1
|
Giraud D, Choisne N, Summo M, Sidibe-Bocs S, Vassilieff H, Costantino G, Droc G, Teycheney PY, Maumus F, Ollitrault P, Luro F. Construction of a comprehensive library of repeated sequences for the annotation of Citrus genomes. BMC Genom Data 2025; 26:30. [PMID: 40247189 PMCID: PMC12007355 DOI: 10.1186/s12863-025-01321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND The comprehensive annotation of repeated sequences in genomes is an essential prerequisite for studying the dynamics of these sequences over time and their involvement in gene regulation. Currently, the diversity of repeated sequences in Citrus genomes is only partially characterized because the annotations have been performed using heterogeneous bioinformatics tools, each with its specificity and dedicated only to the annotation of transposable elements. RESULTS We combined complementary repeat-finding programs including REPET, CAULIFINDER, and TAREAN, to enable the identification of all types of repetitive sequences found in plant genomes, including transposable elements, endogenous caulimovirids, and satellite DNAs. A fine-grained annotation method was first developed to create a consensus sequence library of repeated sequences identified in the genome assemblies of C. medica, C. micrantha, C. reticulata, and C. maxima, the four ancestral parental species involved in the formation of economically valuable cultivated Citrus varieties. A second, faster annotation method was developed to enrich the dataset by adding new repeated sequences retrieved from genome assemblies of other Citrus species and closely related species belonging to the Aurantioideae subfamily. The final reference library contains 3,091 consensus sequences, of which 94.5% are transposable elements. The diversity of endogenous caulimovirids was characterized for the first time within the genus Citrus, contributing 160 consensus sequences to the final reference library. Finally, 10 satellite DNAs were also identified. CONCLUSION Combining multiple repeat detection methods enables the comprehensive annotation of all repeated sequences in Citrus genomes. Using the final reference library reported in this work will improve our understanding of the dynamics of repeated sequences during Citrus speciation, particularly following the genome duplication and hybridization events that led to modern cultivars. The exploration of repeat position insertions along chromosomes using the developed web interface, RepeatLoc Citrus, will also make it possible to further investigate the role of transposable elements and endogenous caulimovirids in genome structure and gene regulation in Citrus species.
Collapse
Affiliation(s)
- Delphine Giraud
- UR AGAP Corse, INRAE, Institut Agro, CIRAD, University of Montpellier, San Giuliano, F-20230, France.
| | - Nathalie Choisne
- URGI, INRAE, Université Paris-Saclay, Versailles, F-78026, France
| | - Marilyne Summo
- UMR AGAP, CIRAD, Institut Agro, INRAE, University of Montpellier, Montpellier, F-34060, France
- UMR AGAP, CIRAD, Montpellier, F-34398, France
| | - Stéphanie Sidibe-Bocs
- UMR AGAP, CIRAD, Institut Agro, INRAE, University of Montpellier, Montpellier, F-34060, France
- UMR AGAP, CIRAD, Montpellier, F-34398, France
| | | | - Gilles Costantino
- UR AGAP Corse, INRAE, Institut Agro, CIRAD, University of Montpellier, San Giuliano, F-20230, France
| | - Gaetan Droc
- UMR AGAP, CIRAD, Institut Agro, INRAE, University of Montpellier, Montpellier, F-34060, France
- UMR AGAP, CIRAD, Montpellier, F-34398, France
| | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, F-97410, France
- UMR PVBMT, Université de la Réunion, Saint-Pierre de La Réunion, F-97410, France
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles, F-78026, France
| | - Patrick Ollitrault
- UMR AGAP, CIRAD, Institut Agro, INRAE, University of Montpellier, Montpellier, F-34060, France
- UMR AGAP, CIRAD, Montpellier, F-34398, France
| | - François Luro
- UR AGAP Corse, INRAE, Institut Agro, CIRAD, University of Montpellier, San Giuliano, F-20230, France
| |
Collapse
|
2
|
de Almeida BM, Clarindo WR. A multidisciplinary and integrative review of the structural genome and epigenome of Capsicum L. species. PLANTA 2025; 261:82. [PMID: 40057910 DOI: 10.1007/s00425-025-04653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum "omics". In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum "omics" diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for "omics", ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences.
Collapse
Affiliation(s)
- Breno Machado de Almeida
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
3
|
Deng A, Wang J, Li L, Shi R, Li X, Wen T. Synoptic Variation Drives Genetic Diversity and Transmission Mode of Airborne DNA Viruses in Urban Space. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404512. [PMID: 39435753 PMCID: PMC11633480 DOI: 10.1002/advs.202404512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Airborne viruses are ubiquitous and play critical roles in maintaining ecosystem balance, however, they remain unexplored. Here, it is aimed to demonstrate that highly diverse airborne viromes carry out specific metabolic functions and use different transmission modes under different air quality conditions. A total of 263.5-Gb data are collected from 13 air samples for viral metagenomic analysis. After assembly and curation, a total of 12 484 viral contigs (1.5-184.2 kb) are assigned to 221 genus-level clades belonging to 47 families, 19 orders, and 15 classes. The composition of viral communities is influenced by weather conditions, with the main biomarker being Caudoviricetes. The most dominant viruses in these air samples belong to the dsDNA Caudoviricetes (54.0%) and ssDNA Repensiviricetes (31.2%) classes. Twelve novel candidate viruses are identified at the order/family/genus levels by alignment of complete genomes and core genes. Notably, Caudoviricetes are highly prevalent in cloudy and smoggy air, whereas Repensiviricetes are highly dominant in sunny and rainy air. Diverse auxiliary metabolic genes of airborne viruses are mainly involved in deoxynucleotide synthesis, implying their unique roles in atmosphere ecosystem. These findings deepen the understanding of the meteorological impacts on viral composition, transmission mode, and ecological roles in the air that we breathe.
Collapse
Affiliation(s)
- Aihua Deng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry CentreChina Agricultural UniversityBeijing100193P. R. China
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- Beijing Bio‐Feed Additives Key LaboratoryBeijing100193P. R. China
| | - Junyue Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lai Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Ruilin Shi
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xuemin Li
- Department of OphthalmologyPeking University Third HospitalBeijing100191P. R. China
| | - Tingyi Wen
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
4
|
Ali RM, Alisawi O, Al Fahad M. Three endogenous pararetrovirus genomes in Medicago sativa. Microbiol Resour Announc 2024; 13:e0074224. [PMID: 39329480 PMCID: PMC11556137 DOI: 10.1128/mra.00742-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The genome sequences of three related endogenous pararetroviruses were obtained by high-throughput genomic sequencing of Medicago sativa. The genomes were found to be integrated within plant genes. The phylogeny revealed that Caulimovirus-MSa3 was closely related to caulimoviruses of petunia, whereas Caulimovirus-MSa1 and Caulimovirus-MSa2 were distinct from constructed clades.
