1
|
Mezgec K, Snoj J, Ulčakar L, Ljubetič A, Tušek Žnidarič M, Škarabot M, Jerala R. Coupling of Spectrin Repeat Modules for the Assembly of Nanorods and Presentation of Protein Domains. ACS NANO 2024; 18:28748-28763. [PMID: 39392430 PMCID: PMC11503911 DOI: 10.1021/acsnano.4c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Modular protein engineering is a powerful approach for fabricating high-molecular-weight assemblies and biomaterials with nanoscale precision. Herein, we address the challenge of designing an extended nanoscale filamentous architecture inspired by the central rod domain of human dystrophin, which protects sarcolemma during muscle contraction and consists of spectrin repeats composed of three-helical bundles. A module of three tandem spectrin repeats was used as a rigid building block self-assembling via coiled-coil (CC) dimer-forming peptides. CC peptides were precisely integrated to maintain the spectrin α-helix continuity in an appropriate frame to form extended nanorods. An orthogonal set of customizable CC heterodimers was harnessed for modular rigid domain association, which could be additionally regulated by metal ions and chelators. We achieved a robust assembly of rigid rods several micrometers in length, determined by atomic force microscopy and negative stain transmission electron microscopy. Furthermore, these rigid rods can serve as a scaffold for the decoration of diverse proteins or biologically active peptides along their length with adjustable spacing up to tens of nanometers, as confirmed by the DNA-PAINT super-resolution microscopy. This demonstrates the potential of modular bottom-up protein engineering and tunable CCs for the fabrication of functionalized protein biomaterials.
Collapse
Affiliation(s)
- Klemen Mezgec
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Snoj
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Liza Ulčakar
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department
of Biotechnology and Systems Biology, National
Institute of Biology, SI-1000 Ljubljana, Slovenia
| | - Miha Škarabot
- Condensed
Matter Department, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- CTGCT, Centre
of Technology of Gene and Cell Therapy, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Hentrich C, Putyrski M, Hanuschka H, Preis W, Kellmann SJ, Wich M, Cavada M, Hanselka S, Lelyveld VS, Ylera F. Engineered reversible inhibition of SpyCatcher reactivity enables rapid generation of bispecific antibodies. Nat Commun 2024; 15:5939. [PMID: 39009599 PMCID: PMC11251281 DOI: 10.1038/s41467-024-50296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
The precise regulation of protein function is essential in biological systems and a key goal in chemical biology and protein engineering. Here, we describe a straightforward method to engineer functional control into the isopeptide bond-forming SpyTag/SpyCatcher protein ligation system. First, we perform a cysteine scan of the structured region of SpyCatcher. Except for two known reactive and catalytic residues, none of these mutations abolish reactivity. In a second screening step, we modify the cysteines with disulfide bond-forming small molecules. Here we identify 8 positions at which modifications strongly inhibit reactivity. This inhibition can be reversed by reducing agents. We call such a reversibly inhibitable SpyCatcher "SpyLock". Using "BiLockCatcher", a genetic fusion of wild-type SpyCatcher and SpyLock, and SpyTagged antibody fragments, we generate bispecific antibodies in a single, scalable format, facilitating the screening of a large number of antibody combinations. We demonstrate this approach by screening anti-PD-1/anti-PD-L1 bispecific antibodies using a cellular reporter assay.
Collapse
Affiliation(s)
| | - Mateusz Putyrski
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Hanh Hanuschka
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Waldemar Preis
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | | | - Melissa Wich
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Manuel Cavada
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Sarah Hanselka
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Victor S Lelyveld
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Francisco Ylera
- Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany.
