1
|
Li W, Hao Y. Polo-Like Kinase 1 and DNA Damage Response. DNA Cell Biol 2024; 43:430-437. [PMID: 38959179 DOI: 10.1089/dna.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, Characteristic Medical Center, PLA Rocket Force, Beijing, China
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| |
Collapse
|
2
|
Du M, Chen S, Chen Y, Yuan X, Dong H. Testicular fat deposition attenuates reproductive performance via decreased follicle-stimulating hormone level and sperm meiosis and testosterone synthesis in mouse. Anim Biosci 2024; 37:50-60. [PMID: 37641828 PMCID: PMC10766465 DOI: 10.5713/ab.23.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Testicular fat deposition has been reported to affect animal reproduction. However, the underlying mechanism remains poorly understood. The present study explored whether sperm meiosis and testosterone synthesis contribute to mouse testicular fat depositioninduced reproductive performance. METHODS High fat diet (HFD)-induced obesity CD1 mice (DIO) were used as a testicular fat deposition model. The serum hormone test was performed by agent kit. The quality of sperm was assessed using a Sperm Class Analyzer. Testicular tissue morphology was analyzed by histochemical methods. The expression of spermatocyte marker molecules was monitored by an immuno-fluorescence microscope during meiosis. Analysis of the synthesis of testosterone was performed by real-time polymerase chain reaction and reagent kit. RESULTS It was found that there was a significant increase in body weight among DIO mice, however, the food intake showed no difference compared to control mice fed a normal diet (CTR). The number of offspring in DIO mice decreased, but there was no significant difference from the CTR group. The levels of follicle-stimulating hormone were lower in DIO mice and their luteinizing hormone levels were similar. The results showed a remarkable decrease in sperm density and motility among DIO mice. We also found that fat accumulation affected the meiosis process, mainly reflected in the cross-exchange of homologous chromosomes. In addition, overweight increased fat deposition in the testis and reduced the expression of testosterone synthesis-related enzymes, thereby affecting the synthesis and secretion of testosterone by testicular Leydig cells. CONCLUSION Fat accumulation in the testes causes testicular cell dysfunction, which affects testosterone hormone synthesis and ultimately affects sperm formation.
Collapse
Affiliation(s)
- Miao Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | - Shikun Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
- College of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6150,
Australia
| | - Yang Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284,
USA
| | - Huansheng Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| |
Collapse
|
3
|
Lebrec V, Gavet O. Monitoring Chk1 kinase activity dynamics in live single cell imaging assays. Methods Cell Biol 2023; 182:221-236. [PMID: 38359979 DOI: 10.1016/bs.mcb.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The ATR/Chk1 pathway is an important regulator of cell cycle progression, notably upon genotoxic stress where it can detect a large variety of DNA alterations and induce a transient cell cycle arrest that promotes DNA repair. In addition to its role in DNA damage response (DDR), Chk1 is also active during a non-perturbed S phase and contributes to prevent a premature entry into mitosis with an incompletely replicated genome, meaning the ATR/Chk1 pathway is an integral part of the cell cycle machinery that preserves genome integrity during cell growth. We recently developed a FRET-based Chk1 kinase activity reporter to directly monitor and quantify the kinetics of Chk1 activation in live single cell imaging assays with unprecedented sensitivity and time resolution. This tool allowed us to monitor Chk1 activity dynamics over time during a normal S phase and following genotoxic stress, and to elucidate the underlying mechanisms leading to its activation. Here, we review available fluorescent tools to study the interplay of cell cycle progression, DNA damage and DDR in individual live cells, and present the full protocol and image analysis pipeline to monitor Chk1 activity in two imaging assays.
Collapse
Affiliation(s)
- Vivianne Lebrec
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Olivier Gavet
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR927, Paris, France; UMR9019 CNRS, Université Paris-Saclay, Villejuif, Cedex, France.
| |
Collapse
|
4
|
Yam CQX, Lim HH, Surana U. DNA damage checkpoint execution and the rules of its disengagement. Front Cell Dev Biol 2022; 10:1020643. [PMID: 36274841 PMCID: PMC9582513 DOI: 10.3389/fcell.2022.1020643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosomes are susceptible to damage during their duplication and segregation or when exposed to genotoxic stresses. Left uncorrected, these lesions can result in genomic instability, leading to cells' diminished fitness, unbridled proliferation or death. To prevent such fates, checkpoint controls transiently halt cell cycle progression to allow time for the implementation of corrective measures. Prominent among these is the DNA damage checkpoint which operates at G2/M transition to ensure that cells with damaged chromosomes do not enter the mitotic phase. The execution and maintenance of cell cycle arrest are essential aspects of G2/M checkpoint and have been studied in detail. Equally critical is cells' ability to switch-off the checkpoint controls after a successful completion of corrective actions and to recommence cell cycle progression. Interestingly, when corrective measures fail, cells can mount an unusual cellular response, termed adaptation, where they escape checkpoint arrest and resume cell cycle progression with damaged chromosomes at the cost of genome instability or even death. Here, we discuss the DNA damage checkpoint, the mitotic networks it inhibits to prevent segregation of damaged chromosomes and the strategies cells employ to quench the checkpoint controls to override the G2/M arrest.