Collapse
Affiliation(s)
- Raad Mohammed Ali
- Plant Protection Department, Faculty of Agriculture, University of Tikrit, Tikrit, Iraq
| | - Osamah Alisawi
- Plant Protection Department, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | - Maadh Al Fahad
- Plant Protection Department, Faculty of Agriculture, University of Tikrit, Tikrit, Iraq
| |
Collapse
|
5
|
Rai R, Anand YR, Monteshori S, Diksha D, Dubey SK, Baranwal VK, Sharma SK. Novel genetic variants of banana streak MY virus and banana streak IM virus naturally infecting banana in Northeast India. 3 Biotech 2024; 14:277. [PMID: 39464523 PMCID: PMC11499479 DOI: 10.1007/s13205-024-04113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
Divergent banana streak viruses (BSV) were characterized from banana plants exhibiting diverse symptoms in the Northeast region (NER) of India. Using rolling circle amplification (RCA), the complete genome sequences of seven episomal banana streak MY virus (BSMYV) isolates, including two novel variants, and two new banana streak IM virus (BSIMV) isolates were characterized. The novel BSMYV genetic variants were associated with conspicuous necrosis on newly emerged leaves, peduncle distortion, pseudostem internal necrosis, in addition to common streak symptoms. For complete genome nucleotide sequences, BSMYV-IN4 and IN5 shared 77-79% identity with other BSMYVs, while BSMYV-IN7 and IN8 exhibited identities of 77-97%. This study reports for the first time, the complete genomes of two banana streak IM virus (BSIMV-IN1 and -IN2) infecting triploid banana hybrids exhibiting leaf distortion, stunted rosette-like growth, and necrosis, sharing 87% sequence identity with reference BSIMV genome (GenBank accession no. HQ593112). Phylogenetic inference based on complete genomes revealed the distinct and congruent placement of BSMYV-IN4 and IN5 within the BSMYV cluster. Pairwise sequence comparisons of the conserved RT/RNase H nucleotide (nt) sequences revealed that the BSMYV-IN7 and IN4 isolates showed 85% and 97% identity to BSMYV (AY805074), respectively, which shared highest nt identity with BSMYV-IN6, IN9, and IN10, at 100%. The RT/RNase H nt sequences of BSIMV-IN1 and IN2 had 98% identity with the BSIMV (HQ593112), but were characterized as novel variants of BSIMV based on complete genomes. An analysis of relative synonymous codon usage (RSCU) pattern in the ORFIII polyprotein of BSMYV and BSIMV isolates revealed AGA and AGG (arginine) as the most frequently overrepresented codons (>1.5), evolutionary conserved in the genome of both species. A total of 14 recombination events were detected among the 36 BSV genomes, with recombination breakpoints mainly located in the ORFI, III, and IGR genomic regions. A novel phylogenetic cluster, comprised of BSMYV-IN4 and IN5 within the clade I was probably derived from heterologous recombination between parents resembling banana streak VN virus (BSVNV; AY750155) and banana streak GF virus (BSGFV; KJ013507) isolates. The present study conclusively reports the infection of genetically and symptomatically distinct variants of BSMYV and BSIMV infecting banana hybrids in NER India.
Collapse
Affiliation(s)
- Richa Rai
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Sapam Monteshori
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal, 795004 India
| | - Damini Diksha
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Saurabh Kumar Dubey
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Virendra Kumar Baranwal
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Susheel Kumar Sharma
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal, 795004 India
| |
Collapse
|
6
|
Al-Kaeath N, Zagier S, Alisawi O, Fadhal FA, Mahfoudhi N. High-Throughput Sequencing Identified Multiple Fig Viruses and Viroids Associated with Fig Mosaic Disease in Iraq. THE PLANT PATHOLOGY JOURNAL 2024; 40:486-497. [PMID: 39397303 PMCID: PMC11471924 DOI: 10.5423/ppj.oa.04.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Mosaic is the most common viral disease affecting fig plants. Although the Fig mosaic virus is the leading cause of mosaic disease, other viruses are also involved. High-throughput sequencing was used to assess viral infections in fig plants with mosaic. The genomic DNA and total RNAseq of mosaic-symptomatic fig leaves were sequenced using the Illumina platform. The analysis revealed the presence of fig badnavirus 1 (FBV-1), grapevine badnavirus 1 (GBV-1), citrus exocortis viroid (CEVd), and apple dimple fruit viroid (ADFVd). The FBV-1 and GBV-1 sequences were 7,140 bp and 7,239 bp long, respectively. The two genomes encode one open reading frame containing five major protein domains. The viroids, CEVd and ADFVd, were 397 bp and 305 bp long. Phylogenetic analyses revealed a close relationship between FBV-1 and Iranian isolates of the same species, while GBV-1 was closely related to Russian grapevine badnavirus isolates (Tem64, Blu17, KDH48, and Pal9). CEVd was closely related to other Iraqi isolates, while ADFVd was strongly related to a Spanish isolate. A registered endogenous pararetrovirus, caulimovirus-Fca1, with a size of 7,556 bp, was found in the RNA transcripts with a low expression level. This integrant was also detected in the genomes of the two lines 'Horaishi' (a female line) and 'Caprifig 6085' (a male line). Phylogenetic analyses revealed that caulimovirus-Fca1 was distinct from two other clades of different endogenous virus genera.
Collapse
Affiliation(s)
- Nabeel Al-Kaeath
- Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia
- Department of Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, 4000 Sousse, Tunisia
- Department of Plant Protection, College of Agriculture, University of Al-Muthanna, Samawah 66001, Iraq
| | - Shrooq Zagier
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Fadhal Al Fadhal
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Naima Mahfoudhi
- Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia
| |
Collapse
|
7
|
Wang Z, Liu J, Qi X, Su D, Yang J, Cui X. Study of Endogenous Viruses in the Strawberry Plants. Viruses 2024; 16:1306. [PMID: 39205280 PMCID: PMC11359110 DOI: 10.3390/v16081306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous viral elements (EVEs) have been reported to exist widely in the genomes of eukaryotic organisms, and they are closely associated with the growth, development, genetics, adaptation, and evolution of their hosts. In this study, two methods-homologous sequence search and genome alignment-were used to explore the endogenous viral sequences in the genomes of Fragaria species. Results revealed abundant endogenous pararetroviruses (EPRVs) in the genomes of Fragaria species, including 786 sequences belonging to five known taxa such as Caulimovirus and other unclassified taxa. Differences were observed in the detected EPRVs between the two methods, with the homologous sequence search having a greater number of EPRVs. On the contrary, genome alignment identified various types and sources of virus-like sequences. Furthermore, through genome alignment, a 267-bp sequence with 95% similarity to the gene encoding the aphid-transmitted protein of Strawberry vein banding virus (Caulimovirus venafragariae) was discovered in the F. chiloensis genome, which was likely a recent insertion. In addition, the statistical analysis of the genome alignment results indicated a remarkably higher abundance of virus-like sequences in the genomes of polyploid strawberries compared with diploid ones. Moreover, the differences in virus-like sequences were observed between the genomes of Fragaria species and those of their close relatives. This study enriched the diversity of viruses that infect strawberries, and laid a theoretical foundation for further research on the origin of endogenous viruses in the strawberry genome, host-virus interactions, adaptation, evolution, and their functions.
