1
|
Mao Z, Wang B, Chen Y, Ying J, Wang H, Li J, Zhang C, Zhuo J. Musashi orchestrates melanism in Laodelphax striatellus. INSECT SCIENCE 2025; 32:140-150. [PMID: 38706046 DOI: 10.1111/1744-7917.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
In insects, melanism, a fundamental pigmentation process, is of significant importance in evolutionary biology due to its complex genetic foundation. We investigated the role of the RNA-binding gene Musashi (msi) in melanism in Laodelphax striatellus, a Hemiptera species. We identified a single L. striatellus msi homolog, Lsmsi, encoding a 357 amino acid protein with 2 RNA recognition motifs. RNA interference-mediated knockdown of LsMsi resulted in complete body melanism and increased cuticular permeability. Additionally, we found the involvement of G protein-coupled receptor A42 and tyrosine hydroxylase (Th) in L. striatellus melanism. Knockdown of LsTh lightened the epidermis, showing dehydration signs, while LsA42 knockdown enhanced LsTh expression, leading to melanism. Surprisingly, Lsmsi knockdown decreased both LsA42 and LsTh expression, which was expected to cause whitening but resulted in melanism. Further, we found that Lsmsi influenced downstream genes like phenoloxidase homolog LsPo and dopa decarboxylase (Ddc) homolog LsDdc in the tyrosine-mediated melanism pathway. Extending to Nilaparvata lugens and Sogatella furcifera, we demonstrated the conserved role of msi in melanism among Delphacidae. Given MSI proteins' roles in cancer and tumors in vertebrates, our study is the first to link msi in insects to Delphacidae body color melanization via the tyrosine-mediated pathway, offering fresh perspectives on the genetic basis of insect melanism and msi functions.
Collapse
Affiliation(s)
- Zeping Mao
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Biyun Wang
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Youyuan Chen
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jinjun Ying
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Haiqiang Wang
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Junmin Li
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Chuanxi Zhang
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jichong Zhuo
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| |
Collapse
|
2
|
Wu S, Tong X, Peng C, Luo J, Zhang C, Lu K, Li C, Ding X, Duan X, Lu Y, Hu H, Tan D, Dai F. The BTB-ZF gene Bm-mamo regulates pigmentation in silkworm caterpillars. eLife 2024; 12:RP90795. [PMID: 38587455 PMCID: PMC11001300 DOI: 10.7554/elife.90795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.
Collapse
Affiliation(s)
- Songyuan Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenxing Peng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Jiangwen Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenghao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xin Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaohui Duan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Yaru Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Duan Tan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
3
|
Skojec C, Godfrey RK, Kawahara AY. Long read genome assembly of Automeris io (Lepidoptera: Saturniidae) an emerging model for the evolution of deimatic displays. G3 (BETHESDA, MD.) 2024; 14:jkad292. [PMID: 38324397 PMCID: PMC10917498 DOI: 10.1093/g3journal/jkad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.
Collapse
Affiliation(s)
- Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Tomihara K, Kiuchi T. Disruption of a BTB-ZF transcription factor causes female sterility and melanization in the larval body of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103982. [PMID: 37356736 DOI: 10.1016/j.ibmb.2023.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The dilute black (bd) of the silkworm Bombyx mori is a recessive mutant that produces a grayish-black color in the larval integument, instead of the characteristic white color found in wild-type larvae. In addition, eggs produced by bd females are sterile due to a deficiency in the micropylar apparatus. We identified candidate genes responsible for the bd phenotype using publicly available RNA-seq data. One of these candidate genes was homologous to the maternal gene required for meiosis (mamo) of Drosophila melanogaster, which encodes a broad-complex, tramtrack, and bric-à-brac-zinc finger (BTB-ZF) transcription factor essential for female fertility. In three independent bd strains, the expression of the B. mori mamo (Bmmamo) was downregulated in the larval integument. Using a CRISPR/Cas9-mediated knockout strategy, we found that Bmmamo knockout mutants exhibit a grayish-black color in the larval integument and female infertility. Moreover, larvae obtained from the complementation cross between bd/+ mutants and heterozygous knockouts for the Bmmamo also exhibited a grayish-black color, indicating that Bmmamo is responsible for the bd phenotype. Gene expression analysis using Bmmamo knockout mutants suggested that the BmMamo protein suppresses the expression of melanin synthesis genes. Previous comparative genome analysis revealed that the Bmmamo was selected during silkworm domestication, and we found that Bmmamo expression in the larval integument is higher in B. mori than in the wild silkworm B. mandarina, suggesting that the Bmmamo is involved in domestication-associated pigmentation changes of the silkworm.
Collapse
Affiliation(s)
- Kenta Tomihara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Tian H, Liu SQ, Jing WH, Hao ZH, Li YH, Lu ZH, Ding ZK, Huang SL, Xu YS, Wang HB. Imaginal disc growth factor is involved in melanin synthesis and energy metabolism in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21995. [PMID: 36575612 DOI: 10.1002/arch.21995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The imaginal disc growth factor (IDGF), belonging to the glycoside hydrolase 18 family, plays an important role in various physiological processes in insects. However, the detail physiological function of IDGF is still unclear. In this study, transcriptome analysis was performed on the fatbody isolated from staged control and BmIDGF mutant silkworm larvae. Transcriptional profiling revealed that the absence of BmIDGF significantly affected differentially expressed genes involved in tyrosine and purine metabolism, as well as multiple energy metabolism pathways, including glycolysis, galactose, starch, and sucrose metabolism. The interruption of BmIDGF caused similar and specific gene expression changes to male and female fatbody. Furthermore, a genome-scale metabolic network integrating metabolomic and transcriptomic datasets revealed 11 pathways significantly altered at the transcriptional and metabolic levels, including amino acid, carbohydrate, uric acid metabolism pathways, insect hormone biosynthesis, and ABC transporters. In conclusion, this multiomics analysis suggests that IDGF is involved in gene-metabolism interactions, revealing its unique role in melanin synthesis and energy metabolism. This study provides new insights into the physiological function of IDGF in insects.
