1
|
Bühl E, Resler T, Lam R, Asido M, Bamberg E, Schlesinger R, Bamann C, Heberle J, Wachtveitl J. Assessing the Role of R120 in the Gating of CrChR2 by Time-Resolved Spectroscopy from Femtoseconds to Seconds. J Am Chem Soc 2023; 145:21832-21840. [PMID: 37773976 DOI: 10.1021/jacs.3c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Tom Resler
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebecca Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
2
|
Tikhonov DB, Zhorov BS. Intersegment contacts determine geometry of the open and closed states in P-loop channels. J Biomol Struct Dyn 2019; 38:1012-1027. [DOI: 10.1080/07391102.2019.1592026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Boris S. Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Ghovanloo MR, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ. Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem 2018; 293:16546-16558. [PMID: 30219789 PMCID: PMC6204917 DOI: 10.1074/jbc.ra118.004929] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1-1.7 currents, with an IC50 of 1.9-3.8 μm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- From the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada and
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Noah Gregory Shuart
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Janette Mezeyova
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Richard A Dean
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Peter C Ruben
- From the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada and
| | - Samuel J Goodchild
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
4
|
Nicoludis JM, Gaudet R. Applications of sequence coevolution in membrane protein biochemistry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:895-908. [PMID: 28993150 PMCID: PMC5807202 DOI: 10.1016/j.bbamem.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.
Collapse
Affiliation(s)
- John M Nicoludis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, United States.
| |
Collapse
|
5
|
Jing P, Burris B, Zhang R. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor. Biophys J 2017; 111:162-77. [PMID: 27410744 DOI: 10.1016/j.bpj.2016.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023] Open
Abstract
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana.
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | - Rong Zhang
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Tomczak AP, Fernández-Trillo J, Bharill S, Papp F, Panyi G, Stühmer W, Isacoff EY, Pardo LA. A new mechanism of voltage-dependent gating exposed by K V10.1 channels interrupted between voltage sensor and pore. J Gen Physiol 2017; 149:577-593. [PMID: 28360219 PMCID: PMC5412533 DOI: 10.1085/jgp.201611742] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/03/2022] Open
Abstract
A linker that connects the voltage-sensing domain and pore domain in voltage-gated K+ channels is thought to provide coupling during gating, but this view has been challenged in KCNH channels. Tomczak et al. investigate gating in KV10.1 channels with disrupted linkers and reveal multiple mechanisms. Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4–S5 linker). However, our recent work on channels disrupted in the S4–S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of KV10.1 revealed that the S4–S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use “split” channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in KV10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4–S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4–S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism.
Collapse
Affiliation(s)
- Adam P Tomczak
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Jorge Fernández-Trillo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Shashank Bharill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary.,MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary.,MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Stühmer
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Atomic determinants of BK channel activation by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 2016; 113:13905-13910. [PMID: 27849612 DOI: 10.1073/pnas.1615562113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated ω-3 fatty acid enriched in oily fish, contributes to better health by affecting multiple targets. Large-conductance Ca2+- and voltage-gated Slo1 BK channels are directly activated by nanomolar levels of DHA. We investigated DHA-channel interaction by manipulating both the fatty acid structure and the channel composition through the site-directed incorporation of unnatural amino acids. Electrophysiological measurements show that the para-group of a Tyr residue near the ion conduction pathway has a critical role. To robustly activate the channel, ionization must occur readily by a fatty acid for a good efficacy, and a long nonpolar acyl tail with a Z double bond present at the halfway position for a high affinity. The results suggest that DHA and the channel form an ion-dipole bond to promote opening and demonstrate the channel druggability. DHA, a marine-derived nutraceutical, represents a promising lead compound for rational drug design and discovery.