Collapse
Affiliation(s)
- Zongneng Wang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Jian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Xingyang Qi
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Daifa Su
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Junyu Yang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming 650500, China
| | - Xiaolong Cui
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| |
Collapse
|
8
|
Edula SR, Hand LC, Roberts PM, Beasley E, Snider JL, Kemerait RC, Chee PW, Bag S. Characterization of Caulimovirid-like Sequences from Upland Cotton ( Gossypium hirsutum L.) Exhibiting Terminal Abortion in Georgia, USA. Viruses 2024; 16:1111. [PMID: 39066273 PMCID: PMC11281623 DOI: 10.3390/v16071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we investigated the potential involvement of endogenous viral elements (EVEs) in the development of apical tissue necrosis, resulting in the terminal abortion of upland cotton (Gossypium hirsutum L.) in Georgia. The high-throughput sequence analysis of symptomatic and asymptomatic plant tissue samples revealed near-complete EVE-Georgia (EVE-GA) sequences closely related to caulimoviruses. The analysis of EVE-GA's putative open reading frames (ORFs) compared to cotton virus A and endogenous cotton pararetroviral elements (eCPRVE) revealed their similarity in putative ORFs 1-4. However, in the ORF 5 and ORF 6 encoding putative coat protein and reverse transcriptase, respectively, the sequences from EVE-GA have stop codons similar to eCPRVE sequences from Mississippi. In silico mining of the cotton genome database using EVE-GA as a query uncovered near-complete viral sequence insertions in the genomes of G. hirsutum species (~7 kb) but partial in G. tomentosum (~5.3 kb) and G. mustelinum (~5.1 kb) species. Furthermore, cotton EVEs' episomal forms and messenger RNA (mRNA) transcripts were detected in both symptomatic and asymptomatic plants collected from cotton fields. No significant yield difference was observed between symptomatic and asymptomatic plants of the two varieties evaluated in the experimental plot. Additionally, EVEs were also detected in cotton seeds and seedlings. This study emphasizes the need for future research on EVE sequences, their coding capacity, and any potential role in host immunity or pathogenicity.
Collapse
Affiliation(s)
- Surendra R. Edula
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Lavesta C. Hand
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA
| | | | - Edward Beasley
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA 31793, USA
| | - John L. Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Robert C. Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Peng W. Chee
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA 31793, USA
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| |
Collapse
|
9
|
Rao X, Chen H, Lu Y, Liu R, Li H. Distribution and Location of BEVs in Different Genotypes of Bananas Reveal the Coevolution of BSVs and Bananas. Int J Mol Sci 2023; 24:17064. [PMID: 38069393 PMCID: PMC10707546 DOI: 10.3390/ijms242317064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Members of the family Caulimoviridae contain abundant endogenous pararetroviral sequences (EPRVs) integrated into the host genome. Banana streak virus (BSV), a member of the genus Badnavirus in this family, has two distinct badnaviral integrated sequences, endogenous BSV (eBSV) and banana endogenous badnavirus sequences (BEVs). BEVs are distributed widely across the genomes of different genotypes of bananas. To clarify the distribution and location of BEVs in different genotypes of bananas and their coevolutionary relationship with bananas and BSVs, BEVs and BSVs were identified in 102 collected banana samples, and a total of 327 BEVs were obtained and categorized into 26 BEVs species with different detection rates. However, the majority of BEVs were found in Clade II, and a few were clustered in Clade I. Additionally, BEVs and BSVs shared five common conserved motifs. However, BEVs had two unique amino acids, methionine and lysine, which differed from BSVs. BEVs were distributed unequally on most of chromosomes and formed hotspots. Interestingly, a colinear relationship of BEVs was found between AA and BB, as well as AA and SS genotypes of bananas. Notably, the chromosome integration time of different BEVs varied. Based on our findings, we propose that the coevolution of bananas and BSVs is driven by BSV Driving Force (BDF), a complex interaction between BSVs, eBSVs, and BEVs. This study provides the first clarification of the relationship between BEVs and the coevolution of BSVs and bananas in China.
Collapse
Affiliation(s)
| | | | | | | | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.R.); (H.C.); (Y.L.); (R.L.)
| |
Collapse
|
10
|
Gao D. Introduction of Plant Transposon Annotation for Beginners. BIOLOGY 2023; 12:1468. [PMID: 38132293 PMCID: PMC10741241 DOI: 10.3390/biology12121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Transposons are mobile DNA sequences that contribute large fractions of many plant genomes. They provide exclusive resources for tracking gene and genome evolution and for developing molecular tools for basic and applied research. Despite extensive efforts, it is still challenging to accurately annotate transposons, especially for beginners, as transposon prediction requires necessary expertise in both transposon biology and bioinformatics. Moreover, the complexity of plant genomes and the dynamic evolution of transposons also bring difficulties for genome-wide transposon discovery. This review summarizes the three major strategies for transposon detection including repeat-based, structure-based, and homology-based annotation, and introduces the transposon superfamilies identified in plants thus far, and some related bioinformatics resources for detecting plant transposons. Furthermore, it describes transposon classification and explains why the terms 'autonomous' and 'non-autonomous' cannot be used to classify the superfamilies of transposons. Lastly, this review also discusses how to identify misannotated transposons and improve the quality of the transposon database. This review provides helpful information about plant transposons and a beginner's guide on annotating these repetitive sequences.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID 83210, USA
| |
Collapse
|
11
|
Saito N, Chen S, Kitajima K, Zhou Z, Koide Y, Encabo JR, Diaz MGQ, Choi IR, Koyanagi KO, Kishima Y. Phylogenetic analysis of endogenous viral elements in the rice genome reveals local chromosomal evolution in Oryza AA-genome species. FRONTIERS IN PLANT SCIENCE 2023; 14:1261705. [PMID: 37965031 PMCID: PMC10641527 DOI: 10.3389/fpls.2023.1261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023]
Abstract
Introduction Rice genomes contain endogenous viral elements homologous to rice tungro bacilliform virus (RTBV) from the pararetrovirus family Caulimoviridae. These viral elements, known as endogenous RTBV-like sequences (eRTBVLs), comprise five subfamilies, eRTBVL-A, -B, -C, -D, and -X. Four subfamilies (A, B, C, and X) are present to a limited degree in the genomes of the Asian cultivated rice Oryza sativa (spp. japonica and indica) and the closely related wild species Oryza rufipogon. Methods The eRTBVL-D sequences are widely distributed within these and other Oryza AA-genome species. Fifteen eRTBVL-D segments identified in the japonica (Nipponbare) genome occur mostly at orthologous chromosomal positions in other AA-genome species. The eRTBVL-D sequences were inserted into the genomes just before speciation of the AA-genome species. Results and discussion Ten eRTBVL-D segments are located at six loci, which were used for our evolutionary analyses during the speciation of the AA-genome species. The degree of genetic differentiation varied among the eRTBVL-D segments. Of the six loci, three showed phylogenetic trees consistent with the standard speciation pattern (SSP) of the AA-genome species (Type A), and the other three represented phylogenies different from the SSP (Type B). The atypical phylogenetic trees for the Type B loci revealed chromosome region-specific evolution among the AA-genome species that is associated with phylogenetic incongruences: complex genome rearrangements between eRTBVL-D segments, an introgression between the distant species, and low genetic diversity of a shared eRTBVL-D segment. Using eRTBVL-D as an indicator, this study revealed the phylogenetic incongruence of local chromosomal regions with different topologies that developed during speciation.