Collapse
Affiliation(s)
- Huan Tian
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hui Jing
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Hua Hao
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying-Hui Li
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhe-Hao Lu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ze-Kai Ding
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shao-Li Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Yoshida A, Yabu S, Otaki JM. The Plastic Larval Body Color of the Pale Grass Blue Butterfly Zizeeria maha (Lepidoptera: Lycaenidae) in Response to the Host Plant Color: The Maternal Effect on Crypsis. INSECTS 2023; 14:insects14020202. [PMID: 36835771 PMCID: PMC9966816 DOI: 10.3390/insects14020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2023]
Abstract
Many lepidopteran larvae show body color polyphenism, and their colors may be cryptic on the host plant leaves. To elucidate the effect of the host plant color on the plastic larval body color, we focused on the lycaenid butterfly Zizeeria maha, which shows various larval body colors ranging from green to red, even within a sibling group. We showed that oviposition was normally performed on both green and red leaves, despite a green preference and the fact that the larvae grew equally by consuming either green or red leaves. The number of red larvae decreased from the second instar stage to the fourth instar stage, demonstrating a stage-dependent variation. When the larvae were fed either green or red leaves across multiple generations of the lineages, the red larvae were significantly more abundant in the red leaf lineage than in the green leaf lineage. Moreover, the red-fed siblings showed a significantly higher red larval frequency than the green-fed siblings in the red-leaf lineage but not in the green-leaf lineage. These results suggest that, in this butterfly species, the plastic larval body color for crypsis may be affected not only by the color of the leaves that the larvae consume (single-generation effect) but also by the color of the leaves that their mothers consume (maternal effect), in addition to a stage-dependent color variation.
Collapse
|
7
|
Tsubota T, Sakai H, Sezutsu H. Genome Editing of Silkworms. Methods Mol Biol 2023; 2637:359-374. [PMID: 36773160 DOI: 10.1007/978-1-0716-3016-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Silkworm is a lepidopteran insect that has been used as a model for a wide variety of biological studies. The microinjection technique is available, and it is possible to cause transgenesis as well as target gene disruption via the genome editing technique. TALEN-mediated knockout is especially effective in this species. We also succeeded in the precise and efficient integration of a donor vector using the precise integration into target chromosome (PITCh) method. Here we describe protocols for ZFN (zinc finger nuclease)-, TALEN (transcription activator-like effector nuclease)-, and CRISPR/Cas9-mediated genome editing as well as the PITCh technique in the silkworm. We consider that all of these techniques can contribute to the further promotion of various biological studies in the silkworm and other insect species.
Collapse
Affiliation(s)
- Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Tomihara K, Andolfatto P, Kiuchi T. Allele-specific knockouts reveal a role for apontic-like in the evolutionary loss of larval melanin pigmentation in the domesticated silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:701-710. [PMID: 35752945 PMCID: PMC9633403 DOI: 10.1111/imb.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/22/2022] [Indexed: 05/25/2023]
Abstract
The domesticated silkworm, Bombyx mori, and its wild progenitor, B. mandarina, are extensively studied as a model case of the evolutionary process of domestication. A conspicuous difference between these species is the dramatic reduction in melanin pigmentation in both larval and adult B. mori. Here we evaluate the efficiency of CRISPR/Cas9-targeted knockouts of pigment-related genes as a tool to understand their potential contributions to domestication-associated melanin pigmentation loss in B. mori. To demonstrate the efficacy of targeted knockouts in B. mandarina, we generated a homozygous CRISPR/Cas9-targeted knockout of yellow-y. In yellow-y knockout mutants, black body colour became lighter throughout the larval, pupal and adult stages, confirming a role for this gene in melanin pigment formation. Further, we performed allele-specific CRISPR/Cas9-targeted knockouts of the pigment-related transcription factor, apontic-like (apt-like) in B. mori × B. mandarina F1 hybrid individuals which exhibit B. mandarina-like larval pigmentation. Knockout of the B. mandarina allele of apt-like in F1 embryos results in white patches on the dorsal integument of larvae, whereas corresponding knockouts of the B. mori allele consistently exhibit normal F1 larval pigmentation. These results demonstrate a contribution of apt-like to the evolution of reduced melanin pigmentation in B. mori. Together, our results demonstrate the feasibility of CRISPR/Cas9-targeted knockouts as a tool for understanding the genetic basis of traits associated with B. mori domestication.