Collapse
|
8
|
Kim RY, Yau MC, Galpin JD, Seebohm G, Ahern CA, Pless SA, Kurata HT. Atomic basis for therapeutic activation of neuronal potassium channels. Nat Commun 2015; 6:8116. [PMID: 26333338 PMCID: PMC4561856 DOI: 10.1038/ncomms9116] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/21/2015] [Indexed: 12/25/2022] Open
Abstract
Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. The antiepileptic drug retigabine potentiates neuronal KCNQ potassium channels. Here, the authors use a combination of unnatural amino acid mutagenesis and electrophysiology to show that retigabine acts by hydrogen bonding with a tryptophan indole nitrogen in the channel pore.
Collapse
Affiliation(s)
- Robin Y Kim
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael C Yau
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, 285 Newton Road, Iowa City, Iowa 52242, USA
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1 (Gebäude D3), D-48149 Münster, Germany
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, 285 Newton Road, Iowa City, Iowa 52242, USA
| | - Stephan A Pless
- Department of Drug Design and Pharmacology (Center for Biopharmaceuticals), University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
9
|
Palovcak E, Delemotte L, Klein ML, Carnevale V. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels. J Gen Physiol 2015; 146:37-50. [PMID: 26078053 PMCID: PMC4485022 DOI: 10.1085/jgp.201411329] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate.
Collapse
Affiliation(s)
- Eugene Palovcak
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Lucie Delemotte
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| |
Collapse
|
10
|
Zhang RS, Wright JD, Pless SA, Nunez JJ, Kim RY, Li JBW, Yang R, Ahern CA, Kurata HT. A Conserved Residue Cluster That Governs Kinetics of ATP-dependent Gating of Kir6.2 Potassium Channels. J Biol Chem 2015; 290:15450-15461. [PMID: 25934393 DOI: 10.1074/jbc.m114.631960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 12/13/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels are heteromultimeric complexes of an inwardly rectifying Kir channel (Kir6.x) and sulfonylurea receptors. Their regulation by intracellular ATP and ADP generates electrical signals in response to changes in cellular metabolism. We investigated channel elements that control the kinetics of ATP-dependent regulation of KATP (Kir6.2 + SUR1) channels using rapid concentration jumps. WT Kir6.2 channels re-open after rapid washout of ATP with a time constant of ∼60 ms. Extending similar kinetic measurements to numerous mutants revealed fairly modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp-68 and Lys-170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp-68 or Lys-170 markedly slow the kinetics of channel opening (500 and 700 ms for W68L and K170N, respectively), while increasing channel open probability. Examining the functional effects of these residues using φ value analysis revealed a steep negative slope. This finding implies that these residues play a role in lowering the transition state energy barrier between open and closed channel states. Using unnatural amino acid incorporation, we demonstrate the requirement for a planar amino acid at Kir6.2 position 68 for normal channel gating, which is potentially necessary to localize the ϵ-amine of Lys-170 in the phosphatidylinositol 4,5-bisphosphate-binding site. Overall, our findings identify a discrete pair of highly conserved residues with an essential role for controlling gating kinetics of Kir channels.
Collapse
Affiliation(s)
- Roger S Zhang
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jordan D Wright
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - John-Jose Nunez
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robin Y Kim
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jenny B W Li
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Runying Yang
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52246
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
11
|
Pless SA, Kim RY, Ahern CA, Kurata HT. Atom-by-atom engineering of voltage-gated ion channels: magnified insights into function and pharmacology. J Physiol 2015; 593:2627-34. [PMID: 25640301 DOI: 10.1113/jphysiol.2014.287714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
Unnatural amino acid incorporation into ion channels has proven to be a valuable approach to interrogate detailed hypotheses arising from atomic resolution structures. In this short review, we provide a brief overview of some of the basic principles and methods for incorporation of unnatural amino acids into proteins. We also review insights into the function and pharmacology of voltage-gated ion channels that have emerged from unnatural amino acid mutagenesis approaches.