Collapse
Affiliation(s)
| | - Hong Hwa Lim
- A*STAR Singapore Immunology Network, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
De S, Campbell C, Venkitaraman AR, Esposito A. Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage. Cell Rep 2021; 30:2083-2093.e5. [PMID: 32075732 PMCID: PMC7029415 DOI: 10.1016/j.celrep.2020.01.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability. DNA damage elicits opposing pro-survival and pro-arrest responses via MAPK and p53 MAPK pulsations modulate p53-dependent transcription to determine cell fate MAPK/p53 signal dynamics control the stringency of the G2 DNA damage checkpoint MAPK/p53 integrate extracellular and intracellular cues to protect genome integrity
Collapse
Affiliation(s)
- Siddharth De
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Callum Campbell
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| | - Alessandro Esposito
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
6
|
Zheng P, Kang Y, Han S, Feng H, Ha F, Long C, Zhou D, Hu G, Chen Z, Wang Z, Wang T, Jia G. A Novel Transcriptome Integrated Network Approach Identifies the Key Driver lncRNA Involved in Cell Cycle With Chromium (VI)-Treated BEAS-2B Cells. Front Genet 2021; 11:597803. [PMID: 33519900 PMCID: PMC7838612 DOI: 10.3389/fgene.2020.597803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a well-known occupational carcinogen, but the mechanisms contributing to DNA damage and cell cycle alternation have not been fully characterized. To study the dose-response effects of Cr(VI) on transcription, we exposed BEAS-2B cells to Cr(VI) at concentrations of 0.2, 0.6, and 1.8 μmol/L for 24 h. Here, we identified 1,484 differentially expressed genes (DEGs) in our transcript profiling data, with the majority of differentially expressed transcripts being downregulated. Our results also showed that these DEGs were enriched in pathways associated with the cell cycle, including DNA replication, chromatin assembly, and DNA repair. Using the differential expressed genes related to cell cycle, a weighted gene co-expression network was constructed and a key mRNA-lncRNA regulation module was identified under a scale-free network with topological properties. Additionally, key driver analysis (KDA) was applied to the mRNA-lncRNA regulation module to identify the driver genes. The KDA revealed that ARD3 (FDR = 1.46 × 10–22), SND1 (FDR = 5.24 × 10–8), and lnc-DHX32-2:1 (FDR = 1.43 × 10–17) were particularly highlighted in the category of G2/M, G1/S, and M phases. Moreover, several genes we identified exhibited great connectivity in our causal gene network with every key driver gene, including CDK14, POLA1, lnc-NCS1-2:1, and lnc-FOXK1-4:1 (all FDR < 0.05 in those phases). Together, these results obtained using mathematical approaches and bioinformatics algorithmics might provide potential new mechanisms involved in the cytotoxicity induced by Cr.
Collapse
Affiliation(s)
- Pai Zheng
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Shuo Han
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| | - Huimin Feng
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| | - Feizai Ha
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Changmao Long
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| | - Di Zhou
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| | - Guiping Hu
- School of Medical Science and Engineering, Beihang University, Beijing, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Tiancheng Wang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
7
|
Lafranchi L, Müllers E, Rutishauser D, Lindqvist A. FRET-Based Sorting of Live Cells Reveals Shifted Balance between PLK1 and CDK1 Activities During Checkpoint Recovery. Cells 2020; 9:E2126. [PMID: 32961751 PMCID: PMC7564076 DOI: 10.3390/cells9092126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cells recovering from the G2/M DNA damage checkpoint rely more on Aurora A-PLK1 signaling than cells progressing through an unperturbed G2 phase, but the reason for this discrepancy is not known. Here, we devised a method based on a FRET reporter for PLK1 activity to sort cells in distinct populations within G2 phase. We employed mass spectroscopy to characterize changes in protein levels through an unperturbed G2 phase and validated that ATAD2 levels decrease in a proteasome-dependent manner. Comparing unperturbed cells with cells recovering from DNA damage, we note that at similar PLK1 activities, recovering cells contain higher levels of Cyclin B1 and increased phosphorylation of CDK1 targets. The increased Cyclin B1 levels are due to continuous Cyclin B1 production during a DNA damage response and are sustained until mitosis. Whereas partial inhibition of PLK1 suppresses mitotic entry more efficiently when cells recover from a checkpoint, partial inhibition of CDK1 suppresses mitotic entry more efficiently in unperturbed cells. Our findings provide a resource for proteome changes during G2 phase, show that the mitotic entry network is rewired during a DNA damage response, and suggest that the bottleneck for mitotic entry shifts from CDK1 to PLK1 after DNA damage.