Collapse
Affiliation(s)
- Kenta Tomihara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY 10026, USA
| | - Takashi Kiuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Wang N, Zhang Y, Li W, Peng Z, Pan H, Li S, Cheng T, Liu C. Abnormal overexpression of SoxD enhances melanin synthesis in the Ursa mutant of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103832. [PMID: 36067957 DOI: 10.1016/j.ibmb.2022.103832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The pigment and structural color of insects play crucial roles in body protection, ecological adaptation, and signal communication. Epidermal melanization is a common and main coloring pattern, which results in broad phenotypic diversity. Melanin is one of the compounds contributing to dark brown-black pigmentation, which is synthesized from dopamine and tyrosine by the melanin metabolism pathway. The Ursa mutant of the silkworm Bombyx mori is a body-color mutant characterized by excessive melanin pigmentation in the larval epidermis. However, the exact gene responsible for this phenotype remains unclear. Here, we performed positional cloning of the gene responsible for Ursa, which was mapped to an 83-kb region on chromosome 14. The genomic region contains a protein-coding gene encoding a transcription factor, which was designated BmSoxD. The mutation site was determined by analysis of nucleotide sequences of the genomic region corresponding to BmSoxD, which identified a 449-bp transposable sequence similar to that of the B. mori transposon Helitron inserted into the sixth intron. BmSoxD was dramatically overexpressed in the epidermis of Ursa at the end of the molting stage compared with that of wild-type B. mori. Overexpression of BmSoxD led to upregulation of genes involved in the melanin metabolism pathway, whereas knocking down BmSoxD via small interfering RNAs blocked melanin pigment production in the larval epidermis. These data indicate that the mutation in BmSoxD is responsible for the Ursa mutant phenotype. We propose that the transposable sequence insertion causes abnormal overexpression of BmSoxD at the molting stage in the Ursa mutant, resulting in excessive melanin synthesis and its accumulation in epidermal cells.
Collapse
Affiliation(s)
- Niannian Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Yinxia Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Wei Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhangchuan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Huan Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Shan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China; Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
10
|
Tong X, Qiao L, Luo J, Ding X, Wu S. The evolution and genetics of lepidopteran egg and caterpillar coloration. Curr Opin Genet Dev 2021; 69:140-146. [PMID: 34030080 DOI: 10.1016/j.gde.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Insect colors and color patterns have fascinated biologists for centuries. While extensive research has focused on the adult colors of Drosophila and butterflies, our understanding of how colors are generated and diversified in embryonic and larval stages remains limited, especially, the genetics behind the protective coloration of the immobile embryonic and larval stages. Lepidoptera, one of the most widespread and species-rich insect orders, are extremely helpful uncovering those mechanisms due to their remarkable diverse colors in eggs and caterpillars within or among species, and these colors usually are variable in different developmental stages or in response to different environments. Here we review the recent progress on coloration of lepidopteran eggs and caterpillars, focusing on the genetic basis, developmental mechanisms, ecology, and evolution underlying the remarkable color diversity.
Collapse
Affiliation(s)
- Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jiangwen Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Shirai Y, Ohde T, Daimon T. Functional conservation and diversification of yellow-y in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103515. [PMID: 33387638 DOI: 10.1016/j.ibmb.2020.103515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The diverse colors and patterns found in Lepidoptera are important for success of these species. Similar to the wings of adult butterflies, lepidopteran larvae exhibit diverse color variations to adapt to their habitats. Compared with butterfly wings, however, less attention has been paid to larval body colorations and patterns. In the present study, we focus on the yellow-y gene, which participates in the melanin synthesis pathway. We conducted CRISPR/Cas9-mediated targeted mutagenesis of yellow-y in the tobacco cutworm Spodoptera litura. We analyzed the role of S. litura yellow-y in pigmentation by morphological observation and discovered that yellow-y is necessary for normal black pigmentation in S. litura. We also showed species- and tissue-specific requirements of yellow-y in pigmentation in comparison with those of Bombyx mori yellow-y mutants. Furthermore, we found that almost none of the yellow-y mutant embryos hatched unaided. We provide evidence that S. litura yellow-y has a novel important function in egg hatching, in addition to pigmentation. The present study will enable a greater understanding of the functions and diversification of the yellow-y gene in insects.
Collapse
Affiliation(s)
- Yu Shirai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takahiro Ohde
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
12
|
Che LR, He ZB, Liu Y, Yan ZT, Han BZ, Chen XJ, He XF, Zhang JJ, Chen B, Qiao L. Electroporation-mediated nucleic acid delivery during non-embryonic stages for gene-function analysis in Anopheles sinensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103500. [PMID: 33278627 DOI: 10.1016/j.ibmb.2020.103500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The delivery of exogenous nucleic acids to eggs or non-embryonic individuals by microinjection is a vital reverse genetics technique used to determine gene function in mosquitoes. However, DNA delivery to eggs is complex and time-consuming, and conventional, non-embryonic-injection techniques may result in unobvious phenotypes caused by insufficient absorption of nucleic acid fragments by cells at target body parts or tissues. In this study, we developed a set of electroporation-mediated non-embryonic microinjections for the delivery of exogenous nucleic acids in Anopheles sinensis. Gene silencing using this method led to down-regulation of target gene expression (AsCPR128) by 77% in targeted body parts, compared with only 10% in non-targeted body parts, thus increasing the defect-phenotype rate in the target area by 5.3-fold, compared with non-shock injected controls. Electroporation-mediated somatic transgenesis resulted in stable phenotypic characteristics of the reporter gene at the shocked body parts during the pupal-adult stages in about 69% of individuals. Furthermore, injecting plasmid DNA near the ovaries of female mosquitoes after a blood meal followed by electric shock produced three germline G1 transgenic lines, with a transformation rate of about 11.1% (calculated from ovulatory G0 females). Among the positive G1 lines, 42%, 40%, and 31% of individuals emitted red fluorescence in the larval stage. When the red fluorescent larvae developed into adults, green fluorescence was emitted from the ovaries of the females upon feeding. These results suggest that electroporation-mediated non-embryonic microinjection can be an efficient, rapid, and simple technique for analyzing gene function in non-model mosquitoes or other small insects.
