1
|
Fairbank DM, Banducci AL, Gunkelman RW, VanArsdale JB, Vildibill ML, Brewer SM. Absolute Frequency Measurements of the D Lines in ^{9}Be^{+} Using a Single Trapped Ion. PHYSICAL REVIEW LETTERS 2023; 131:093001. [PMID: 37721838 DOI: 10.1103/physrevlett.131.093001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
Optical frequencies of the D line transitions in ^{9}Be^{+} were measured with a relative uncertainty of Δν/ν=5×10^{-11}. The results represent the highest accuracy achieved on a broad electric dipole-allowed (E1) transition in a trapped ion experiment to date, enabled in part by detailed consideration of photon recoil and quantum interference. Measurements were made on a single laser-cooled ion stored in a radio frequency Paul trap, using a spectroscopy laser stabilized to an optical frequency comb and referenced to UTC (NIST). The uncertainties in the D_{1} and D_{2} lines have been reduced by a factor of 10 and 30, respectively, compared to previous work. We have extracted the ^{2}P fine structure splitting, Δν_{fs}=197 064.54(7) MHz, and the ^{2}P_{1/2} hyperfine constant, A_{P_{1/2}}=-117.92(4) MHz.
Collapse
Affiliation(s)
- D M Fairbank
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - A L Banducci
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - R W Gunkelman
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - J B VanArsdale
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - M L Vildibill
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - S M Brewer
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
2
|
Podhora L, Lachman L, Pham T, Lešundák A, Číp O, Slodička L, Filip R. Quantum Non-Gaussianity of Multiphonon States of a Single Atom. PHYSICAL REVIEW LETTERS 2022; 129:013602. [PMID: 35841581 DOI: 10.1103/physrevlett.129.013602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Quantum non-Gaussian mechanical states are already required in a range of applications. The discrete building blocks of such states are the energy eigenstates-Fock states. Despite progress in their preparation, the remaining imperfections can still invisibly cause loss of the aspects critical for their applications. We derive and apply the most challenging hierarchy of quantum non-Gaussian criteria on the characterization of single trapped-ion oscillator mechanical Fock states with up to 10 phonons. We analyze the depth of these quantum non-Gaussian features under intrinsic mechanical heating and predict their requirement for reaching quantum advantage in the sensing of a mechanical force.
Collapse
Affiliation(s)
- L Podhora
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - L Lachman
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - T Pham
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - A Lešundák
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - O Číp
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - L Slodička
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - R Filip
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
3
|
Wellers C, Schenkel MR, Giri GS, Brown KR, Schiller S. Controlled preparation and vibrational excitation of single ultracold molecular hydrogen ions. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2001599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Wellers
- Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Magnus R. Schenkel
- Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Gouri S. Giri
- Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kenneth R. Brown
- Departments of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Stephan Schiller
- Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
König K, Krämer J, Geppert C, Imgram P, Maaß B, Ratajczyk T, Nörtershäuser W. A new Collinear Apparatus for Laser Spectroscopy and Applied Science (COALA). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:081301. [PMID: 32872936 DOI: 10.1063/5.0010903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
We present a new collinear laser spectroscopy setup that has been designed to overcome systematic uncertainty limits arising from high-voltage and frequency measurements, beam superposition, and collisions with residual gas that are present in other installations utilizing this technique. The applied methods and experimental realizations are described, including an active stabilization of the ion-source potential, new types of ion sources that have not been used for collinear laser spectroscopy so far, dedicated installations for pump-and-probe measurements, and a versatile laser system referenced to a frequency comb. The advanced setup enables us to routinely determine transition frequencies, which was so far demonstrated only for a few cases and with lower accuracy at other facilities. It has also been designed to perform accurate high-voltage measurements for metrological applications. Demonstration and performance measurements were carried out with Ca+ and In+ ions.