| |
Collapse
|
3
|
Driscoll CL, Keeble AH, Howarth MR. SpyMask enables combinatorial assembly of bispecific binders. Nat Commun 2024; 15:2403. [PMID: 38493197 PMCID: PMC10944524 DOI: 10.1038/s41467-024-46599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Bispecific antibodies are a successful and expanding therapeutic class. Standard approaches to generate bispecifics are complicated by the need for disulfide reduction/oxidation or specialized formats. Here we present SpyMask, a modular approach to bispecifics using SpyTag/SpyCatcher spontaneous amidation. Two SpyTag-fused antigen-binding modules can be precisely conjugated onto DoubleCatcher, a tandem SpyCatcher where the second SpyCatcher is protease-activatable. We engineer a panel of structurally-distinct DoubleCatchers, from which binders project in different directions. We establish a generalized methodology for one-pot assembly and purification of bispecifics in 96-well plates. A panel of binders recognizing different HER2 epitopes were coupled to DoubleCatcher, revealing unexpected combinations with anti-proliferative or pro-proliferative activity on HER2-addicted cancer cells. Bispecific activity depended sensitively on both binder orientation and DoubleCatcher scaffold geometry. These findings support the need for straightforward assembly in different formats. SpyMask provides a scalable tool to discover synergy in bispecific activity, through modulating receptor organization and geometry.
Collapse
Affiliation(s)
- Claudia L Driscoll
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
4
|
Sullivan MO, Chen W. Engineering E2 Bionanoparticles for Targeted Delivery of Chemotherapeutics to Breast Cancer Cells. Methods Mol Biol 2024; 2720:177-189. [PMID: 37775666 DOI: 10.1007/978-1-0716-3469-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Naturally occurring protein nanocages are promising drug carriers as both the interior and exterior can be decorated for drug encapsulation and cell targeting. To provide surface functionalization, we added a SpyTag to E2 nanocages (ST-E2) to enable tunable decoration using the robust SpyCatcher bioconjugation strategy. Additionally, the E2 core was mutated with four phenylalanine substitutions for doxorubicin loading and pH-responsive release. By decorating the exterior with a highly cell-specific epidermal growth factor receptor (EGFR)-targeting protein conjugate, 4GE11-mCherry-SpyCatcher, we demonstrated targeted cell death in inflammatory breast cancer cells compared to healthy breast epithelial cells at concentrations below the IC50 of free doxorubicin.
Collapse
Affiliation(s)
- Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly. Nat Commun 2022; 13:3714. [PMID: 35764623 PMCID: PMC9240080 DOI: 10.1038/s41467-022-31193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Proteins can be empowered via SpyTag for anchoring and nanoassembly, through covalent bonding to SpyCatcher partners. Here we generate a switchable version of SpyCatcher, allowing gentle purification of SpyTagged proteins. We introduce numerous histidines adjacent to SpyTag’s binding site, giving moderate pH-dependent release. After phage-based selection, our final SpySwitch allows purification of SpyTag- and SpyTag003-fusions from bacterial or mammalian culture by capture at neutral pH and release at pH 5, with purity far beyond His-tag methods. SpySwitch is also thermosensitive, capturing at 4 °C and releasing at 37 °C. With flexible choice of eluent, SpySwitch-purified proteins can directly assemble onto multimeric scaffolds. 60-mer multimerization enhances immunogenicity and we use SpySwitch to purify receptor-binding domains from SARS-CoV-2 and 11 other sarbecoviruses. For these receptor-binding domains we determine thermal resilience (for mosaic vaccine development) and cross-recognition by antibodies. Antibody EY6A reacts across all tested sarbecoviruses, towards potential application against new coronavirus pandemic threats. The SpyCatcher-SpyTag system allows protein anchoring and nanoassembly. Here, the authors engineer SpySwitch, a dually switchable Catcher which allows gentle purification of SpyTagged proteins prior to downstream applications such as the assembly of virus-like particles.