Collapse
Affiliation(s)
- Nozomi Saito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Katsuya Kitajima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Zhitong Zhou
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jaymee R. Encabo
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Maria Genaleen Q. Diaz
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Kanako O. Koyanagi
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Aboughanem-Sabanadzovic N, Allen TW, Frelichowski J, Scheffler J, Sabanadzovic S. Discovery and Analyses of Caulimovirid-like Sequences in Upland Cotton ( Gossypium hirsutum). Viruses 2023; 15:1643. [PMID: 37631986 PMCID: PMC10458927 DOI: 10.3390/v15081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Analyses of Illumina-based high-throughput sequencing data generated during characterization of the cotton leafroll dwarf virus population in Mississippi (2020-2022) consistently yielded contigs varying in size (most frequently from 4 to 7 kb) with identical nucleotide content and sharing similarities with reverse transcriptases (RTases) encoded by extant plant pararetroviruses (family Caulimoviridiae). Initial data prompted an in-depth study involving molecular and bioinformatic approaches to characterize the nature and origins of these caulimovirid-like sequences. As a result, here, we report on endogenous viral elements (EVEs) related to extant members of the family Caulimoviridae, integrated into a genome of upland cotton (Gossypium hirsutum), for which we propose the provisional name "endogenous cotton pararetroviral elements" (eCPRVE). Our investigations pinpointed a ~15 kbp-long locus on the A04 chromosome consisting of head-to-head orientated tandem copies located on positive- and negative-sense DNA strands (eCPRVE+ and eCPRVE-). Sequences of the eCPRVE+ comprised nearly complete and slightly decayed genome information, including ORFs coding for the viral movement protein (MP), coat protein (CP), RTase, and transactivator/viroplasm protein (TA). Phylogenetic analyses of major viral proteins suggest that the eCPRVE+ may have been initially derived from a genome of a cognate virus belonging to a putative new genus within the family. Unexpectedly, an identical 15 kb-long locus composed of two eCPRVE copies was also detected in a newly recognized species G. ekmanianum, shedding some light on the relatively recent evolution within the cotton family.
Collapse
Affiliation(s)
- Nina Aboughanem-Sabanadzovic
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, 2 Research Park, Mailstop 9627, Mississippi, MS 39762, USA;
| | - Thomas W. Allen
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, P.O. Box 197, Stoneville, MS 38776, USA;
| | | | - Jodi Scheffler
- USDA-ARS Mid-South Area, 141 Experiment Station Road, Stoneville, MS 38776, USA;
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 100 Twelve Lane, Mail Stop 9775, Mississippi, MS 39762, USA
| |
Collapse
|
13
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
14
|
Nasrin T, Hoque M, Ali S. Systems biology of the genomes' microsatellite signature of Orthopoxvirus including the Monkeypox virus. Comp Immunol Microbiol Infect Dis 2023; 98:102002. [PMID: 37329681 DOI: 10.1016/j.cimid.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
This study is an attempt to extract and analyse the microsatellites or simple sequence repeats (SSRs) from the genomes of eight species of the genus Orthopoxvirus. The average size of genomes included in the study was 205 kb while the GC% was 33% for all but one. A total of 10,584 SSRs and 854 cSSRs were observed. POX2 with the largest genome of 224.499 kb had maximum of 1493 SSRs and 121 cSSRs (compound SSR) while POX7 with the smallest genome of 185.578 kb had minimum incident SSRs and cSSRs at 1181 and 96, respectively. There was significant correlation between genome size and SSR incidence. Di-nucleotide repeats were the most prevalent (57.47%) followed by mono- at 33% and tri- at 8.6%. Mono-nucleotide SSRs were predominantly T (51%) and A (48.4%). A majority of 80.32% SSRs were in the coding region. The three most similar genomes as per heat map POX1, POX7 and POX5 (93% similarity) are adjacent to one another in the phylogenetic tree. Ankyrin/Ankyrin like protein and Kelch protein which are associated with host determination and divergence have the highest SSR density in almost all studied viruses. Thus, SSRs are involved in genome evolution and host determination of viruses.
Collapse
Affiliation(s)
- Taslima Nasrin
- Clinical and Applied Genomics (CAG) Laboratory Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory Department of Biological Sciences, Aliah University, Kolkata, India.
| |
Collapse
|
15
|
Togoobat B, Wu N, Wang X, Cao M, Xu Z. Viromic approach reveals differences in the composition, diversity and relative abundance of pumpkin viruses across main growing regions of China. Virology 2023; 585:61-71. [PMID: 37295338 DOI: 10.1016/j.virol.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
China is the leading country for pumpkin production in the world. As other cucurbits, diseases caused by viruses are among the serious threats to pumpkin production, but our knowledge on the virus species infecting pumpkin plants is fragmentary. To understand the occurrence of viral diseases on pumpkin, we determined the geographical distribution characteristics, relative abundance and evolutionary relationship of pumpkin infected viruses by meta-transcriptome sequencing (RNA-seq) and viromic analysis of 159 samples exhibited typical viral symptoms collected across China in this study. Totally, 11 known and 3 new viruses were identified. Interestingly, 3 new viruses identified in this study should be positive-sense single-stranded RNA virus whose hosts are prokaryotes. The viruses identified in different sampling locations exhibit significant variations in term of virus species and relative abundance. Here, the results provide valuable information for understanding the virus species and their diversity in cultivated pumpkin across major growing regions of China.