Collapse
Affiliation(s)
- K König
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - J Krämer
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - C Geppert
- Forschungsreaktor TRIGA Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - P Imgram
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - B Maaß
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - T Ratajczyk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - W Nörtershäuser
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Thomas KF, Ross JA, Henson BM, Shin DK, Baldwin KGH, Hodgman SS, Truscott AG. Direct Measurement of the Forbidden 2^{3}S_{1}→3^{3}S_{1} Atomic Transition in Helium. PHYSICAL REVIEW LETTERS 2020; 125:013002. [PMID: 32678641 DOI: 10.1103/physrevlett.125.013002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
We present the detection of the highly forbidden 2^{3}S_{1}→3^{3}S_{1} atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition strength agree well with published theoretical values and can lead to tests of both QED contributions and different QED frameworks. To measure such a weak transition, we develop two methods using ultracold metastable (2^{3}S_{1}) helium atoms: low background direct detection of excited then decayed atoms for sensitive measurement of the transition frequency and lifetime, and a pulsed atom laser heating measurement for determining the transition strength. These methods could possibly be applied to other atoms, providing new tools in the search for ultraweak transitions and precision metrology.
Collapse
Affiliation(s)
- K F Thomas
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - J A Ross
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - B M Henson
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - D K Shin
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - K G H Baldwin
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - S S Hodgman
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - A G Truscott
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Wolf F, Shi C, Heip JC, Gessner M, Pezzè L, Smerzi A, Schulte M, Hammerer K, Schmidt PO. Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nat Commun 2019; 10:2929. [PMID: 31266940 PMCID: PMC6606596 DOI: 10.1038/s41467-019-10576-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
The quantum noise of the vacuum limits the achievable sensitivity of quantum sensors. In non-classical measurement schemes the noise can be reduced to overcome this limitation. However, schemes based on squeezed or Schrödinger cat states require alignment of the relative phase between the measured interaction and the non-classical quantum state. Here we present two measurement schemes on a trapped ion prepared in a motional Fock state for displacement and frequency metrology that are insensitive to this phase. The achieved statistical uncertainty is below the standard quantum limit set by quantum vacuum fluctuations, enabling applications in spectroscopy and mass measurements. Quantum metrology allows surpassing the standard quantum limit, but methods relying on squeezing require to know the orientation of the squeezed quadrature with respect to the signal. Here, instead, the authors propose a phase-insensitive Fock-state-based protocol, and demonstrate it using trapped ions.
Collapse
Affiliation(s)
- Fabian Wolf
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany
| | - Chunyan Shi
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany
| | - Jan C Heip
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany
| | - Manuel Gessner
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125, Firenze, Italy.,Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005, Paris, France
| | - Luca Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125, Firenze, Italy
| | - Augusto Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125, Firenze, Italy.,Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
| | - Marius Schulte
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz Universität Hannover, Appelstrasse 2, 30167, Hannover, Germany
| | - Klemens Hammerer
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz Universität Hannover, Appelstrasse 2, 30167, Hannover, Germany
| | - Piet O Schmidt
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany. .,Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| |
Collapse
|
7
|
Burd SC, Srinivas R, Bollinger JJ, Wilson AC, Wineland DJ, Leibfried D, Slichter DH, Allcock DTC. Quantum amplification of mechanical oscillator motion. Science 2019; 364:1163-1165. [PMID: 31221854 PMCID: PMC11566721 DOI: 10.1126/science.aaw2884] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/11/2019] [Indexed: 11/17/2024]
Abstract
Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator's motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.