Collapse
|
6
|
Dong W, Sun H, Chen Q, Hou L, Chang Y, Luo H. SpyTag/Catcher chemistry induces the formation of active inclusion bodies in E. coli. Int J Biol Macromol 2022; 199:358-371. [PMID: 35031313 DOI: 10.1016/j.ijbiomac.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/09/2023]
Abstract
SpyTag/Catcher chemistry is usually applied to engineer robust enzymes via head-to-tail cyclization using spontaneous intramolecular isopeptide bond formation. However, the SpyTag/Catcher induced intercellular protein assembly in vivo cannot be ignored. It was found that some active inclusion bodies had generated to different proportions in the expression of six SpyTag/Catcher labeled proteins (CatIBs-STCProtein). Some factors that may affect the formation of CatIBs-STCProtein were discussed, and the subunit quantities were found to be strongly positively related to the formation of protein aggregates. Approximately 85.44% of the activity of the octameric protein leucine dehydrogenase (LDH) was expressed in aggregates, while the activity of the monomeric protein green fluorescence protein (GFP) in aggregates was 12.51%. The results indicated that SpyTag/Catcher can be used to form protein aggregates in E. coli. To facilitate the advantages of CatIBs-STCProtein, we took the CatIBs-STCLDH as an example and further chemically cross-linked with glutaraldehyde to obtain novel cross-linked enzyme aggregates (CLEAs-CatIBs-STCLDH). CLEAs-CatIBs-STCLDH had good thermal stability and organic solvents stability, and its activity remained 51.03% after incubation at 60 °C for 100 mins. Moreover, the crosslinked CatIBs-STCLDH also showed superior stability over traditional CLEAs, and its activity remained 98.70% after 10 cycles of catalysis.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangyu Hou
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Narayan OP, Mu X, Hasturk O, Kaplan DL. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 2021; 121:214-223. [PMID: 33326881 PMCID: PMC7856074 DOI: 10.1016/j.actbio.2020.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Dynamically tunable biomaterials are of particular interest in the field of biomedical engineering because of the potential utility for shape-change materials, drug and cell delivery and tissue regeneration. Stimuli-responsive proteins formed into hydrogels are potential candidates for such systems, due to the genetic tailorability and control over structure-function relationships. Here we report the synthesis of genetically engineered Silk-Elastin-Like Protein (SELP) photoresponsive hydrogels. Polymerization of the SELPs and monomeric adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) was achieved using genetically encoded SpyTag-SpyCatcher peptide-protein pairs under mild physiological conditions. The hydrogels exhibited a partial collapse of the crosslinked molecular network with both decreased loss and storage moduli upon exposure to visible light. The materials were also evaluated for cytotoxicity and the encapsulation and release of L929 murine fibroblasts from 3D cultures. The design of these photo-responsible proteins provides new stimuli-responsive SELP-CarHC hydrogels for dynamically tunable protein-based materials.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Han S, Kim YN, Jo G, Kim YE, Kim HM, Choi JM, Jung Y. Multivalent-Interaction-Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano-Prisms. Angew Chem Int Ed Engl 2020; 59:23244-23251. [PMID: 32856385 DOI: 10.1002/anie.202010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Current approaches to design monodisperse protein assemblies require rigid, tight, and symmetric interactions between oligomeric protein units. Herein, we introduce a new multivalent-interaction-driven assembly strategy that allows flexible, spaced, and asymmetric assembly between protein oligomers. We discovered that two polygonal protein oligomers (ranging from triangle to hexagon) dominantly form a discrete and stable two-layered protein prism nanostructure via multivalent interactions between fused binding pairs. We demonstrated that protein nano-prisms with long flexible peptide linkers (over 80 amino acids) between protein oligomer layers could be discretely formed. Oligomers with different structures could also be monodispersely assembled into two-layered but asymmetric protein nano-prisms. Furthermore, producing higher-order architectures with multiple oligomer layers, for example, 3-layered nano-prisms or nanotubes, was also feasible.
