Results— A loxP-flanked Tspan12 allele was generated and recombined in endothelial cells using a tamoxifen-inducible Cdh5-CreERT2 driver. Resulting phenotypes were documented using confocal microscopy. RNA-Seq, histopathologic analysis, and electroretinogram were performed on retinas of aged mice. We show that TSPAN12 functions in endothelial cells to promote vascular morphogenesis and BRB formation in developing mice and BRB maintenance in adult mice. Early loss of TSPAN12 in endothelial cells causes lack of intraretinal capillaries and increased VE-cadherin (CDH5 [cadherin5 aka VE-cadherin]) expression, consistent with premature vascular quiescence. Late loss of TSPAN12 strongly impairs BRB maintenance without affecting vascular morphogenesis, pericyte coverage, or perfusion. Long-term BRB defects are associated with immunoglobulin extravasation, complement deposition, cystoid edema, and impaired b-wave in electroretinograms. RNA-sequencing reveals transcriptional responses to the perturbation of the BRB, including genes involved in vascular basement membrane alterations in diabetic retinopathy. Conclusions— This study establishes mice with late endothelial cell–specific loss of Tspan12 as a model to study pathological consequences of BRB impairment in an otherwise intact vasculature.
Collapse
Affiliation(s)
- Chi Zhang
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Maria B Lai
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora (M.G.P., J.M.P.)
| | - Verity Johnson
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Germany (R.H.A.)
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora (M.G.P., J.M.P.)
| | - Zhe Chen
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Harald J Junge
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| |
Collapse
|
19
|
Zhang Z, Ma F, Zhao S, Yang X, Liu F, Xue C, Liu L, Gu J, Piao H. Effects of somatic alterations at pathway level are more mechanism-explanatory and clinically applicable to quantity of liver metastases of colorectal cancer. Cancer Med 2019; 8:4732-4742. [PMID: 31219228 PMCID: PMC6712451 DOI: 10.1002/cam4.2368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The quantity of metastases lesions is an important reference when it comes to making a more informed treatment decision for patients with colorectal cancer liver metastases. However, the molecular alterations in patients with different numbers of lesions have not been systematically studied. METHODS We investigated somatic alterations and microsatellite instability (MSI) of liver metastases from patients with single, multiple or diffuse metastasis lesions. A new algorithm "Pathway Damage Score" was developed to comprehensively assess the functional impact of somatic alterations at the pathway level. Pathogenic pathways of different metastasis were identified and their prognosis effects were evaluated. Furthermore, the subnetworks and affected phenotypes of the altered genes in each pathogenic pathway were analyzed. RESULTS Somatic alterations and altered genes occurred sporadically as well as in MSI state in different metastasis types, although MSS patients had more metastatic lesions than that of the MSI patients. Every metastasis group has their own pathogenic pathways and damaged "Cargo recognition for clathrin-mediated endocytosis" is significantly associated with poor prognosis (P < 0.001). Further pathway subnetwork analysis showed that except conventional drivers, other genes could also contribute to metastasis formation. CONCLUSIONS Progression of liver metastasis could be driven by the coefficient of all altered genes belonging to the pathways. Thus, compared to somatic alterations and genes, pathway level analysis is more reasonable for functional interpretations of molecular alterations in clinical samples.