Collapse
Affiliation(s)
- Batchimeg Togoobat
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Laboratory for Plant Pathology, Institute of Plant Protection, Ulaanbaatar, Mongolia
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
| |
Collapse
|
16
|
Abstract
Cacao swollen shoot virus causes cacao swollen shoot disease of Theobroma cacao (cacao) plants. At least six cacao-infecting Badnavirus species-Cacao swollen shoot Togo A virus, Cacao swollen shoot Togo B virus (previously known as Cacao swollen shoot virus), Cacao swollen shoot CE virus, Cacao swollen shoot Ghana M virus, Cacao swollen shoot Ghana N virus, and Cacao swollen shoot Ghana Q virus-are responsible for the swollen shoot disease of cacao in Ghana. Each of these species consists of a multiplicity of strains. The New Juaben strain, the most virulent cacao swollen shoot virus strain in Ghana, belongs to the Cacao swollen shoot Togo B virus species, and is a commonly used strain in laboratory transmission assays. Infection of cacao trees with multiple strains of the virus is common and new evidence suggests that these coinfections may have resulted in the emergence of recombinant strains of the virus. The impact of these emerging recombinant strains on disease severity is uncertain. This review focuses largely on the discovery of cacao swollen shoot virus in Ghana, diversity of the virus strains, molecular characterization, propagation of virus infection in cacao plants, emergence of recombinant virus strains, vector-mediated transmission of the virus, and the management of the cacao swollen shoot disease in Ghana. It also contains sections on the botany and origin of the cacao tree, its introduction to Ghana, the role of cacao swollen shoot disease in facilitating Ghana's independence from Britain, and a brief history of chocolate.
Collapse
Affiliation(s)
| | - Owusu Domfeh
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| | - George Akumfi Ameyaw
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| |
Collapse
|
17
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Inoue Y, Takeda H. Teratorn and Its Related Elements – a Novel Group of Herpesviruses Widespread in Teleost Genomes. Zoolog Sci 2023; 40:83-90. [PMID: 37042688 DOI: 10.2108/zs220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/12/2022] [Indexed: 03/08/2023]
Abstract
Herpesviruses are a large family of DNA viruses infecting vertebrates and invertebrates, and are important pathogens in the field of aquaculture. In general, herpesviruses do not have the ability to integrate into the host genomes since they do not have a chromosomal integration step in their life cycles. Recently, we identified a novel group of herpesviruses, "Teratorn" and its related elements, in the genomes of various teleost fish species. At least some of the Teratorn-like herpesviruses are fused with a piggyBac-like DNA transposon, suggesting that they have acquired the transposon-like intragenomic lifestyle by hijacking the transposon system. In this review, we describe the sequence characteristics of Teratorn-like herpesviruses and phylogenetic relationships with other herpesviruses. Then we discuss the process of transposon-herpesvirus fusion, their life cycle, and the generality of transposon-virus fusion. Teratorn-like herpesviruses provide a piece of concrete evidence that even non-retroviral elements can become intragenomic parasites retaining replication capacity, by acquiring transposition machinery from other sources.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Ishwara Bhat A, Selvarajan R, Balasubramanian V. Emerging and Re-Emerging Diseases Caused by Badnaviruses. Pathogens 2023; 12:pathogens12020245. [PMID: 36839517 PMCID: PMC9963457 DOI: 10.3390/pathogens12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
New and emerging plant diseases are caused by different pathogens including viruses that often cause significant crop losses. Badnaviruses are pararetroviruses that contain a single molecule of ds DNA genome of 7 to 9 kb in size and infect a large number of economically important crops such as banana and plantains, black pepper, cacao, citrus, grapevine, pineapple, sugarcane, sweet potato, taro, and yam, causing significant yield losses. Many of the species in the genus have a restricted host range and several of them are known to infect a single crop. Combined infections of different virus species and strains offer conditions that favor the development of new strains via recombination, especially in vegetatively propagated crops. The primary spread of badnaviruses is through vegetative propagating materials while for the secondary spread, they depend on insects such as mealybugs and aphids. Disease emerges as a consequence of the interactions between host and pathogens under favorable environmental conditions. The viral genome of the pararetroviruses is known to be integrated into the chromosome of the host and a few plants with integrants when subjected to different kinds of abiotic stress will give rise to episomal forms of the virus and cause disease. Attempts have been made to develop management strategies for badnaviruses both conventionally and using precision breeding techniques such as genome editing. Until 2016 only 32 badnavirus species infecting different crops were known, but in a span of six years, this number has gone up to 68. The current review highlights the emerging disease problems and management options for badnaviruses infecting economically important crops.
Collapse
Affiliation(s)
- Alangar Ishwara Bhat
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode 673012, Kerala, India
| | - Ramasamy Selvarajan
- Division of Crop Protection, ICAR-National Research Centre for Banana, Trichy 620102, Tamil Nadu, India
| | - Velusamy Balasubramanian
- Division of Crop Protection, ICAR-National Research Centre for Banana, Trichy 620102, Tamil Nadu, India
| |
Collapse
|
20
|
Kuriyama K, Tabara M, Moriyama H, Takahashi H, Fukuhara T. The essential role of the quasi-long terminal repeat sequence for replication and gene expression of an endogenous pararetrovirus, petunia vein clearing virus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:405-414. [PMID: 37283613 PMCID: PMC10240922 DOI: 10.5511/plantbiotechnology.22.1017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/17/2022] [Indexed: 06/08/2023]
Abstract
Petunia vein clearing virus (PVCV) is a type member of the genus Petuvirus within the Caulimoviridae family and is defined as one viral unit consisting of a single open reading frame (ORF) encoding a viral polyprotein and one quasi-long terminal repeat (QTR) sequence. Since some full-length PVCV sequences are found in the petunia genome and a vector for horizontal transmission of PVCV has not been identified yet, PVCV is referred to as an endogenous pararetrovirus. Molecular mechanisms of replication, gene expression and horizontal transmission of endogenous pararetroviruses in plants are elusive. In this study, agroinfiltration experiments using various PVCV infectious clones indicated that the replication (episomal DNA synthesis) and gene expression of PVCV were efficient when the QTR sequences are present on both sides of the ORF. Whereas replacement of the QTR with another promoter and/or terminator is possible for gene expression, it is essential for QTR sequences to be on both sides for viral replication. Although horizontal transmission of PVCV by grafting and biolistic inoculation was previously reported, agroinfiltration is a useful and convenient method for studying its replication and gene expression.