Collapse
Affiliation(s)
- Suyeong Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yu-Na Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Gyunghee Jo
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Korea
| | - Young Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, KAIST, Daejeon, 34141, Korea.,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Korea
| | - Jeong-Mo Choi
- Natural Science Research Institute, KAIST, Daejeon, 34141, Korea.,Department of Chemistry, Busan National University, Busan, 46241, Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
10
|
Han S, Kim Y, Jo G, Kim YE, Kim HM, Choi J, Jung Y. Multivalent‐Interaction‐Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano‐Prisms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suyeong Han
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yu‐na Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Gyunghee Jo
- Biomedical Science and Engineering Interdisciplinary Program KAIST Daejeon 34141 Korea
| | - Young Eun Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering KAIST Daejeon 34141 Korea
- Center for Biomolecular & Cellular Structure Institute for Basic Science (IBS) Daejeon 34126 Korea
| | - Jeong‐Mo Choi
- Natural Science Research Institute KAIST Daejeon 34141 Korea
- Department of Chemistry Busan National University Busan 46241 Korea
| | - Yongwon Jung
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
11
|
Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Front Chem 2020; 8:587975. [PMID: 33195088 PMCID: PMC7658299 DOI: 10.3389/fchem.2020.587975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
Diverse natural/artificial proteins have been used as building blocks to construct a variety of well-ordered nanoscale structures over the past couple of decades. Sophisticated protein self-assemblies have attracted great scientific interests due to their potential applications in disease diagnosis, illness treatment, biomechanics, bio-optics and bio-electronics, etc. This review outlines recent efforts directed to the creation of structurally defined protein assemblies including one-dimensional (1D) strings/rings/tubules, two-dimensional (2D) planar sheets and three-dimensional (3D) polyhedral scaffolds. We elucidate various innovative strategies for manipulating proteins to self-assemble into desired architectures. The emergent applications of protein assemblies as versatile platforms in medicine and material science with improved performances have also been discussed.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Chen H, Yang G, Zhang E, Du Q, Liu R, Wu L, Feng Y, Chen G. Hierarchical self-assembly of native protein and its dynamic regulation directed by inducing ligand with oligosaccharide. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Permana D, Minamihata K, Sato R, Wakabayashi R, Goto M, Kamiya N. Linear Polymerization of Protein by Sterically Controlled Enzymatic Cross-Linking with a Tyrosine-Containing Peptide Loop. ACS OMEGA 2020; 5:5160-5169. [PMID: 32201803 PMCID: PMC7081431 DOI: 10.1021/acsomega.9b04163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The structure of a protein complex needs to be controlled appropriately to maximize its functions. Herein, we report the linear polymerization of bacterial alkaline phosphatase (BAP) through the site-specific cross-linking reaction catalyzed by Trametes sp. laccase (TL). We introduced a peptide loop containing a tyrosine (Y-Loop) to BAP, and the Y-Looped BAP was treated with TL. The Y-Looped BAP formed linear polymers, whereas BAP fused with a C-terminal peptide containing a tyrosine (Y-tag) showed an irregular shape after TL treatment. The sterically confined structure of the Y-Loop could be responsible for the formation of linear BAP polymers. TL-catalyzed copolymerization of Y-Looped BAP and a Y-tagged chimeric antibody-binding protein, pG2pA-Y, resulted in the formation of linear bifunctional protein copolymers that could be employed as protein probes in an enzyme-linked immunosorbent assay (ELISA). Copolymers comprising Y-Looped BAP and pG2pA-Y at a molar ratio of 100:1 exhibited the highest signal in the ELISA with 26- and 20-fold higher than a genetically fused chimeric protein, BAP-pG2pA-Y, and its polymeric form, respectively. This result revealed that the morphology of the copolymers was the most critical feature to improve the functionality of the protein polymers as detection probes, not only for immunoassays but also for other diagnostic applications.