Collapse
Affiliation(s)
- Lin-Rong Che
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan Liu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bao-Zhu Han
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xiao-Jie Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xing-Fei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jia-Jun Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
13
|
Gao Y, Liu YC, Jia SZ, Liang YT, Tang Y, Xu YS, Kawasaki H, Wang HB. Imaginal disc growth factor maintains cuticle structure and controls melanization in the spot pattern formation of Bombyx mori. PLoS Genet 2020; 16:e1008980. [PMID: 32986708 PMCID: PMC7544146 DOI: 10.1371/journal.pgen.1008980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The complex stripes and patterns of insects play key roles in behavior and ecology. However, the fine-scale regulation mechanisms underlying pigment formation and morphological divergence remain largely unelucidated. Here we demonstrated that imaginal disc growth factor (IDGF) maintains cuticle structure and controls melanization in spot pattern formation of Bombyx mori. Moreover, our knockout experiments showed that IDGF is suggested to impact the expression levels of the ecdysone inducible transcription factor E75A and pleiotropic factors apt-like and Toll8/spz3, to further control the melanin metabolism. Furthermore, the untargeted metabolomics analyses revealed that BmIDGF significantly affected critical metabolites involved in phenylalanine, beta-alanine, purine, and tyrosine metabolism pathways. Our findings highlighted not only the universal function of IDGF to the maintenance of normal cuticle structure but also an underexplored space in the gene function affecting melanin formation. Therefore, this study furthers our understanding of insect pigment metabolism and melanin pattern polymorphisms. The diverse stripe patterns of animals are usually used for warning or camouflage. However, the actual mechanisms underlying diverse stripe pattern formation remains largely unknown. This study provides direct evidence that imaginal disc growth factor (IDGF) maintains cuticle structure and controls melanization in the spot pattern formation. Our exhaustive knockout experiments reveal that BmIDGF is involved in the melanin pigmentation of Bombyx mori. We demonstrate that IDGF impacts the expression levels of the 20E-inducible transcription factor E75A and pleiotropic factors apt-like and Toll8/spz3, to further affect the melanin metabolism. Furthermore, the metabolome of BmIDGF gene deletion connects metabolism to gene function. Thus, this study shed light on not only the unique function of IDGF but also the molecular mechanism of spot pattern formation.
Collapse
Affiliation(s)
- Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Cai Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Ze Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Ting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hideki Kawasaki
- Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Hua-Bing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
14
|
Qiao L, Yan ZW, Xiong G, Hao YJ, Wang RX, Hu H, Song JB, Tong XL, Che LR, He SZ, Chen B, Mallet J, Lu C, Dai FY. Excess melanin precursors rescue defective cuticular traits in stony mutant silkworms probably by upregulating four genes encoding RR1-type larval cuticular proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103315. [PMID: 31945452 DOI: 10.1016/j.ibmb.2020.103315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Melanin and cuticular proteins are vital cuticle components in insects. Cuticular defects caused by mutations in cuticular protein-encoding genes can obstruct melanin deposition. The effects of changes in melanin on the expression of cuticular protein-encoding genes, the cuticular and morphological traits, and the origins of these effects are unknown. We found that the cuticular physical characteristics and the expression patterns of larval cuticular protein-encoding genes markedly differed between the melanic and non-melanic integument regions. By using four p multiple-allele color pattern mutants with increasing degrees of melanism (+p, pM, pS, and pB), we found that the degree of melanism and the expression of four RR1-type larval cuticular protein-encoding genes (BmCPR2, BmLcp18, BmLcp22, and BmLcp30) were positively correlated. By modulating the content of melanin precursors and the expression of cuticular protein-encoding genes in cells in tissues and in vivo, we showed that this positive correlation was due to the induction of melanin precursors. More importantly, the melanism trait introduced into the BmCPR2 deletion strain Dazao-stony induced up-regulation of three other similar chitin-binding characteristic larval cuticular protein-encoding genes, thus rescuing the cuticular, morphological and adaptability defects of the Dazao-stony strain. This rescue ability increased with increasing melanism levels. This is the first study reporting the induction of cuticular protein-encoding genes by melanin and the biological importance of this induction in affecting the physiological characteristics of the cuticle.
Collapse
Affiliation(s)
- Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Zheng-Wen Yan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - You-Jin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ri-Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiang-Bo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Lin-Rong Che
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Song-Zhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Ma SY, Smagghe G, Xia QY. Genome editing in Bombyx mori: New opportunities for silkworm functional genomics and the sericulture industry. INSECT SCIENCE 2019; 26:964-972. [PMID: 29845729 DOI: 10.1111/1744-7917.12609] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
In recent years, research in life sciences has been remarkably revolutionized owing to the establishment, development and application of genome editing technologies. Genome editing has not only accelerated fundamental research but has also shown promising applications in agricultural breeding and therapy. In particular, the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology has become an indispensable tool in molecular biology owing to its high efficacy and simplicity. Genome editing tools have also been established in silkworm (Bombyx mori), a model organism of Lepidoptera insects with high economic importance. This has remarkably improved the level and scope of silkworm research and could reveal new mechanisms or targets in basic entomology and pest management studies. In this review, we summarize the progress and potential of genome editing in silkworm and its applications in functional genomic studies for generating novel genetic materials.