Collapse
Affiliation(s)
- S C Burd
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - R Srinivas
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J J Bollinger
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - A C Wilson
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - D J Wineland
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | - D Leibfried
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - D H Slichter
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - D T C Allcock
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
8
|
Abstract
Well-timed kicks to an ion's momentum enable better position measurements
Collapse
|
9
|
Hannig S, Pelzer L, Scharnhorst N, Kramer J, Stepanova M, Xu ZT, Spethmann N, Leroux ID, Mehlstäubler TE, Schmidt PO. Towards a transportable aluminium ion quantum logic optical clock. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:053204. [PMID: 31153262 DOI: 10.1063/1.5090583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
With the advent of optical clocks featuring fractional frequency uncertainties on the order of 10-17 and below, new applications such as chronometric leveling with few-centimeter height resolution emerge. We are developing a transportable optical clock based on a single trapped aluminum ion, which is interrogated via quantum logic spectroscopy. We employ singly charged calcium as the logic ion for sympathetic cooling, state preparation, and readout. Here, we present a simple and compact physics and laser package for manipulation of 40Ca+. Important features are a segmented multilayer trap with separate loading and probing zones, a compact titanium vacuum chamber, a near-diffraction-limited imaging system with high numerical aperture based on a single biaspheric lens, and an all-in-fiber 40Ca+ repump laser system. We present preliminary estimates of the trap-induced frequency shifts on 27Al+, derived from measurements with a single calcium ion. The micromotion-induced second-order Doppler shift for 27Al+ has been determined to be δνEMMν=-0.4-0.3 +0.4×10-18 and the black-body radiation shift is δνBBR/ν = (-4.0 ± 0.4) × 10-18. Moreover, heating rates of 30 (7) quanta per second at trap frequencies of ωrad,Ca+ ≈ 2π × 2.5 MHz (ωax,Ca+ ≈ 2π × 1.5 MHz) in radial (axial) direction have been measured, enabling interrogation times of a few hundreds of milliseconds.
Collapse
Affiliation(s)
- S Hannig
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - L Pelzer
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - N Scharnhorst
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - J Kramer
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - M Stepanova
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Z T Xu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 430074 Wuhan, People's Republic of China
| | - N Spethmann
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - I D Leroux
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - T E Mehlstäubler
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - P O Schmidt
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| |
Collapse
|
10
|
Gardner A, Softley T, Keller M. Multi-photon ionisation spectroscopy for rotational state preparation of
N
2
+
. Sci Rep 2019; 9:506. [PMID: 30679634 PMCID: PMC6345942 DOI: 10.1038/s41598-018-36783-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
In this paper we investigate the 2 + 1' resonance enhanced multi-photon ionisation (REMPI) of molecular nitrogen via the a1Πg(v = 6) intermediate state and analyse its feasibility to generate molecular nitrogen ions in a well defined ro-vibrational state. This is an important tool for high precision experiments based on trapped molecular ions, and is crucial for studying the time variation of the fundamental constant mp/me usingN 2 + . The transition is not reported in the literature and detailed spectral analysis has been conducted to extract the molecular constants of the intermediate state. By carefully choosing the intermediate ro-vibrational state, the ionisation laser wavelength and controlling the excitation laser pulse energy, unwanted formation of rotationally excited molecular ions can be suppressed and ro-vibrational ground state ions can be generated with high purity.
Collapse
Affiliation(s)
- Amy Gardner
- ITCM Group, Department of Physics and Astronomy, University of Sussex, Falmer, BN1 9QH United Kingdom
| | - Timothy Softley
- University of Birmingham, Edgbaston, Birmingham, B15 2TT United Kingdom
| | - Matthias Keller
- ITCM Group, Department of Physics and Astronomy, University of Sussex, Falmer, BN1 9QH United Kingdom
| |
Collapse
|
11
|
Yu F, Cann M, Brunton A, Wadsworth W, Knight J. Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery. OPTICS EXPRESS 2018; 26:10879-10887. [PMID: 29716018 DOI: 10.1364/oe.26.010879] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we report anti-resonant silica hollow-core fibers (AR-HCFs) for solarization-free ultraviolet (UV) pulse transmission. The new fibers reported have lower attenuation than any previous HCFs for this spectral range. We report a single fiber that guides over a part of the UV-C and the whole of the UV-A spectral regions in adjacent transmission bands. A second AR-HCF is used for delivery of 17 nanosecond laser pulses at 266 nm at 30 kHz repetition rate. The fiber maintained a constant transmission, free of silica fluorescence and solarization-induced fiber degradation while delivering 0.46 μJ pulses for a period of over one hour. By direct comparison, we demonstrate that the single-mode AR-HCF significantly outperforms commercially-available high-OH and solarization-resistant silica multimode fibers for pulsed light delivery in this spectral range.