Collapse
Affiliation(s)
- Dani Permana
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research
Unit for Clean Technology, Indonesian Institute
of Sciences (LIPI), Kampus LIPI Bandung Gedung 50, Jl. Cisitu, Bandung 40135, Indonesia
| | - Kosuke Minamihata
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Choi H, Park H, Son K, Kim HM, Jung Y. Fabrication of rigidity and space variable protein oligomers with two peptide linkers. Chem Sci 2019; 10:10428-10435. [PMID: 32110335 PMCID: PMC6988741 DOI: 10.1039/c9sc04158c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Supramolecular protein assemblies have garnered considerable interest due to their potential in diverse fields with unrivaled attainable functionalities and structural accuracy. Despite significant advances in protein assembly strategies, inserting long linkers with varied lengths and rigidity between assembling protein building blocks remains extremely difficult. Here we report a series of green fluorescent protein (GFP) oligomers, where protein building blocks were linked via two independent peptide strands. Assembling protein units for this two-peptide assembly were designed by flopped fusion of three self-assembling GFP fragments with two peptide linkers. Diverse flexible and rigid peptide linkers were successfully inserted into high-valent GFP oligomers. In addition, oligomers with one flexible linker and one rigid linker could also be fabricated, allowing more versatile linker rigidity control. Linker length could be varied from 10 amino acids (aa) even up to 76 aa, which is the longest among reported protein assembling peptide linkers. Discrete GFP oligomers containing diverse linkers with valencies between monomers to decamers were monodispersely purified by gel elution. Furthermore, various functional proteins could be multivalently fused to the present GFP oligomers. Binding assays, size exclusion chromatography, dynamic light scattering, circular dichroism, differential scanning calorimetry, and transmission electron microscopy suggested circular geometries of the GFP oligomers and showed distinct characteristics of GFP oligomers with length/rigidity varied linkers. Lastly, a surface binding study indicated that more spaced oligomeric binding modules offered more effective multivalent interactions than less spaced modules.
Collapse
Affiliation(s)
- Hyeokjune Choi
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon 34143 , Republic of Korea . ; ; Tel: +82-42-350-2817
| | - Hyoin Park
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon 34143 , Republic of Korea . ; ; Tel: +82-42-350-2817
| | - Kabi Son
- Graduate School of Medical Science & Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering , KAIST , Daejeon 34141 , Republic of Korea.,Center for Biomolecular & Cellular Structure , Institute for Basic Science (IBS) , Daejeon 34126 , Republic of Korea
| | - Yongwon Jung
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon 34143 , Republic of Korea . ; ; Tel: +82-42-350-2817
| |
Collapse
|
15
|
Wang R, Li J, Li X, Guo J, Liu J, Li H. Engineering protein polymers of ultrahigh molecular weight via supramolecular polymerization: towards mimicking the giant muscle protein titin. Chem Sci 2019; 10:9277-9284. [PMID: 32055313 PMCID: PMC7003960 DOI: 10.1039/c9sc02128k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 01/02/2023] Open
Abstract
Utilizing protein fragment reconstitution of a small protein GB1, we developed an efficient, supramolecular polymerization strategy to engineer protein polymers with ultrahigh molecular weight that mimic the giant muscle protein titin.
The giant muscle protein titin is the largest protein in cells and responsible for the passive elasticity of muscles. Titin, made of hundreds of individually folded globular domains, is a protein polymer with folded globular domains as its macromonomers. Due to titin's ultrahigh molecular weight, it has been challenging to engineer high molecular weight artificial protein polymers that mimic titin. Taking advantage of protein fragment reconstitution (PFR) of a small protein GB1, which can be reconstituted from its two split fragments GN and GC, here we report the development of an efficient, PFR-based supramolecular polymerization strategy to engineer protein polymers with ultrahigh molecular weight. We found that the engineered bifunctional protein macromonomers (GC-macromonomer-GN) can undergo supramolecular polymerization, in a way similar to condensation polymerization, via the reconstitution of GN and GC to produce protein polymers with ultrahigh molecular weight (with an average molecular weight of 0.5 MDa). Such high molecular weight linear protein polymers closely mimic titin and provide protein polymer building blocks for the construction of biomaterials with improved physical and mechanical properties.
Collapse
Affiliation(s)
- Ruidi Wang
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Changchun 130012 , P. R. China.,Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada .
| | - Jiayu Li
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada .
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Jin Guo
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada .
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Hongbin Li
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada .
| |
Collapse
|
16
|
Harvey JA, Itzhaki LS, Main ERG. Programmed Protein Self-Assembly Driven by Genetically Encoded Intein-Mediated Native Chemical Ligation. ACS Synth Biol 2018; 7:1067-1074. [PMID: 29474065 DOI: 10.1021/acssynbio.7b00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Harnessing and controlling self-assembly is an important step in developing proteins as novel biomaterials. With this goal, here we report the design of a general genetically programmed system that covalently concatenates multiple distinct protein domains into specific assembled arrays. It is driven by iterative intein-mediated native chemical ligation (NCL) under mild native conditions. The system uses a series of initially inert recombinant protein fusions that sandwich the protein modules to be ligated between one of a number of different affinity tags and an intein protein domain. Orthogonal activation at opposite termini of compatible protein fusions, via protease and intein cleavage, coupled with sequential mixing directs an irreversible and traceless stepwise assembly process. This gives total control over the composition and arrangement of component proteins within the final product, enabled the limits of the system-reaction efficiency and yield-to be investigated, and led to the production of "functional" assemblies.
Collapse
Affiliation(s)
- Joseph A. Harvey
- School of Biological and Chemical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Ewan R. G. Main
- School of Biological and Chemical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
17
|
Yumura K, Akiba H, Nagatoishi S, Kusano-Arai O, Iwanari H, Hamakubo T, Tsumoto K. Use of SpyTag/SpyCatcher to construct bispecific antibodies that target two epitopes of a single antigen. J Biochem 2017. [DOI: 10.1093/jb/mvx023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kyohei Yumura
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Kouhei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
B 12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 2017; 114:5912-5917. [PMID: 28533376 DOI: 10.1073/pnas.1621350114] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thanks to the precise control over their structural and functional properties, genetically engineered protein-based hydrogels have emerged as a promising candidate for biomedical applications. Given the growing demand for creating stimuli-responsive "smart" hydrogels, here we show the synthesis of entirely protein-based photoresponsive hydrogels by covalently polymerizing the adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) proteins using genetically encoded SpyTag-SpyCatcher chemistry under mild physiological conditions. The resulting hydrogel composed of physically self-assembled CarHC polymers exhibited a rapid gel-sol transition on light exposure, which enabled the facile release/recovery of 3T3 fibroblasts and human mesenchymal stem cells (hMSCs) from 3D cultures while maintaining their viability. A covalently cross-linked CarHC hydrogel was also designed to encapsulate and release bulky globular proteins, such as mCherry, in a light-dependent manner. The direct assembly of stimuli-responsive proteins into hydrogels represents a versatile strategy for designing dynamically tunable materials.
Collapse
|
19
|
Young PG, Yosaatmadja Y, Harris PWR, Leung IKH, Baker EN, Squire CJ. Harnessing ester bond chemistry for protein ligation. Chem Commun (Camb) 2017; 53:1502-1505. [DOI: 10.1039/c6cc09899a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A breakthrough combination of ester bond ligation and hydrolysis allows the assembly and disassembly of engineered protein nano-constructions.
Collapse
Affiliation(s)
- P. G. Young
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - Y. Yosaatmadja
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - P. W. R. Harris
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - I. K. H. Leung
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - E. N. Baker
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - C. J. Squire
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
20
|
Wakabayashi R, Yahiro K, Hayashi K, Goto M, Kamiya N. Protein-Grafted Polymers Prepared Through a Site-Specific Conjugation by Microbial Transglutaminase for an Immunosorbent Assay. Biomacromolecules 2016; 18:422-430. [DOI: 10.1021/acs.biomac.6b01538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kensuke Yahiro
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Hitachi Aloka
Medical, Ltd., 3-7-19 Imai, Ome-shi, Tokyo 198-8577, Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| |
Collapse
|
21
|
Luo Q, Hou C, Bai Y, Wang R, Liu J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chem Rev 2016; 116:13571-13632. [PMID: 27587089 DOI: 10.1021/acs.chemrev.6b00228] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature endows life with a wide variety of sophisticated, synergistic, and highly functional protein assemblies. Following Nature's inspiration to assemble protein building blocks into exquisite nanostructures is emerging as a fascinating research field. Dictating protein assembly to obtain highly ordered nanostructures and sophisticated functions not only provides a powerful tool to understand the natural protein assembly process but also offers access to advanced biomaterials. Over the past couple of decades, the field of protein assembly has undergone unexpected and rapid developments, and various innovative strategies have been proposed. This Review outlines recent advances in the field of protein assembly and summarizes several strategies, including biotechnological strategies, chemical strategies, and combinations of these approaches, for manipulating proteins to self-assemble into desired nanostructures. The emergent applications of protein assemblies as versatile platforms to design a wide variety of attractive functional materials with improved performances have also been discussed. The goal of this Review is to highlight the importance of this highly interdisciplinary field and to promote its growth in a diverse variety of research fields ranging from nanoscience and material science to synthetic biology.