Collapse
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
16
|
You L, Bi HL, Wang YH, Li XW, Chen XE, Li ZQ. CRISPR/Cas9-based mutation reveals Argonaute 1 is essential for pigmentation in Ostrinia furnacalis. INSECT SCIENCE 2019; 26:1020-1028. [PMID: 29938905 DOI: 10.1111/1744-7917.12628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Ostrinia furnacalis (Lepidoptera: Pyralidae) is one of the most destructive agricultural pests in Asia. Traditional pest-management methods include sex pheromone capture, transgenic crops that produce Bacillus thuringiensis toxin, and pesticides. Although these strategies control pest populations effectively, they also cause negative side effects, including dramatically increased pesticide resistance, severe pollution, and hazards for human health. Recently developed genome editing tools provide new prospects for pest management and have been successfully used in several species. However, few examples have been reported in the agricultural pest O. furnacalis due to a lack in genomic information. In this report, we identified only one transcript of O. furnacalis Argonaute 1 (OfAgo1) gene from the genome and cloned the open reading frame. OfAgo1 presented the maximum expression at the embryo stage or in the fat body during the larval stages. To understand its function, an OfAgo1 mutant was constructed using the Clustered Regularly Interspaced Short Palindromic Repeat/RNA-guided Cas9 nuclease (CRISPR/Cas9). Mutagenesis of OfAgo1 disrupted cuticle pigmentation by down-regulating micro RNAs and pigmentation-related genes. This is the first report for the cloning and functional analysis of OfAgo1, revealing a role of OfAgo1 in cuticle pigmentation. The current report also established a CRISPR/Cas9 system in O. furnacalis, providing a new insight for pest management.
Collapse
Affiliation(s)
- Lang You
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Lun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao-Hui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Wei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xi-En Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qian Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Wang P, Zhao Q, Qiu Z, Bi S, Wang W, Wu M, Chen A, Xia D, He X, Tang S, Li M, Zhang G, Shen X. The silkworm (Bombyx mori) neuropeptide orcokinin is involved in the regulation of pigmentation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103229. [PMID: 31449846 DOI: 10.1016/j.ibmb.2019.103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The natural colorful cuticles of insects play important roles in many physiological processes. Pigmentation is a physiological process with a complex regulatory network whose regulatory mechanism remains unclear. Bombyx mori pigmentation mutants are ideal materials for research on pigmentation mechanisms. The purple quail-like (q-lp) and brown quail-like (q-lb) mutants originated from plain silkworm breeds 932VR and 0223JH respectively exhibit similar cuticle pigmentation to that of the quail mutant. The q-lp mutant also presents a developmental abnormality. In this study, genes controlling q-lp and q-lb mutants were located on chromosome 8 by positional cloning. Then the neuropeptide gene orcokinin (OK) was identified to be the major gene responsible for two quail-like mutants. The B. mori orcokinin gene (BommoOK) produces two transcripts, BommoOKA and BommoOKB, by alternative splicing. The CRISPR/Cas9 system and orcokinin peptides injection were used for further functional verification. We show a novel function of BommoOKA in inhibiting pigmentation, and one mature peptide of orcokinin A, OKA_type2, is the key factor in pigmentation inhibition. These results provide a reference for studying the function of orcokinin and are of theoretical importance for studying the regulatory mechanism of pigmentation.
Collapse
Affiliation(s)
- Pingyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, 530007, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Simin Bi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Wenbo Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Meina Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, 661101, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Xiaobai He
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Shunming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
18
|
Ding X, Liu J, Tong X, Wu S, Li C, Song J, Hu H, Tan D, Dai F. Comparative analysis of integument transcriptomes identifies genes that participate in marking pattern formation in three allelic mutants of silkworm, Bombyx mori. Funct Integr Genomics 2019; 20:223-235. [PMID: 31478115 PMCID: PMC7018788 DOI: 10.1007/s10142-019-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 11/26/2022]
Abstract
The diversity markings and pigment patterns in insects are outcomes of adaptive evolution. The elucidation of the molecular mechanism underlying variations in pigment patterns may improve our understanding of the origin and evolution of these spectacular diverse phenotypes. Melanin, ommochrome, and pteridine are the three main types of insect pigments, and the genes that directly participate in pigment biosynthesis have been extensively studied. However, available information on gene interactions and the whole pigment regulatory network is limited. In this study, we performed integument transcriptome sequencing to analyze three larval marking allelic mutants, namely, multi lunar (L), LC, and LCa, which have similar twin-spot markings on the dorsal side of multiple segments. Further analysis identified 336 differentially expressed genes (DEGs) between L and Dazao (wild type which exhibits normal markings), 68 DEGs between LC/+ and +LC/+LC, and 188 DEGs between LCa/+ and +LCa/+LCa. Gene Ontology (GO) analysis indicated a significant DEG enrichment of the functional terms catalytic activity, binding, metabolic process, and cellular process. Furthermore, three mutants share six common enriched KEGG pathways. We finally identified eight common DEGs among three pairwise comparisons, including Krueppel-like factor, TATA-binding protein, protein patched, UDP-glycosyltransferase, an unknown secreted protein, and three cuticular proteins. Microarray-based gene expression analysis revealed that the eight genes are upregulated during molting, which coincides with marking formation, and are significantly differentially expressed between marking and non-marking regions. The results suggest that the eight common genes are involved in the construction of the multiple twin-spot marking patterns in the three mutants.