Collapse
Affiliation(s)
- Lorenzo Lafranchi
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (L.L.); (E.M.)
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (L.L.); (E.M.)
| | - Dorothea Rutishauser
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
- Science for Life Laboratory, SE-171 65 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (L.L.); (E.M.)
| |
Collapse
|
8
|
Vydzhak O, Bender K, Klermund J, Busch A, Reimann S, Luke B. Checkpoint adaptation in recombination-deficient cells drives aneuploidy and resistance to genotoxic agents. DNA Repair (Amst) 2020; 95:102939. [PMID: 32777450 DOI: 10.1016/j.dnarep.2020.102939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Human cancers frequently harbour mutations in DNA repair genes, rendering the use of DNA damaging agents as an effective therapeutic intervention. As therapy-resistant cells often arise, it is important to better understand the molecular pathways that drive resistance in order to facilitate the eventual targeting of such processes. We employ recombination-defective diploid yeast as a model to demonstrate that, in response to genotoxic challenges, nearly all cells eventually undergo checkpoint adaptation, resulting in the generation of aneuploid cells with whole chromosome losses that have acquired resistance to the initial genotoxic challenge. We demonstrate that adaptation inhibition, either pharmacologically, or genetically, drastically reduces the occurrence of resistant cells. Additionally, the aneuploid phenotypes of the resistant cells can be specifically targeted to induce cytotoxicity. We provide evidence that TORC1 inhibition with rapamycin, in combination with DNA damaging agents, can prevent both checkpoint adaptation and the continued growth of aneuploid resistant cells.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany
| | - Katharina Bender
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany
| | - Julia Klermund
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Stefanie Reimann
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany.
| |
Collapse
|
9
|
The effect of inhibitors of phosphatidylinositol 3-kinase-related kinases on dibenzo[def,p]chrysene genotoxicity measured by γH2AX levels and neutral comet assay in HepG2 human hepatocellular cancer cells. Toxicol In Vitro 2019; 63:104749. [PMID: 31838185 DOI: 10.1016/j.tiv.2019.104749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
In the study the modulating effect of inhibition of phosphatidylinositol 3-kinase-related kinases (PIKK): ATM (Ataxia Telangiectasia Mutated), ATR (Ataxia Telangiectasia and Rad3 Related) and DNA-PK (DNA-dependent protein kinase) on genotoxicity of dibenzo[def,p]chrysene (DBC) in HepG2 human hepatocellular cancer cells was investigated. The cytotoxicity of DBC was determined, also in combination with PIKK inhibitors, using the MTT reduction assay. The high cytotoxicity of DBC was observed after 72 h incubation (IC50 = 0.06 μM). The PIKK inhibitors applied at non-cytotoxic concentrations: caffeine (1 mM) and KU55933 (2.5 μM) had no significant influence on the DBC cytotoxicity, however NU7026 (5 μM) caused significant increase in the cell viability by about 25%. The combinations of the inhibitors (double or triple) where NU7026 was present also caused increase in the cell viability (i.e. cytoprotective effect) compared to the effect of DBC. The level of damage to the genetic material (DNA double strand breaks, DSB) was assessed by measuring levels of phosphorylated form of H2A histone (γH2AX) and neutral comet assay. DBC induced DSB in a concentration and time-dependent manner. NU7026 considerably reduced the level of DSB level measured by γH2AX and comet assay. The obtained results confirm that DBC is cytotoxic and causes damage to the genetic material including DSB. The DNA-PK inhibitor NU7026 increases cell viability after exposure to DBC and reduces DNA damage, what indicates an important role of the sensor kinase in mediating the effect.