Collapse
Affiliation(s)
- Zhong‐guo Zhang
- Large‐scale Data Analysis Center of Cancer Precision MedicineCancer Hospital of Chinese Medical University, Liaoning Provincial Cancer Institute and HospitalShenyangChina
| | - Fei Ma
- Wankangyuan Tianjin Gene Technology, IncTianjinChina
| | - Shuang Zhao
- Wankangyuan Tianjin Gene Technology, IncTianjinChina
| | - Xiaoyu Yang
- Large‐scale Data Analysis Center of Cancer Precision MedicineCancer Hospital of Chinese Medical University, Liaoning Provincial Cancer Institute and HospitalShenyangChina
| | - Fang Liu
- Large‐scale Data Analysis Center of Cancer Precision MedicineCancer Hospital of Chinese Medical University, Liaoning Provincial Cancer Institute and HospitalShenyangChina
| | - Chenghai Xue
- Large‐scale Data Analysis Center of Cancer Precision MedicineCancer Hospital of Chinese Medical University, Liaoning Provincial Cancer Institute and HospitalShenyangChina
- Wankangyuan Tianjin Gene Technology, IncTianjinChina
| | - Liren Liu
- Department of Gastrointestinal Cancer BiologyNational Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and HospitaslTianjinChina
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Department of AutomationTsinghua UniversityBeijingChina
| | - Haozhe Piao
- Large‐scale Data Analysis Center of Cancer Precision MedicineCancer Hospital of Chinese Medical University, Liaoning Provincial Cancer Institute and HospitalShenyangChina
| |
Collapse
|
20
|
Mucenski ML, Mahoney R, Adam M, Potter AS, Potter SS. Single cell RNA-seq study of wild type and Hox9,10,11 mutant developing uterus. Sci Rep 2019; 9:4557. [PMID: 30872674 PMCID: PMC6418183 DOI: 10.1038/s41598-019-40923-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The uterus is a remarkable organ that must guard against infections while maintaining the ability to support growth of a fetus without rejection. The Hoxa10 and Hoxa11 genes have previously been shown to play essential roles in uterus development and function. In this report we show that the Hoxa9,10,11, Hoxc9,10,11, Hoxd9,10,11 genes play a redundant role in the formation of uterine glands. In addition, we use single cell RNA-seq to create a high resolution gene expression atlas of the developing wild type mouse uterus. Cell types and subtypes are defined, for example dividing endothelial cells into arterial, venous, capillary, and lymphatic, while epithelial cells separate into luminal and glandular subtypes. Further, a surprising heterogeneity of stromal and myocyte cell types are identified. Transcription factor codes and ligand/receptor interactions are characterized. We also used single cell RNA-seq to globally define the altered gene expression patterns in all developing uterus cell types for two Hox mutants, with 8 or 9 mutant Hox genes. The mutants show a striking disruption of Wnt signaling as well as the Cxcl12/Cxcr4 ligand/receptor axis.
Collapse
Affiliation(s)
- Michael L Mucenski
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew S Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
22
|
Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 2018; 560:666-670. [DOI: 10.1038/s41586-018-0447-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/10/2018] [Indexed: 01/07/2023]
|
23
|
Biophysical and functional characterization of Norrin signaling through Frizzled4. Proc Natl Acad Sci U S A 2018; 115:8787-8792. [PMID: 30104375 DOI: 10.1073/pnas.1805901115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling is initiated by Wnt ligand binding to the extracellular ligand binding domain, called the cysteine-rich domain (CRD), of a Frizzled (Fzd) receptor. Norrin, an atypical Fzd ligand, specifically interacts with Fzd4 to activate β-catenin-dependent canonical Wnt signaling. Much of the molecular basis that confers Norrin selectivity in binding to Fzd4 was revealed through the structural study of the Fzd4CRD-Norrin complex. However, how the ligand interaction, seemingly localized at the CRD, is transmitted across full-length Fzd4 to the cytoplasm remains largely unknown. Here, we show that a flexible linker domain, which connects the CRD to the transmembrane domain, plays an important role in Norrin signaling. The linker domain directly contributes to the high-affinity interaction between Fzd4 and Norrin as shown by ∼10-fold higher binding affinity of Fzd4CRD to Norrin in the presence of the linker. Swapping the Fzd4 linker with the Fzd5 linker resulted in the loss of Norrin signaling, suggesting the importance of the linker in ligand-specific cellular response. In addition, structural dynamics of Fzd4 associated with Norrin binding investigated by hydrogen/deuterium exchange MS revealed Norrin-induced conformational changes on the linker domain and the intracellular loop 3 (ICL3) region of Fzd4. Cell-based functional assays showed that linker deletion, L430A and L433A mutations at ICL3, and C-terminal tail truncation displayed reduced β-catenin-dependent signaling activity, indicating the functional significance of these sites. Together, our results provide functional and biochemical dissection of Fzd4 in Norrin signaling.
Collapse
|