Collapse
Affiliation(s)
- Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yushi Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR 999078, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
22
|
Minamihata K, Yamaguchi S, Nakajima K, Nagamune T. Tyrosine Coupling Creates a Hyperbranched Multivalent Protein Polymer Using Horseradish Peroxidase via Bipolar Conjugation Points. Bioconjug Chem 2016; 27:1348-59. [DOI: 10.1021/acs.bioconjchem.6b00138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kosuke Minamihata
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Sou Yamaguchi
- Department
of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kei Nakajima
- Department
of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Teruyuki Nagamune
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department
of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Matsumoto T, Isogawa Y, Minamihata K, Tanaka T, Kondo A. Twigged streptavidin polymer as a scaffold for protein assembly. J Biotechnol 2016; 225:61-6. [PMID: 27002233 DOI: 10.1016/j.jbiotec.2016.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
Protein assemblies are an emerging tool that is finding many biological and bioengineering applications. We here propose a method for the site-specific assembly of proteins on a twigged streptavidin (SA) polymer using streptavidin as a functional scaffold. SA was genetically appended with a G tag (sortase A recognition sequence) and a Y tag (HRP recognition sequence) on its N- and C-termini, respectively, to provide G-SA-Y. G-SA-Y was polymerized using HPR-mediated tyrosine coupling, then fluorescent proteins were immobilized on the polymer by biotin-SA affinity and sortase A-mediated ligation. Fluorescence measurements showed that the proteins were immobilized in close proximity to each other. Hydrolyzing enzymes were also functionally assembled on the G-SA-Y polymer. The site-specific assembly of proteins on twigged SA polymer may find new applications in various biological and bioengineering fields.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuki Isogawa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Kosuke Minamihata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
24
|
Cang Y, Zhang R, Fang D, Guo X, Zhu X. Fabrication and characterization of bifunctional spherical polyelectrolyte brushes. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2015.1124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yu Cang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Rui Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Dingye Fang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Xuedong Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
25
|
Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X, Liu C, Chen G, Jiang M. Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions. J Am Chem Soc 2016; 138:1932-7. [PMID: 26799414 DOI: 10.1021/jacs.5b11733] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein microtubule is a significant self-assembled architecture found in nature with crucial biological functions. However, mimicking protein microtubules with precise structure and controllable self-assembly behavior remains highly challenging. In this work, we demonstrate that by using dual supramolecular interactions from a series of well-designed ligands, i.e., protein-sugar interaction and π-π stacking, highly homogeneous protein microtubes were achieved from tetrameric soybean agglutinin without any chemical or biological modification. Using combined cryo-EM single-particle reconstruction and computational modeling, the accurate structure of protein microtube was determined. The helical protein microtube is consisted of three protofilaments, each of which features an array of soybean agglutinin tetramer linked by the designed ligands. Notably, the microtubes resemble the natural microtubules in their structural and dynamic features such as the shape and diameter and the controllable and reversible assembly behavior, among others. Furthermore, the protein microtubes showed an ability to enhance immune response, demonstrating its great potential for biological applications.
Collapse
Affiliation(s)
- Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xiang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Zdravko Kochovski
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin, Germany.,TEM Group, Institute of Physics, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Yufei Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Bin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Fuji Sakai
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Lin Jiang
- Department of Neurology, Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin, Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin, Germany
| | - Xueming Li
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
26
|
Design of Self-Assembling Protein-Polymer Conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.