Collapse
|
10
|
Lemmens B, Lindqvist A. DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 2019; 218:3892-3902. [PMID: 31712253 PMCID: PMC6891093 DOI: 10.1083/jcb.201909032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Lemmens and Lindqvist discuss how DNA replication and mitosis are coordinated and propose a cell cycle model controlled by brakes. The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Krenning L, van den Berg J, Medema RH. Life or Death after a Break: What Determines the Choice? Mol Cell 2019; 76:346-358. [PMID: 31561953 DOI: 10.1016/j.molcel.2019.08.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
DNA double-strand breaks (DSBs) pose a constant threat to genomic integrity. Such DSBs need to be repaired to preserve homeostasis at both the cellular and organismal levels. Hence, the DNA damage response (DDR) has evolved to repair these lesions and limit their toxicity. The initiation of DNA repair depends on the activation of the DDR, and we know that the strength of DDR signaling may differentially affect cellular viability. However, we do not fully understand what determines the cytotoxicity of a DSB. Recent work has identified genomic location, (in)correct DNA repair pathway usage, and cell-cycle position as contributors to DSB-induced cytotoxicity. In this review, we discuss how these determinants affect cytotoxicity, highlight recent discoveries, and identify open questions that could help to improve our understanding about cell fate decisions after a DNA DSB.
Collapse
Affiliation(s)
- Lenno Krenning
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Jurisic A, Robin C, Tarlykov P, Siggens L, Schoell B, Jauch A, Ekwall K, Sørensen CS, Lipinski M, Shoaib M, Ogryzko V. Topokaryotyping demonstrates single cell variability and stress dependent variations in nuclear envelope associated domains. Nucleic Acids Res 2019; 46:e135. [PMID: 30215776 PMCID: PMC6294560 DOI: 10.1093/nar/gky818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
Analysis of large-scale interphase genome positioning with reference to a nuclear landmark has recently been studied using sequencing-based single cell approaches. However, these approaches are dependent upon technically challenging, time consuming and costly high throughput sequencing technologies, requiring specialized bioinformatics tools and expertise. Here, we propose a novel, affordable and robust microscopy-based single cell approach, termed Topokaryotyping, to analyze and reconstruct the interphase positioning of genomic loci relative to a given nuclear landmark, detectable as banding pattern on mitotic chromosomes. This is accomplished by proximity-dependent histone labeling, where biotin ligase BirA fused to nuclear envelope marker Emerin was coexpressed together with Biotin Acceptor Peptide (BAP)-histone fusion followed by (i) biotin labeling, (ii) generation of mitotic spreads, (iii) detection of the biotin label on mitotic chromosomes and (iv) their identification by karyotyping. Using Topokaryotyping, we identified both cooperativity and stochasticity in the positioning of emerin-associated chromatin domains in individual cells. Furthermore, the chromosome-banding pattern showed dynamic changes in emerin-associated domains upon physical and radiological stress. In summary, Topokaryotyping is a sensitive and reliable technique to quantitatively analyze spatial positioning of genomic regions interacting with a given nuclear landmark at the single cell level in various experimental conditions.
Collapse
Affiliation(s)
- Anamarija Jurisic
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Chloé Robin
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Tarlykov
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| | - Lee Siggens
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Brigitte Schoell
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Karl Ekwall
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marc Lipinski
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Muhammad Shoaib
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vasily Ogryzko
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
13
|
Rodríguez A, Naveja JJ, Torres L, García de Teresa B, Juárez-Figueroa U, Ayala-Zambrano C, Azpeitia E, Mendoza L, Frías S. WIP1 Contributes to the Adaptation of Fanconi Anemia Cells to DNA Damage as Determined by the Regulatory Network of the Fanconi Anemia and Checkpoint Recovery Pathways. Front Genet 2019; 10:411. [PMID: 31130988 PMCID: PMC6509935 DOI: 10.3389/fgene.2019.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/15/2019] [Indexed: 02/01/2023] Open
Abstract
DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - J Jesús Naveja
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Benilde García de Teresa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ulises Juárez-Figueroa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Verma N, Franchitto M, Zonfrilli A, Cialfi S, Palermo R, Talora C. DNA Damage Stress: Cui Prodest? Int J Mol Sci 2019; 20:E1073. [PMID: 30832234 PMCID: PMC6429504 DOI: 10.3390/ijms20051073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
DNA is an entity shielded by mechanisms that maintain genomic stability and are essential for living cells; however, DNA is constantly subject to assaults from the environment throughout the cellular life span, making the genome susceptible to mutation and irreparable damage. Cells are prepared to mend such events through cell death as an extrema ratio to solve those threats from a multicellular perspective. However, in cells under various stress conditions, checkpoint mechanisms are activated to allow cells to have enough time to repair the damaged DNA. In yeast, entry into the cell cycle when damage is not completely repaired represents an adaptive mechanism to cope with stressful conditions. In multicellular organisms, entry into cell cycle with damaged DNA is strictly forbidden. However, in cancer development, individual cells undergo checkpoint adaptation, in which most cells die, but some survive acquiring advantageous mutations and selfishly evolve a conflictual behavior. In this review, we focus on how, in cancer development, cells rely on checkpoint adaptation to escape DNA stress and ultimately to cell death.