Collapse
Affiliation(s)
- Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Junxia Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T. High-quality genome assembly of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:53-62. [PMID: 30802494 DOI: 10.1016/j.ibmb.2019.02.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In 2008, the genome assembly and gene models for the domestic silkworm, Bombyx mori, were published by a Japanese and Chinese collaboration group. However, the genome assembly contains a non-negligible number of misassembled and gap regions due to the presence of many repetitive sequences within the silkworm genome. The erroneous genome assembly occasionally causes incorrect gene prediction. Here we performed hybrid assembly based on 140 × deep sequencing of long (PacBio) and short (Illumina) reads. The remaining gaps in the initial genome assembly were closed using BAC and Fosmid sequences, giving a new total length of 460.3 Mb, with 30 gap regions and an N50 comprising 16.8 Mb in scaffolds and 12.2 Mb in contigs. More RNA-seq and piRNA-seq reads were mapped on the new genome assembly compared with the previous version, indicating that the new genome assembly covers more transcribed regions, including repetitive elements. We performed gene prediction based on the new genome assembly using available mRNA and protein sequence data. The number of gene models was 16,880 with an N50 of 2154 bp. The new gene models reflected more accurate coding sequences and gene sets than old ones. The proportion of repetitive elements was also reestimated using the new genome assembly, and was calculated to be 46.8% in the silkworm genome. The new genome assembly and gene models are provided in SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp).
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
20
|
Jin H, Seki T, Yamaguchi J, Fujiwara H. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. SCIENCE ADVANCES 2019; 5:eaav7569. [PMID: 30989117 PMCID: PMC6457947 DOI: 10.1126/sciadv.aav7569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/14/2019] [Indexed: 06/02/2023]
Abstract
Color patterns often function as camouflage to protect insects from predators. In most swallowtail butterflies, younger larvae mimic bird droppings but change their pattern to mimic their host plants during their final molt. This pattern change is determined during the early fourth instar by juvenile hormone (JH-sensitive period), but it remains unclear how the prepatterning process is controlled. Using Papilio xuthus larvae, we performed transcriptome comparisons to identify three camouflage pattern-associated homeobox genes [clawless, abdominal-A, and Abdominal-B (Abd-B)] that are up-regulated during the JH-sensitive period in a region-specific manner. Electroporation-mediated knockdown of each gene at the third instar caused loss or change of original fifth instar patterns, but not the fourth instar mimetic pattern, and knockdown of Abd-B after the JH-sensitive period had no effect on fifth instar patterns. These results indicate the role of these genes during the JH-sensitive period and in the control of the prepatterning gene network.
Collapse
|
21
|
Guo Z, Qin J, Zhou X, Zhang Y. Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int J Mol Sci 2018; 19:ijms19113691. [PMID: 30469390 PMCID: PMC6274879 DOI: 10.3390/ijms19113691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions. Consequently, considering the importance of versatile TFs in orchestrating diverse insect physiological processes, this review will assist a growing number of entomologists to interrogate this understudied field, and to propel the progress of their contributions to pest control and even human health.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Wang L, Dong Z, Wang J, Yin Y, Liu H, Hu W, Peng Z, Liu C, Li M, Banno Y, Shimada T, Xia Q, Zhao P. Proteomic Analysis of Larval Integument in a Dominant Obese Translucent (Obs) Silkworm Mutant. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5168485. [PMID: 30412263 PMCID: PMC6225826 DOI: 10.1093/jisesa/iey098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The dominant obese translucent (Obs) mutant of the silkworm (Bombyx mori) results in a short and stout larval body, translucent phenotype, and abnormal pigmentation in the integument. The Obs mutant also displays deficiency in ecdysis and metamorphosis. In the present study, to gain an understanding of multiple Obs phenotypes, we investigated the phenotypes of Obs and performed a comparative analysis of the larval integument proteomes of Obs and normal silkworms. The phenotypic analysis revealed that the Obs larvae were indeed short and fat, and that chitin and uric acid content were lower but melanin content was higher in the Obs mutant. Proteomic analysis revealed that 244 proteins were significantly differentially expressed between Obs and normal silkworms, some of which were involved in uric acid metabolism and melanin pigmentation. Twenty-six proteins were annotated as cuticular proteins, including RR motif-rich cuticular proteins (CPR), glycine-rich cuticular protein (CPG), hypothetical cuticular protein (CPH), cuticular protein analogous to peritrophins (CPAPs), and the chitin_bind_3 motif proteins, and accounted for over 84% of the abundance of the total significantly differentially expressed proteins. Moreover, 22 of the 26 cuticular proteins were downregulated in the Obs mutant. Comparative proteomic analysis suggested that the multiple phenotypes of the Obs mutant might be related to changes in the expression of proteins that participate in cuticular formation, uric acid metabolism, and melanin pigmentation. These results could lay a basis for further identification of the gene responsible for the Obs mutant. The data have been deposited to ProteomeXchange with identifier PXD010998.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Juan Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Yaru Yin
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Zhangchuan Peng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Yutaka Banno
- Institute of Genetic Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Tiansheng Road, Beibei, Chongqing, China
| |
Collapse
|
23
|
Xiang H, Liu X, Li M, Zhu Y, Wang L, Cui Y, Liu L, Fang G, Qian H, Xu A, Wang W, Zhan S. The evolutionary road from wild moth to domestic silkworm. Nat Ecol Evol 2018; 2:1268-1279. [PMID: 29967484 DOI: 10.1038/s41559-018-0593-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
The Silk Road, which derives its name from the trade of silk produced by the domestic silkworm Bombyx mori, was an important episode in the development and interaction of human civilizations. However, the detailed history behind silkworm domestication remains ambiguous, and little is known about the underlying genetics with respect to important aspects of its domestication. Here, we reconstruct the domestication processes and identify selective sweeps by sequencing 137 representative silkworm strains. The results present an evolutionary scenario in which silkworms may have been initially domesticated in China as trimoulting lines, then subjected to independent spreads along the Silk Road that gave rise to the development of most local strains, and further improved for modern silk production in Japan and China, having descended from diverse ancestral sources. We find that genes with key roles in nitrogen and amino acid metabolism may have contributed to the promotion of silk production, and that circadian-related genes are generally selected for their adaptation. We additionally identify associations between several candidate genes and important breeding traits, thereby advancing the applicable value of our resources.