Collapse
|
27
|
Kim YN, Jung Y. Artificial supramolecular protein assemblies as functional high-order protein scaffolds. Org Biomol Chem 2016; 14:5352-6. [DOI: 10.1039/c6ob00116e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Artificial supramolecular protein assemblies can serve as novel high-order scaffolds that can display various functional proteins with defined valencies and organization, offering unprecedented functional bio-architectures.
Collapse
Affiliation(s)
- Yu-na Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Korea
| | - Yongwon Jung
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Korea
| |
Collapse
|
28
|
Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol 2015; 29:94-9. [DOI: 10.1016/j.cbpa.2015.10.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 01/20/2023]
|
29
|
Abstract
Protein-protein interactions are fundamental to many biological processes. Yet, the weak and transient noncovalent bonds that characterize most protein-protein interactions found in nature impose limits on many bioengineering experiments. Here, a new class of genetically encodable peptide-protein pairs--isopeptag-N/pilin-N, isopeptag/pilin-C, and SpyTag/SpyCatcher--that interact through autocatalytic intermolecular isopeptide bond formation is described. Reactions between peptide-protein pairs are specific, robust, orthogonal, and able to proceed under most biologically relevant conditions both in vitro and in vivo. As fusion constructs, they provide a handle on molecules of interest, both organic and inorganic, that can be grasped with an iron grip. Such stable interactions provide robust post-translational control over biological processes and open new opportunities in synthetic biology for engineering programmable and self-assembling protein nanoarchitectures.
Collapse
Affiliation(s)
- Bijan Zakeri
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
30
|
Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6:7134. [PMID: 25972078 PMCID: PMC4479010 DOI: 10.1038/ncomms8134] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/08/2015] [Indexed: 02/08/2023] Open
Abstract
Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. Supramolecular protein assemblies can provide novel nano-architectures with diverse structures and functions. Here, the authors report a fabrication strategy for a series of monodisperse protein oligomers, which allows valency-controlled display of various functional proteins.
Collapse
|
31
|
Mejías SH, Sot B, Guantes R, Cortajarena AL. Controlled nanometric fibers of self-assembled designed protein scaffolds. NANOSCALE 2014; 6:10982-8. [PMID: 24946893 DOI: 10.1039/c4nr01210k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The use of biological molecules as platforms for templating and nanofabrication is an emerging field. Here, we use designed protein building blocks based on small repetitive units (consensus tetratricopeptide repeat - CTPR) to generate fibrillar linear nanostructures by controlling the self-assembly properties of the units. We fully characterize the kinetics and thermodynamics of the assembly and describe the polymerization process by a simple model that captures the features of the structures formed under defined conditions. This work, together with previously established functionalization potential, sets up the basis for the application of these blocks in the fabrication and templating of complex hybrid nanostructures.
Collapse
Affiliation(s)
- Sara H Mejías
- IMDEA-Nanociencia, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
32
|
Veggiani G, Zakeri B, Howarth M. Superglue from bacteria: unbreakable bridges for protein nanotechnology. Trends Biotechnol 2014; 32:506-12. [PMID: 25168413 DOI: 10.1016/j.tibtech.2014.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/13/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022]
Abstract
Biotechnology is often limited by weak interactions. We suggest that an ideal interaction between proteins would be covalent, specific, require addition of only a peptide tag to the protein of interest, and form under a wide range of conditions. Here we summarize peptide tags that are able to form spontaneous amide bonds, based on harnessing reactions of adhesion proteins from the bacterium Streptococcus pyogenes. These include the irreversible peptide-protein interaction of SpyTag with SpyCatcher, as well as irreversible peptide-peptide interactions via SpyLigase. We describe existing applications, including polymerization to enhance cancer cell capture, assembly of living biomaterial, access to diverse protein shapes, and improved enzyme resilience. We also indicate future opportunities for resisting biological force and extending the scope of protein nanotechnology.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Bijan Zakeri
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|