Collapse
Affiliation(s)
- Nagendra Verma
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Matteo Franchitto
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
15
|
Werwein E, Cibis H, Hess D, Klempnauer KH. Activation of the oncogenic transcription factor B-Myb via multisite phosphorylation and prolyl cis/trans isomerization. Nucleic Acids Res 2019; 47:103-121. [PMID: 30321399 PMCID: PMC6326806 DOI: 10.1093/nar/gky935] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
The oncogenic transcription factor B-Myb is an essential regulator of late cell cycle genes whose activation by phosphorylation is still poorly understood. We describe a stepwise phosphorylation mechanism of B-Myb, which involves sequential phosphorylations mediated by cyclin-dependent kinase (Cdk) and Polo-like kinase 1 (Plk1) and Pin1-facilitated peptidyl-prolyl cis/trans isomerization. Our data suggest a model in which initial Cdk-dependent phosphorylation of B-Myb enables subsequent Pin1 binding and Pin1-induced conformational changes of B-Myb. This, in turn, initiates further phosphorylation of Cdk-phosphosites, enabling Plk1 docking and subsequent Plk1-mediated phosphorylation of B-Myb to finally allow B-Myb to stimulate transcription of late cell cycle genes. Our observations reveal novel mechanistic hierarchies of B-Myb phosphorylation and activation and uncover regulatory principles that might also apply to other Myb family members. Strikingly, overexpression of B-Myb and of factors mediating its activation strongly correlates with adverse prognoses for tumor patients, emphasizing B-Myb's role in tumorigenesis.
Collapse
Affiliation(s)
- Eugen Werwein
- Institute for Biochemistry Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Hannah Cibis
- Institute for Biochemistry Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
16
|
CDK1 and PLK1 coordinate the disassembly and reassembly of the nuclear envelope in vertebrate mitosis. Oncotarget 2017; 9:7763-7773. [PMID: 29487689 PMCID: PMC5814256 DOI: 10.18632/oncotarget.23666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Micronuclei (MN) arise from chromosomes or fragments that fail to be incorporated into the primary nucleus after cell division. These structures are a major source of genetic instability caused by DNA repair and replication defects coupled to aberrant Nuclear Envelope (NE). These problems ultimately lead to a spectrum of chromosome rearrangements called chromothripsis, a phenomenon that is a hallmark of several cancers. Despite its importance, the molecular mechanism at the origin of this instability is still not understood. Here we show that lagging chromatin, although it can efficiently assemble Lamin A/C, always fails to recruit Nuclear Pore Complexes (NPCs) proteins and that Polo-Like Kinase (PLK1) negatively regulates NPC assembly. We also provide evidence for the requirement of PLK1 activity for the disassembly of NPCs, but not Lamina A/C, at mitotic entry. Altogether this study reveals the existence of independent regulatory pathways for Lamin A/C and NPC reorganization during mitosis where Lamin A/C targeting to the chromatin is controlled by CDK1 activity (a clock-based model) while the NPC loading is also spatially monitored by PLK1.
Collapse
|
17
|
Wakida T, Ikura M, Kuriya K, Ito S, Shiroiwa Y, Habu T, Kawamoto T, Okumura K, Ikura T, Furuya K. The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress. eLife 2017; 6:e29953. [PMID: 29254517 PMCID: PMC5736350 DOI: 10.7554/elife.29953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/02/2017] [Indexed: 01/08/2023] Open
Abstract
Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDKs) target the RAD9 subunit of the 9-1-1 checkpoint clamp on Thr292, to modulate DNA damage checkpoint activation. Thr292 phosphorylation on RAD9 creates a binding site for Polo-Like-Kinase1 (PLK1), which phosphorylates RAD9 on Thr313. These CDK-PLK1-dependent phosphorylations of RAD9 suppress checkpoint activation, therefore maintaining high DNA synthesis rates during DNA replication stress. Our results suggest that CDK locally initiates a PLK1-dependent signaling response that antagonizes the ability of the DNA damage checkpoint to detect DNA damage. These findings provide a mechanism for the suppression of DNA damage checkpoint signaling, to promote cell proliferation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Takeshi Wakida
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Kenji Kuriya
- Laboratory of Nutritional Chemistry, Department of Life SciencesGraduate School of Bioresources, Mie UniversityTsuJapan
| | - Shinji Ito
- Medical Research Support CenterGraduate School of Medicine, Kyoto UniversitySakyo-kuJapan
| | - Yoshiharu Shiroiwa
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Toshiyuki Habu
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Department of Food Science and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | | | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Department of Life SciencesMie UniversityTsuJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory NetworkGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanji Furuya