Collapse
Affiliation(s)
- Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaojing Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muwang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ya'nan Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lizhi Wang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong Cui
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liyuan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Anying Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China.
| |
Collapse
|
24
|
Body Shape and Coloration of Silkworm Larvae Are Influenced by a Novel Cuticular Protein. Genetics 2017; 207:1053-1066. [PMID: 28923848 DOI: 10.1534/genetics.117.300300] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022] Open
Abstract
The genetic basis of body shape and coloration patterns on caterpillars is often assumed to be regulated separately, but it is possible that common molecules affect both types of trait simultaneously. Here we examine the genetic basis of a spontaneous cuticle defect in silkworm, where larvae exhibit a bamboo-like body shape and decreased pigmentation. We performed linkage mapping and mutation screening to determine the gene product that affects body shape and coloration simultaneously. In these mutant larvae we identified a null mutation in BmorCPH24, a gene encoding a cuticular protein with low complexity sequence. Spatiotemporal expression analyses showed that BmorCPH24 is expressed in the larval epidermis postecdysis. RNAi-mediated knockdown and CRISPR/Cas9-mediated knockout of BmorCPH24 produced the abnormal body shape and the inhibited pigment typical of the mutant phenotype. In addition, our results showed that BmorCPH24 may be involved in the synthesis of endocuticle and its disruption-induced apoptosis of epidermal cells that accompanied the reduced expression of R&R-type larval cuticle protein genes and pigmentation gene Wnt1 Strikingly, BmorCPH24, a fast-evolving gene, has evolved a new function responsible for the assembly of silkworm larval cuticle and has evolved to be an indispensable factor maintaining the larval body shape and its coloration pattern. This is the first study to identify a molecule whose pleiotropic function affects the development of body shape and color patterns in insect larvae.
Collapse
|
25
|
Toll ligand Spätzle3 controls melanization in the stripe pattern formation in caterpillars. Proc Natl Acad Sci U S A 2017; 114:8336-8341. [PMID: 28716921 DOI: 10.1073/pnas.1707896114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A stripe pattern is an aposematic or camouflage coloration often observed among various caterpillars. However, how this ecologically important pattern is formed is largely unknown. The silkworm dominant mutant Zebra (Ze) has a black stripe in the anterior margin of each dorsal segment. Here, fine linkage mapping of 3,135 larvae revealed a 63-kbp region responsible for the Ze locus, which contained three candidate genes, including the Toll ligand gene spätzle3 (spz-3). Both electroporation-mediated ectopic expression and RNAi analyses showed that, among candidate genes, only processed spz-3 induced melanin pigmentation and that Toll-8 was the candidate receptor gene of spz-3 This Toll ligand/receptor set is also involved in melanization of other mutant Striped (pS ), which has broader stripes. Additional knockdown of 5 other spz family and 10 Toll-related genes caused no drastic change in the pigmentation of either mutant, suggesting that only spz-3/Toll-8 is mainly involved in the melanization process rather than pattern formation. The downstream pigmentation gene yellow was specifically up-regulated in the striped region of the Ze mutant, but spz-3 showed no such region-specific expression. Toll signaling pathways are known to be involved in innate immunity, dorsoventral axis formation, and neurotrophic functions. This study provides direct evidence that a Toll signaling pathway is co-opted to control the melanization process and adaptive striped pattern formation in caterpillars.
Collapse
|
26
|
Fujiwara H, Nishikawa H. Functional analysis of genes involved in color pattern formation in Lepidoptera. CURRENT OPINION IN INSECT SCIENCE 2016; 17:16-23. [PMID: 27720069 DOI: 10.1016/j.cois.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 05/22/2023]
Abstract
In addition to the genome editing technology, novel functional analyses using electroporation are powerful tools to reveal the gene function in the color pattern formation. Using these methods, several genes involved in various larval color pattern formation are clarified in the silkworm Bombyx mori and some Papilio species. Furthermore, the coloration pattern mechanism underlying the longtime mystery of female-limited Batesian mimicry of Papilio polytes has been recently revealed. This review presents the recent progress on the molecular mechanisms and evolutionary process of coloration patterns contributing to various mimicry in Lepidoptera, especially focusing on the gene function in the silkworm and Papilio species.
Collapse
Affiliation(s)
- Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hideki Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
27
|
Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep 2016; 6:26114. [PMID: 27193628 PMCID: PMC4872147 DOI: 10.1038/srep26114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022] Open
Abstract
The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae.