Collapse
|
12
|
Beev N, Fenske JA, Hannig S, Schmidt PO. A low-drift, low-noise, multichannel dc voltage source for segmented-electrode Paul traps. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:054704. [PMID: 28571395 DOI: 10.1063/1.4983925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the design, construction, and characterization of a multichannel, low-drift, low-noise dc voltage source specially designed for biasing the electrodes of segmented linear Paul traps. The system produces 20 output voltage pairs having a common-mode range of 0 to +120 V with 3.7 mV/LSB (least significant bit) resolution and differential ranges of ±5 V with 150 μV/LSB or ±16 V with 610 μV/LSB resolution. All common-mode and differential voltages are independently controllable, and all pairs share the same ground reference. The measured drift of the voltages after warm-up is lower than 1 LSB peak-to-peak on the time scale of 2 h. The noise of an output voltage measured with respect to ground is <10 μVRMS within 10 Hz-100 kHz, with spectral density lower than 3 nV Hz-1/2 above 50 kHz. The performance of the system is limited by the external commercial multichannel DAC unit NI 9264, and in principle, it is possible to achieve higher stability and lower noise with the same voltage ranges. The system has a compact, modular, and scalable architecture, having all parts except for the DAC chassis housed within a single 19″ 3HE rack.
Collapse
Affiliation(s)
- Nikolai Beev
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Julia-Aileen Fenske
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Stephan Hannig
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Piet O Schmidt
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| |
Collapse
|
13
|
Gebert F, Wan Y, Wolf F, Angstmann CN, Berengut JC, Schmidt PO. Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes. PHYSICAL REVIEW LETTERS 2015; 115:053003. [PMID: 26274418 DOI: 10.1103/physrevlett.115.053003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 06/04/2023]
Abstract
We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with nonclosed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a cotrapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2D(3/2)→2P(1/2) transition in calcium, resulting in a transition frequency of f=346 000 234 867(96) kHz. Furthermore, we determine the isotope shift of this transition and the 2S(1/2)→2P(1/2) transition for 42Ca+, 44Ca+, and 48Ca+ ions relative to 40Ca+ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data.
Collapse
Affiliation(s)
- Florian Gebert
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Yong Wan
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Fabian Wolf
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Julian C Berengut
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Piet O Schmidt
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
14
|
Broadband optical cooling of molecular rotors from room temperature to the ground state. Nat Commun 2014; 5:4783. [DOI: 10.1038/ncomms5783] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/23/2014] [Indexed: 11/08/2022] Open
|
15
|
Gebert F, Frosz MH, Weiss T, Wan Y, Ermolov A, Joly NY, Schmidt PO, Russell PSJ. Damage-free single-mode transmission of deep-UV light in hollow-core PCF. OPTICS EXPRESS 2014; 22:15388-15396. [PMID: 24977799 DOI: 10.1364/oe.22.015388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagomé type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment increases the coherence time of the internal state transfer due to an increase in beam pointing stability.
Collapse
|
16
|
Clos G, Enderlein M, Warring U, Schaetz T, Leibfried D. Decoherence-assisted spectroscopy of a single Mg+ ion. PHYSICAL REVIEW LETTERS 2014; 112:113003. [PMID: 24702360 DOI: 10.1103/physrevlett.112.113003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 06/03/2023]
Abstract
We describe a high-resolution spectroscopy method in which the detection of single excitation events is enhanced by a complete loss of coherence of a superposition of two ground states. Thereby, transitions of a single isolated atom nearly at rest are recorded efficiently with high signal-to-noise ratios. Spectra display symmetric line shapes without stray-light background from spectroscopy probes. We employ this method on a (25)Mg+ ion to measure one-, two-, and three-photon transition frequencies from the 3S ground state to the 3P, 3D, and 4P excited states, respectively. Our results are relevant for astrophysics and searches for drifts of fundamental constants. Furthermore, the method can be extended to other transitions, isotopes, and species. The currently achieved fractional frequency uncertainty of 5 × 10(-9) is not limited by the method.
Collapse
Affiliation(s)
- G Clos
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - M Enderlein
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - U Warring
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - T Schaetz
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - D Leibfried
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| |
Collapse
|