Collapse
Affiliation(s)
- Kazunori Kuriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Midori Tabara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Sendai, Miyagi 980-0845, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
21
|
de Tomás C, Vicient CM. Genome-wide identification of Reverse Transcriptase domains of recently inserted endogenous plant pararetrovirus ( Caulimoviridae). FRONTIERS IN PLANT SCIENCE 2022; 13:1011565. [PMID: 36589050 PMCID: PMC9794742 DOI: 10.3389/fpls.2022.1011565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Endogenous viral elements (EVEs) are viral sequences that have been integrated into the nuclear chromosomes. Endogenous pararetrovirus (EPRV) are a class of EVEs derived from DNA viruses of the family Caulimoviridae. Previous works based on a limited number of genome assemblies demonstrated that EPRVs are abundant in plants and are present in several species. The availability of genome sequences has been immensely increased in the recent years and we took advantage of these resources to have a more extensive view of the presence of EPRVs in plant genomes. We analyzed 278 genome assemblies corresponding to 267 species (254 from Viridiplantae) using tBLASTn against a collection of conserved domains of the Reverse Transcriptases (RT) of Caulimoviridae. We concentrated our search on complete and well-conserved RT domains with an uninterrupted ORF comprising the genetic information for at least 300 amino acids. We obtained 11.527 sequences from the genomes of 202 species spanning the whole Tracheophyta clade. These elements were grouped in 57 clusters and classified in 13 genera, including a newly proposed genus we called Wendovirus. Wendoviruses are characterized by the presence of four open reading frames and two of them encode for aspartic proteinases. Comparing plant genomes, we observed important differences between the plant families and genera in the number and type of EPRVs found. In general, florendoviruses are the most abundant and widely distributed EPRVs. The presence of multiple identical RT domain sequences in some of the genomes suggests their recent amplification.
Collapse
|
22
|
Vassilieff H, Haddad S, Jamilloux V, Choisne N, Sharma V, Giraud D, Wan M, Serfraz S, Geering ADW, Teycheney PY, Maumus F. CAULIFINDER: a pipeline for the automated detection and annotation of caulimovirid endogenous viral elements in plant genomes. Mob DNA 2022; 13:31. [PMID: 36463202 PMCID: PMC9719215 DOI: 10.1186/s13100-022-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Plant, animal and protist genomes often contain endogenous viral elements (EVEs), which correspond to partial and sometimes entire viral genomes that have been captured in the genome of their host organism through a variety of integration mechanisms. While the number of sequenced eukaryotic genomes is rapidly increasing, the annotation and characterization of EVEs remains largely overlooked. EVEs that derive from members of the family Caulimoviridae are widespread across tracheophyte plants, and sometimes they occur in very high copy numbers. However, existing programs for annotating repetitive DNA elements in plant genomes are poor at identifying and then classifying these EVEs. Other than accurately annotating plant genomes, there is intrinsic value in a tool that could identify caulimovirid EVEs as they testify to recent or ancient host-virus interactions and provide valuable insights into virus evolution. In response to this research need, we have developed CAULIFINDER, an automated and sensitive annotation software package. CAULIFINDER consists of two complementary workflows, one to reconstruct, annotate and group caulimovirid EVEs in a given plant genome and the second to classify these genetic elements into officially recognized or tentative genera in the Caulimoviridae. We have benchmarked the CAULIFINDER package using the Vitis vinifera reference genome, which contains a rich assortment of caulimovirid EVEs that have previously been characterized using manual methods. The CAULIFINDER package is distributed in the form of a Docker image.
Collapse
Affiliation(s)
- Héléna Vassilieff
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Sana Haddad
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.460789.40000 0004 4910 6535Present Address: Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Véronique Jamilloux
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.507621.7Present Address: Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France
| | - Nathalie Choisne
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Vikas Sharma
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.8385.60000 0001 2297 375XPresent Address: Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Delphine Giraud
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| | - Mariène Wan
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Saad Serfraz
- grid.413016.10000 0004 0607 1563CABB, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Andrew D. W. Geering
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 Australia
| | | | - Florian Maumus
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| |
Collapse
|
23
|
Baldrich P, Liu A, Meyers BC, Fondong VN. An atlas of small RNAs from potato. PLANT DIRECT 2022; 6:e466. [PMID: 36530592 PMCID: PMC9751654 DOI: 10.1002/pld3.466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Small RNAs, including microRNAs (miRNAs), phased secondary small interfering RNAs (phasiRNA), and heterochromatic small interfering RNAs (hc-siRNA) are an essential component of gene regulation. To establish a broad potato small RNA atlas, we constructed an expression atlas of leaves, flowers, roots, and tubers of Desiree and Eva, which are commercially important potato (Solanum tuberosum) cultivars. All small RNAs identified were observed to be conserved between both cultivars, supporting the hypothesis that small RNAs have a low evolutionary rate and are mostly conserved between lineages. However, we also found that a few miRNAs showed differential accumulation between the two potato cultivars, and that hc-siRNAs have a tissue specific expression. We further identified dozens of reproductive and non-reproductive phasiRNAs originating from coding and noncoding regions that appeared to exhibit tissue-specific expression. Together, this study provides an extensive small RNA profiling of different potato tissues that might be used as a resource for future investigations.
Collapse
Affiliation(s)
| | - Alexander Liu
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Division of Plant Science & TechnologyUniversity of Missouri‐ColumbiaColumbiaMissouriUSA
| | - Vincent N. Fondong
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
24
|
Valli AA, Gonzalo-Magro I, Sanchez DH. Rearranged Endogenized Plant Pararetroviruses as Evidence of Heritable RNA-based Immunity. Mol Biol Evol 2022; 40:6794085. [PMID: 36322467 PMCID: PMC9868043 DOI: 10.1093/molbev/msac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic genomics frequently revealed historical spontaneous endogenization events of external invading nucleic acids, such as viral elements. In plants, an extensive occurrence of endogenous plant pararetroviruses (EPRVs) is usually believed to endow hosts with an additional layer of internal suppressive weaponry. However, an actual demonstration of this activity remains speculative. We analyzed the EPRV component and accompanying silencing effectors of Solanum lycopersicum, documenting that intronic/intergenic pararetroviral integrations bearing inverted-repeats fuel the plant's RNA-based immune system with suitable transcripts capable of evoking a silencing response. A surprisingly small set of rearrangements explained a substantial fraction of pararetroviral-derived endogenous small-interfering (si)RNAs, enriched in 22-nt forms typically associated with anti-viral post-transcriptional gene silencing. We provide preliminary evidence that such genetic and immunological signals may be found in other species outside the genus Solanum. Based on molecular dating, bioinformatics, and empirical explorations, we propose that homology-dependent silencing emerging from particular immuno-competent rearranged chromosomal areas that constitute an adaptive heritable trans-acting record of past infections, with potential impact against the unlocking of plant latent EPRVs and cognate-free pararetroviruses.