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Genome MaintenanceGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
18
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Takegami T. CPT11 prevents virus replication in JCI cells persistently infected with JC polyomavirus. Microbiol Immunol 2017; 61:232-238. [PMID: 28463406 DOI: 10.1111/1348-0421.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/04/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
JC polyomavirus (JCPyV) is the causative agent of the demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML), which occurs in immunocompromised patients. Moreover, patients treated with natalizumab for multiple sclerosis or Crohn disease can develop PML, which is then termed natalizumab-related PML. Because few drugs are currently available for treating PML, many antiviral agents are being investigated. It has been demonstrated that the topoisomerase I inhibitors topotecan and β-lapachone have inhibitory effects on JCPyV replication in IMR-32 cells. However, both of these drugs have marginal inhibitory effects on virus propagation in JC1 cells according to RT-PCR analysis. In the present study, the inhibitory effect of another topoisomerase I inhibitor, 7-ethy-10-[4-(1-piperidino)-1-piperidino] carbonyloxy camptothecin (CPT11), was assessed by investigating viral replication, propagation, and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using real-time PCR combined with Dpn I treatment in IMR-32 cells transfected with JCPyV DNA. It was found that JCPyV replicates less in IMR-32 cells treated with CPT11 than in untreated cells. Moreover, CPT11 treatment of JCI cells persistently infected with JCPyV led to a dose-dependent reduction in JCPyV DNA and VP1 production. Additionally, the inhibitory effect of CPT11 was found to be stronger than those of topotecan and β-lapachone. These findings suggest that CPT11 may be a potential anti-JCPyV agent that could be used to treat PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima-Nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
19
|
Jaiswal H, Benada J, Müllers E, Akopyan K, Burdova K, Koolmeister T, Helleday T, Medema RH, Macurek L, Lindqvist A. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration. EMBO J 2017; 36:2161-2176. [PMID: 28607002 PMCID: PMC5510006 DOI: 10.15252/embj.201696082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.
Collapse
Affiliation(s)
- Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Benada
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tobias Koolmeister
- Department of Medical Biochemistry and Biophysics, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Department of Medical Biochemistry and Biophysics, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation. PLoS One 2017; 12:e0177442. [PMID: 28489894 PMCID: PMC5425224 DOI: 10.1371/journal.pone.0177442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/27/2017] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response.
Collapse
|
21
|
Xu L, Zhu Y, Shao J, Chen M, Yan H, Li G, Zhu Y, Xu Z, Yang B, Luo P, He Q. Dasatinib synergises with irinotecan to suppress hepatocellular carcinoma via inhibiting the protein synthesis of PLK1. Br J Cancer 2017; 116:1027-1036. [PMID: 28267710 PMCID: PMC5396112 DOI: 10.1038/bjc.2017.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumour and has poor prognosis. Currently, systematic chemotherapy is the only approach to prolong survival. Thus the development of new treatment regimens is urgently needed to improve the therapeutic efficacy. Our study intended to assess the combination of dasatinib and irinotecan against HCC and made an effort to develop a potential medical choice for advanced HCC patients. METHODS We used SRB colorimetric assay and clonogenic assay to assess antitumour effect in vitro and HCC xenograft model to assess antitumour effect in vivo. We applied flow cytometry and western blotting to explore the mechanism of the combined therapy. Knockdown and overexpression of PLK1 are also applied for validation. RESULTS We confirmed that dasatinib has synergistic effect with irinotecan (or SN38) on HCC both in vitro and in vivo. The effect is due to arisen apoptosis rate of HCC cells that is accompanied by mitochondria dysfunction. The enhanced antitumour efficacy of SN38 could be explained by additional inhibition of PLK1, which is triggered by dasatinib. Unlike existed PLK1 inhibitors, dasatinib does not inhibit PLK1 activity in a direct way. Instead, we found that dasatinib reduces PLK1 level by interfering with its protein synthesis progress. We validated that this kind of downregulation of PLK1 level has a key role in the synergistic effect of the two agents. CONCLUSIONS Dasatinib is able to reinforce the anti-HCC efficacy of irinotecan/SN38 by downregulation of PLK1 synthesis. The combination of the two agents might be a potential medical choice for HCC therapy.