Collapse
Affiliation(s)
- Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robin Y Kim
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Palovcak E, Delemotte L, Klein ML, Carnevale V. Evolutionary imprint of activation: the design principles of VSDs. ACTA ACUST UNITED AC 2014; 143:145-56. [PMID: 24470486 PMCID: PMC4001776 DOI: 10.1085/jgp.201311103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voltage-sensor domains (VSDs) are modular biomolecular machines that transduce electrical signals in cells through a highly conserved activation mechanism. Here, we investigate sequence-function relationships in VSDs with approaches from information theory and probabilistic modeling. Specifically, we collect over 6,600 unique VSD sequences from diverse, long-diverged phylogenetic lineages and relate the statistical properties of this ensemble to functional constraints imposed by evolution. The VSD is a helical bundle with helices labeled S1-S4. Surrounding conserved VSD residues such as the countercharges and the S2 phenylalanine, we discover sparse networks of coevolving residues. Additional networks are found lining the VSD lumen, tuning the local hydrophilicity. Notably, state-dependent contacts and the absence of coevolution between S4 and the rest of the bundle are imprints of the activation mechanism on the VSD sequence ensemble. These design principles rationalize existing experimental results and generate testable hypotheses.
Collapse
Affiliation(s)
- Eugene Palovcak
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | | | | | | |
Collapse
|
13
|
Pless SA, Galpin JD, Niciforovic AP, Kurata HT, Ahern CA. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels. eLife 2013; 2:e01289. [PMID: 24327560 PMCID: PMC3852034 DOI: 10.7554/elife.01289] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the kinetics of this process remain obscure. Using a combination of synthetic amino acid analogs and concatenated channel subunits we establish two H-bonds near the extracellular surface of the channel that endow Kv channels with a mechanism to time the entry into slow inactivation: an intra-subunit H-bond between Asp447 and Trp434 and an inter-subunit H-bond connecting Tyr445 to Thr439. Breaking of either interaction triggers slow inactivation by means of a local disruption in the selectivity filter, while severing the Tyr445–Thr439 H-bond is likely to communicate this conformational change to the adjacent subunit(s). DOI:http://dx.doi.org/10.7554/eLife.01289.001 Proteins are made from long chains of smaller molecules, called amino acids. These chains twist and bend into complex three-dimensional shapes, and sometimes two or more chains, or ‘subunits’, are packed into a protein. These shapes are often held together by hydrogen bonds between some of the amino acids. Moreover, since the shape of a protein defines its function, some proteins must be able to switch between different shapes to function properly. Ion channels are proteins that form pores through cell membranes, allowing ions to flow in and out of the cell. Potassium ion channels, which are found in neurons and heart muscle cells, have four subunits that move to open or close the central pore in response to various signals. The closing of the channels can be ‘fast’ or ‘slow’. When the channels are closed quickly (called fast inactivation), a small part of the protein ‘plugs’ the pore from the inside of the cell. However, the mechanism behind slow inactivation remained obscure. It was thought to involve hydrogen bonds between some of the bulky amino acids that are found at the edge the pore. However, testing this hypothesis—by replacing these amino acids with alternatives that cannot form hydrogen bonds—was tricky because none of the 20 naturally occurring amino acids were alike enough to be suitable replacements. Now, Pless et al. have overcome this limitation by using synthetic amino acids that form hydrogen bonds that are stronger or weaker than those formed by the amino acids they are replacing. The results suggest that two types of hydrogen bond keep the pore open: one is a bond between two amino acids in the same subunit, and the other is an inter-subunit bond between amino acids in neighbouring subunits. Pless et al. suggest that opening the channel causes small movements that gradually weaken, and eventually break, these bonds in one of the four subunits. Specific amino acids within the pore are then free to twist and—via a cascade of similar movements in the other three subunits—block the pore and halt the flow of ions. As such, these networks of hydrogen bonds act as pre-set breaking points allowing channels to close, even in response to continued stimulation. Since regulated potassium channel activity underpins healthy neurons and heart muscles; understanding what controls their inactivation rate may lead to new approaches to tune their activity and treatments for important diseases. DOI:http://dx.doi.org/10.7554/eLife.01289.002
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|