Collapse
Affiliation(s)
| | - Irene Gonzalo-Magro
- Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain
| | | |
Collapse
|
25
|
Malmstrom CM, Martin MD, Gagnevin L. Exploring the Emergence and Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:187-209. [PMID: 35483672 DOI: 10.1146/annurev-phyto-021021-041830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biotechnological advances now permit broad exploration of past microbial communities preserved in diverse substrates. Despite biomolecular degradation, high-throughput sequencing of preserved materials can yield invaluable genomic and metagenomic data from the past. This line of research has expanded from its initial human- and animal-centric foci to include plant-associated microbes (viruses, archaea, bacteria, fungi, and oomycetes), for which historical, archaeological, and paleontological data illuminate past epidemics and evolutionary history. Genetic mechanisms underlying the acquisition of microbial pathogenicity, including hybridization, polyploidization, and horizontal gene transfer, can now be reconstructed, as can gene-for-gene coevolution with plant hosts. Epidemiological parameters, such as geographic origin and range expansion, can also be assessed. Building on published case studies with individual phytomicrobial taxa, the stage is now set for broader, community-wide studies of preserved plant microbiomes to strengthen mechanistic understanding of microbial interactions and plant disease emergence.
Collapse
Affiliation(s)
- Carolyn M Malmstrom
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Michael D Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lionel Gagnevin
- Plant Health Institute of Montpellier, CIRAD, Montpellier, France;
| |
Collapse
|
26
|
Debat H, Bejerman N. A glimpse into the DNA virome of the unique "living fossil" Welwitschia mirabilis. Gene X 2022; 843:146806. [PMID: 35963497 DOI: 10.1016/j.gene.2022.146806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022] Open
Abstract
Here, we report the identification and characterization of four novel DNA viruses from Welwitschia mirabilis transcriptomic and genomic datasets. Complete circular virus-like sequences with affinity to members of the Caulimoviridae and Geminiviridae families were detected and characterized from Welwitschia mirabilis genomic data. The two newly members of the Caulimoviridae family have been tentatively named as Welwitschia mirabilis virus 1 and 2 (WMV1-WMV2); whereas the two identified geminiviruses were named as Welwitschia mirabilis associated geminivirus A and B (WMaGVA-WMaGVB). Phylogenetic analysis suggests that WMV1-2 belong to a proposed genus of Caulimoviridae-infecting gymnosperms. WMaGVA-B are phylogenetically related with both mastreviruses and capulaviruses and likely represent a distinct evolutionary lineage within geminiviruses. Additionally, we detected several endogenous virus-like elements (EVE) linked to the discovered viruses in the recently reported W. mirabilis genome, suggesting a shared ancient evolutionary history of these viruses and the Welwithschia.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina.
| | - Nicolás Bejerman
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina.
| |
Collapse
|
27
|
Umber M, Pressat G, Fort G, Plaisir Pineau K, Guiougiou C, Lambert F, Farinas B, Pichaut JP, Janzac B, Delos JM, Salmon F, Dubois C, Teycheney PY. Risk Assessment of Infectious Endogenous Banana Streak Viruses in Guadeloupe. FRONTIERS IN PLANT SCIENCE 2022; 13:951285. [PMID: 35898217 PMCID: PMC9310019 DOI: 10.3389/fpls.2022.951285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Infectious alleles of endogenous banana streak viruses (eBSVs) are present in the genome of all banana interspecific cultivars, including plantains and cooking types. Activation of these infectious eBSV alleles by biotic and abiotic stresses leads to spontaneous infections by cognate viruses and raises concerns about their ability to promote outbreaks of banana streak viruses under field cultivation conditions. We undertook a comprehensive risk assessment study of infectious eBSV alleles of species BSOLV, BSGFV and BSIMV in banana interspecific cultivars in Guadeloupe, a tropical island of the Caribbean where bananas are grown for export and local markets. We carried out a prevalence survey of BSOLV, BSGFV and BSIMV species in a range of cultivars grown in Guadeloupe. Our results suggest that BSOLV and BSGFV infections arise from the activation of infectious eBSVs rather than vector-borne transmission and point to a correlation between altitude and infection rates in interspecific hybrids with AAB genotypes. We studied the dynamics of activation of infectious eBSOLV and eBSGFV alleles by tissue culture and field cultivation in a range of cultivars. We showed that tissue culture and field cultivation trigger distinct activation pathways, resulting in distinct activation patterns. We also showed that activation decreased over time during cell culture and field cultivation and that BSV infections arising from the activation of infectious eBSV alleles cause symptomless infections in the most cultivated plantain in Guadeloupe, French Clair. Overall, our study shows that the risk of BSV outbreaks resulting from the activation of infectious eBSVs in plantain originating from vegetative multiplication is negligible in Guadeloupe.
Collapse
Affiliation(s)
- Marie Umber
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Gersende Pressat
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Guillaume Fort
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Kaïssa Plaisir Pineau
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Chantal Guiougiou
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Frédéric Lambert
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Benoît Farinas
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Jean-Philippe Pichaut
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Bérenger Janzac
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Jean-Marie Delos
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Frédéric Salmon
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| | - Cécile Dubois
- CIRAD, UMR AGAP Institute, Montpellier, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP Institute, Guadeloupe, France
- UMR AGAP Institute, University of Montpellier, CIRAD, INRAE, Institute Agro, Guadeloupe, France
| |
Collapse
|
28
|
Diversity of the virome associated with alfalfa (Medicago sativa L.) in the U.S. Pacific Northwest. Sci Rep 2022; 12:8726. [PMID: 35610325 PMCID: PMC9130302 DOI: 10.1038/s41598-022-12802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/04/2022] [Indexed: 01/04/2023] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most extensively cultivated forage legumes in the world. It is currently the third most valuable field crop in the United States with an estimated value of over $9.3 billion. Alfalfa productivity is limited by various infectious diseases that can reduce forage yield and quality and shorten stand life. The crop can frequently be infected with a diverse array of pathogens and other organisms that have distinct life cycles, biology, and mode of action. Among them are many coinfecting viruses, that greatly contribute to the heterogeneity of within-host pathogenic communities, representing a ubiquitous and abundant background for all other host–pathogen interactions. Regrettably, the impact of viral diseases, their role in alfalfa health and involvement in the severity of multi-pathogen infections are often underestimated and not well understood. As high-throughput sequencing approaches have been developed, opportunities to delve into these complex interactions can be realized. In this work, we have characterized a diversity of viral populations in several commercial alfalfa production fields located in the U.S. Pacific Northwest. At least 45 distinct viruses have been identified in all alfalfa samples. Among them some were known to infect the crop prior to this study, and others were designated as emerging, novel and viruses integrated into the alfalfa genome. Known viruses included alfalfa mosaic virus, pea streak virus and bean leafroll virus, while among emerging and novel agents were alfalfa virus S, cherry virus Trakiya, several rhabdoviruses and others. Additional biological and impact studies will be needed to determine if newly identified viruses, especially those that have not been reported from alfalfa before, should be considered pathogens of this crop.