Collapse
Affiliation(s)
- Li Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanrun Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guanqun Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
de Gooijer MC, van den Top A, Bockaj I, Beijnen JH, Würdinger T, van Tellingen O. The G2 checkpoint-a node-based molecular switch. FEBS Open Bio 2017; 7:439-455. [PMID: 28396830 PMCID: PMC5377395 DOI: 10.1002/2211-5463.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Tight regulation of the eukaryotic cell cycle is paramount to ensure genomic integrity throughout life. Cell cycle checkpoints are present in each phase of the cell cycle and prevent cell cycle progression when genomic integrity is compromised. The G2 checkpoint is an intricate signaling network that regulates the progression of G2 to mitosis (M). We propose here a node-based model of G2 checkpoint regulation, in which the action of the central CDK1-cyclin B1 node is determined by the concerted but opposing activities of the Wee1 and cell division control protein 25C (CDC25C) nodes. Phosphorylation of both Wee1 and CDC25C at specific sites determines their subcellular localization, driving them either toward activity within the nucleus or to the cytoplasm and subsequent ubiquitin-mediated proteasomal degradation. In turn, this subcellular balance of the Wee1 and CDC25C nodes is directed by the action of the PLK1 and CHK1 nodes via what we have termed the 'nuclear and cytoplasmic decision states' of Wee1 and CDC25C. The proposed node-based model provides an intelligible structure of the complex interactions that govern the decision to delay or continue G2/M progression. The model may also aid in predicting the effects of agents that target these G2 checkpoint nodes.
Collapse
Affiliation(s)
- Mark C. de Gooijer
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Arnout van den Top
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irena Bockaj
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
- Division of Drug ToxicologyFaculty of PharmacyUtrecht UniversityThe Netherlands
- Division of Biomedical AnalysisFaculty of ScienceUtrecht UniversityThe Netherlands
| | - Thomas Würdinger
- Neuro‐oncology Research GroupDepartments of Neurosurgery and Pediatric Oncology/HematologyCancer Center AmsterdamVU University Medical CenterThe Netherlands
- Molecular Neurogenetics UnitDepartments of Neurology and RadiologyMassachusetts General HospitalBostonMAUSA
- Neuroscience ProgramHarvard Medical SchoolBostonMAUSA
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
23
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Early S-phase cell hypersensitivity to heat stress. Cell Cycle 2015; 15:337-44. [PMID: 26689112 DOI: 10.1080/15384101.2015.1127477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heat stress is one of the best-studied exogenous stress factors; however little is known about its delayed effects. Recently, we have shown that heat stress induces cellular senescence-like G2 arrest exclusively in early S-phase cells. The mechanism of this arrest includes the generation of heat stress-induced single-stranded DNA breaks, the collision of replication forks with these breaks and the formation of difficult-to-repair double-stranded DNA breaks. However, the early S phase-specific effects of heat stress are not limited to the induction of single-stranded DNA breaks. Here, we report that HS induces partial DNA re-replication and centrosome amplification. We suggest that HS-induced alterations in the expression levels of the genes encoding the replication licensing factors are the primary source of such perturbations. Notably, these processes do not contribute to acquisition of a senescence-like phenotype, although they do elicit postponed effects. Specifically, we found that the HeLa cells can escape from the heat stress-induced cellular senescence-like G2 arrest, and the mitosis they enter is multipolar due to the amplified centrosomes.
Collapse
Affiliation(s)
- Nadezhda V Petrova
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Artem K Velichko
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Sergey V Razin
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Lomonosov Moscow State University , Moscow , Russia.,c LIA 1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| | - Omar L Kantidze
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Lomonosov Moscow State University , Moscow , Russia.,c LIA 1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| |
Collapse
|
24
|
Aspinall CF, Zheleva D, Tighe A, Taylor SS. Mitotic entry: Non-genetic heterogeneity exposes the requirement for Plk1. Oncotarget 2015; 6:36472-88. [PMID: 26472023 PMCID: PMC4742190 DOI: 10.18632/oncotarget.5507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/30/2015] [Indexed: 12/02/2022] Open
Abstract
The quest to develop novel antimitotic chemotherapy agents has led to the generation of several small molecule inhibitors targeting Plk1, a protein kinase required for multiple aspects of cell division. Previous studies have shown that upon exposure to Plk1 inhibitors, cells enter mitosis, delay briefly in prophase and then arrest in mitosis due to an inability to undergo centrosome separation. Here, we show that four different classes of Plk1 inhibitor block mitotic entry in several cancer cell lines and non-transformed RPE-1 cells. The proportion of cells that arrest in G2 is cell line and concentration dependent, and is subject to non-genetic heterogeneity. Following inhibitor washout, the G2 block is alleviated and cells enter mitosis but then fail to complete cell division indicating that most Plk1 inhibitors are not fully reversible. An exception is CYC140844; in contrast to five other inhibitors examined here, this novel Plk1 inhibitor is fully reversible. We discuss the implications for developing Plk1 inhibitors as chemotherapy agents and research tools.