Collapse
|
28
|
Yang B, Fujii T, Ishikawa Y, Matsuo T. Targeted mutagenesis of an odorant receptor co-receptor using TALEN in Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:53-59. [PMID: 26689645 DOI: 10.1016/j.ibmb.2015.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
Genome editing using transcription activator-like effector nuclease (TALEN) has been applied for various model organisms but not yet for agricultural pest insects. In this study, TALEN-mediated mutagenesis of the gene encoding odorant receptor co-receptor (Orco) of an important agricultural pest Ostrinia furnacalis (OfurOrco) was carried out. Of the two pairs of TALEN constructs designed, one generated somatic and germline mutations at rates of 70.8% and 20.8%, respectively. Physiological and behavioral analyses using a gas chromatograph-electroantennographic detector system and a wind tunnel, respectively, revealed that antennal responses to sex pheromone components were decreased to trace levels, and behavioral responses were abolished in OfurOrco mutants. This study demonstrated that TALEN-mediated mutagenesis is applicable to pest insects, and these results will open the way for a better understanding of chemosensory systems in wild insects.
Collapse
Affiliation(s)
- Bin Yang
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeshi Fujii
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Ishikawa
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
29
|
Yuasa M, Kiuchi T, Banno Y, Katsuma S, Shimada T. Identification of the silkworm quail gene reveals a crucial role of a receptor guanylyl cyclase in larval pigmentation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 68:33-40. [PMID: 26561270 DOI: 10.1016/j.ibmb.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Diverse color patterns on the integument of lepidopteran larvae play important roles in their survival through camouflage, mimicry, sexual signaling, and aposematism. In the silkworm Bombyx mori, many color pattern variations have been preserved in inbred strains making them a good model for elucidating the molecular mechanisms that underlie color pattern formation. In this study, we focused on the silkworm quail (q) mutant, which exhibits abnormalities in multiple pigment biosynthesis pathways. Positional cloning of the q gene revealed that disruption of a guanylyl cyclase gene, BmGC-I, is responsible for its abnormal pigmentation. In q mutants, we identified a 16-bp deletion in the BmGC-I transcript, resulting in the production of a premature stop codon. Knockout of the BmGC-I gene resulted in the q-like abnormal pigmentation, thereby demonstrating that the BmGC-I gene is involved in the pigment biosynthesis pathway in the integument. Moreover, quantitative reverse transcription polymerase chain reaction showed that BmGC-I was strongly expressed in the fourth instar on day 2. Our results suggest that BmGC-I deficiency affects the pigment biosynthesis pathway, which supports the involvement of guanylyl cyclase in larval coloration.
Collapse
Affiliation(s)
- Masashi Yuasa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Banno
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
30
|
Protruding structures on caterpillars are controlled by ectopic Wnt1 expression. PLoS One 2015; 10:e0121736. [PMID: 25815728 PMCID: PMC4376876 DOI: 10.1371/journal.pone.0121736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Spine-like or protruding structures, which may be aposematic for predators, are often observed in multiple segments of lepidopteran larvae (caterpillars). For example, the larvae of the Chinese wheel butterfly, Byasa alcinous, display many protrusions on their backs as a warning that they are toxic. Although these protrusions are formed by an integument lined with single-layered epidermal cells, the molecular mechanisms underlying their formation have remained unclear. In this study, we focused on a spontaneous mutant of the silkworm, Bombyx mori, Knobbed, which shows similar protrusions to B. alcinous and demonstrates that Wnt1 plays a crucial role in the formation of protrusion structures. Using both transgene expression and RNAi-based knockdown approaches, we showed that Wnt1 designates the position where epidermal cells excessively proliferate, leading to the generation of knobbed structures. Furthermore, in the B. alcinous larvae, Wnt1 was also specifically expressed in association with the protrusions. Our results suggest that Wnt1 plays a role in the formation of protrusions on the larval body, and is conserved broadly among diverse species in Lepidoptera.
Collapse
|
31
|
Recent progress in molecular genetic studies on the carotenoid transport system using cocoon-color mutants of the silkworm. Arch Biochem Biophys 2015; 572:151-157. [PMID: 25579881 DOI: 10.1016/j.abb.2014.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 11/23/2022]
Abstract
The existence of tissue-specific delivery for certain carotenoids is supported by genetic evidence from the silkworm Bombyx mori and the identification of cocoon color mutant genes, such as Yellow blood (Y), Yellow cocoon (C), and Flesh cocoon (F). Mutants with white cocoons are defective in one of the steps involved in transporting carotenoids from the midgut lumen to the middle silk gland via the hemolymph lipoprotein, lipophorin, and the different colored cocoons are caused by the accumulation of specific carotenoids into the middle silk gland. The Y gene encodes carotenoid-binding protein (CBP), which is expected to function as the cytosolic transporter of carotenoids across the enterocyte and epithelium of the middle silk gland. The C and F genes encode the C locus-associated membrane protein, which is homologous to a mammalian high-density lipoprotein receptor-2 (Cameo2) and scavenger receptor class B member 15 (SCRB15), respectively; these membrane proteins are expected to function as non-internalizing lipophorin receptors in the middle silk gland. Cameo2 and SCRB15 belong to the cluster determinant 36 (CD36) family, with Cameo2 exhibiting specificity not only for lutein, but also for zeaxanthin and astaxanthin, while SCRB15 seems to have specificity toward carotene substrates such as α-carotene and β-carotene. These findings suggest that Cameo2 and SCRB15 can discriminate the chemical structure of lutein and β-carotene from circulating lipophorin during uptake. These data provide the first evidence that CD36 family proteins can discriminate individual carotenoid molecules in lipophorin.
Collapse
|