Collapse
Affiliation(s)
- Claire F. Aspinall
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Anthony Tighe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen S. Taylor
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
25
|
Baudrimont A, Becskei A. Expression feels two pulses. Nature 2015; 527:46-7. [DOI: 10.1038/nature15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Fanconi anemia cells with unrepaired DNA damage activate components of the checkpoint recovery process. Theor Biol Med Model 2015; 12:19. [PMID: 26385365 PMCID: PMC4575447 DOI: 10.1186/s12976-015-0011-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Background The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage. Methods We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot. Results Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA. Conclusions Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.
Collapse
|
27
|
Smits VAJ, Gillespie DA. DNA damage control: regulation and functions of checkpoint kinase 1. FEBS J 2015. [DOI: 10.1111/febs.13387] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Veronique A. J. Smits
- Unidad de Investigación; Hospital Universitario de Canarias; Instituto de Tecnologías Biomédicas; Tenerife Spain
| | - David A. Gillespie
- Instituto de Tecnologías Biomédicas; Centro de Investigaciones Biomédicas de Canarias; Facultad de Medicina; Campus Ciencias de la Salud; Universidad de La Laguna; Tenerife Spain
| |
Collapse
|
28
|
Zuco V, De Cesare M, Zaffaroni N, Lanzi C, Cassinelli G. PLK1 is a critical determinant of tumor cell sensitivity to CPT11 and its inhibition enhances the drug antitumor efficacy in squamous cell carcinoma models sensitive and resistant to camptothecins. Oncotarget 2015; 6:8736-49. [PMID: 25826089 PMCID: PMC4496180 DOI: 10.18632/oncotarget.3538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 01/21/2023] Open
Abstract
Intrinsic and acquired tumor drug resistance limits the therapeutic efficacy of camptothecins (CPTs). Downregulation of the mitotic kinase PLK1 was found associated with apoptosis induced by SN38 (CPT11 active metabolite). We investigated the role of PLK1 in the cell response to CPTs in squamous cell carcinoma (SCC) and pediatric sarcoma cell lines and explored the therapeutic potential of the combination of CPT11 and the PLK1 inhibitor BI2536 in CPT-sensitive and -resistant tumor models. Gain- and loss-of-function experiments established a direct role for PLK1 in counteracting SN38 antiproliferative and pro-apoptotic effects. The ability to activate an efficient G2/M cell cycle checkpoint allowing PLK1 ubiquitination and degradation was found associated with SN38-induced apoptosis in SCC cells. However, the synergistic interaction between SN38 and BI2536 enhanced apoptosis in cell lines both sensitive and resistant to SN38-induced apoptotic cell death. A well-tolerated CPT11/BI2536 cotreatment resulted in improved antitumor effect against SCC xenografts in mice compared to single agent treatments. The increased apoptosis induction was reflected in a high rate of complete responses and cures in mice harboring SCC, including tumors with intrinsic or acquired resistance to CPTs. PLK1 inhibition represents a promising strategy to improve the antitumor efficacy of CPT11-based regimens.
Collapse
Affiliation(s)
- Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
29
|
Abstract
The 2014 joint meeting of the International Society for Cellular Oncology (ISCO) and the European Workshop on Cytogenetics and Molecular Genetics of Solid Tumors (EWCMST), organized by Nick Gilbert, Juan Cigudosa and Bauke Ylstra, was held from 11 to 14 May in Malaga, Spain. Since the previous meeting in 2012, the ever increasing availability of new sequencing technologies has enabled the analysis of cancer genomes at an increasingly greater detail. In addition to structural changes in the genome (i.e., translocations, deletions, amplifications), frequent mutations in important regulatory genes have been found to occur, as also frequent alterations in a large number of epigenetic factors. The challenge now is to relate structural changes in cancer genomes to the underlying disease mechanisms and to reveal opportunities for the design of novel (targeted) therapies. During the meeting, various topics related to these challenges and opportunities were addressed, including those dealing with functional genomics, genome instability, biomarkers and diagnostics, cancer genetics and epigenomics. Special attention was paid to therapy-driven cancer evolution (keynote lecture) and relationships between DNA repair, cancer and ageing (Prof. Ploem lecture). Based on the information presented at the meeting, several aspects of the cancer genome and its functional implications are provided in this report.
Collapse
|
30
|
Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci 2015; 128:607-20. [PMID: 25609713 DOI: 10.1242/jcs.163766] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.
Collapse
Affiliation(s)
- Indra A Shaltiel
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenno Krenning
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wytse Bruinsma
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René H Medema
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|