Collapse
|
29
|
Silva G, Bömer M, Turaki AA, Nkere CK, Kumar PL, Seal SE. Homing in on Endogenous Badnaviral Elements: Development of Multiplex PCR-DGGE for Detection and Rapid Identification of Badnavirus Sequences in Yam Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:846989. [PMID: 35620696 PMCID: PMC9127665 DOI: 10.3389/fpls.2022.846989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Viruses of the genus Badnavirus (family Caulimoviridae) are double-stranded DNA-reverse transcribing (dsDNA-RT) plant viruses and have emerged as serious pathogens of tropical and temperate crops globally. Endogenous badnaviral sequences are found integrated in the genomes of several economically important plant species. Infection due to activation of replication-competent integrated copies of the genera Badnavirus, Petuvirus and Cavemovirus has been described. Such endogenous badnaviral elements pose challenges to the development of nucleic acid-based diagnostic methods for episomal virus infections and decisions on health certification for international movement of germplasm and seed. One major food security crop affected is yam (Dioscorea spp.). A diverse range of Dioscorea bacilliform viruses (DBVs), and endogenous DBV (eDBV) sequences have been found to be widespread in yams cultivated in West Africa and other parts of the world. This study outlines the development of multiplex PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE) to assist in the detection and analysis of eDBVs, through the example of analysing yam germplasm from Nigeria and Ghana. Primers targeting the three most prevalent DBV monophyletic species groups in West Africa were designed to improve DGGE resolution of complex eDBV sequence fingerprints. Multiplex PCR-DGGE with the addition of a tailor-made DGGE sequence marker enables rapid comparison of endogenous badnaviral sequence diversity across germplasm, as illustrated in this study for eDBV diversity in yam.
Collapse
Affiliation(s)
- Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Moritz Bömer
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Aliyu A. Turaki
- Kebbi State University of Science and Technology Aliero, Birnin Kebbi, Nigeria
| | - Chukwuemeka K. Nkere
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- Department of Crop Protection and Environmental Biology (CPEB), University of Ibadan, Ibadan, Nigeria
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Susan E. Seal
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
30
|
Nath O, Fletcher SJ, Hayward A, Shaw LM, Masouleh AK, Furtado A, Henry RJ, Mitter N. A haplotype resolved chromosomal level avocado genome allows analysis of novel avocado genes. HORTICULTURE RESEARCH 2022; 9:uhac157. [PMID: 36204209 PMCID: PMC9531333 DOI: 10.1093/hr/uhac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
Avocado (Persea americana) is a member of the magnoliids, an early branching lineage of angiosperms that has high value globally with the fruit being highly nutritious. Here, we report a chromosome-level genome assembly for the commercial avocado cultivar Hass, which represents 80% of the world's avocado consumption. The DNA contigs produced from Pacific Biosciences HiFi reads were further assembled using a previously published version of the genome supported by a genetic map. The total assembly was 913 Mb with a contig N50 of 84 Mb. Contigs assigned to the 12 chromosomes represented 874 Mb and covered 98.8% of benchmarked single-copy genes from embryophytes. Annotation of protein coding sequences identified 48 915 avocado genes of which 39 207 could be ascribed functions. The genome contained 62.6% repeat elements. Specific biosynthetic pathways of interest in the genome were investigated. The analysis suggested that the predominant pathway of heptose biosynthesis in avocado may be through sedoheptulose 1,7 bisphosphate rather than via alternative routes. Endoglucanase genes were high in number, consistent with avocado using cellulase for fruit ripening. The avocado genome appeared to have a limited number of translocations between homeologous chromosomes, despite having undergone multiple genome duplication events. Proteome clustering with related species permitted identification of genes unique to avocado and other members of the Lauraceae family, as well as genes unique to species diverged near or prior to the divergence of monocots and eudicots. This genome provides a tool to support future advances in the development of elite avocado varieties with higher yields and fruit quality.
Collapse
Affiliation(s)
- Onkar Nath
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072 Australia
| | - Stephen J Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072 Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072 Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072 Australia
| | - Ardashir Kharabian Masouleh
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072 Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072 Australia
| | | | | |
Collapse
|
31
|
Bhat AI, Mohandas A, Sreenayana B, Archana TS, Jasna K. Piper DNA virus 1 and 2 are endogenous pararetroviruses integrated into chromosomes of black pepper ( Piper nigrum L). Virusdisease 2022; 33:114-118. [PMID: 35493754 PMCID: PMC9005556 DOI: 10.1007/s13337-021-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
A previous study named 7178 and 892 bp contigs obtained through high-throughput sequencing (HTS) of black pepper as Piper DNA virus 1 (PDV-1) and PDV-2 respectively. In the present study, HTS results were confirmed through polymerase chain reaction and Sanger sequencing. The sequenced region of both PDV-1 and PDV-2 contained partial genomes with motifs characteristic of pararetroviruses. BLAST analysis of PDV-1 and PDV-2 against the whole genome sequence of the black pepper showed integration of the PDV-1 at 22 loci in chromosome number 14, and PDV-2 at two loci in chromosome number 12 of black pepper. The integration was confirmed through amplification and sequencing of the junction regions. The present study suggests that both PDV-1 and PDV-2 occur as endogenous viruses in black pepper. Further studies are needed to determine whether these endogenous viruses occur in episomal forms, their complete genome sequence and whether they are activable under abiotic stress conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00752-w.
Collapse
Affiliation(s)
- A. I. Bhat
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - A. Mohandas
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - B. Sreenayana
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - T. S. Archana
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - K. Jasna
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| |
Collapse
|
32
|
Vendrell-Mir P, Perroud PF, Haas FB, Meyberg R, Charlot F, Rensing SA, Nogué F, Casacuberta JM. A vertically transmitted amalgavirus is present in certain accessions of the bryophyte Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1786-1797. [PMID: 34687260 DOI: 10.1111/tpj.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
33
|
Zakeel MCM, Geering ADW, Thomas JE, Akinsanmi OA. Characterisation of novel endogenous geminiviral elements in macadamia. BMC Genomics 2021; 22:858. [PMID: 34837949 PMCID: PMC8626973 DOI: 10.1186/s12864-021-08174-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/11/2021] [Indexed: 11/11/2022] Open
Abstract
Background The presence of geminivirus sequences in a preliminary analysis of sRNA sequences from the leaves of macadamia trees with abnormal vertical growth (AVG) syndrome was investigated. Results A locus of endogenous geminiviral elements (EGE) in the macadamia genome was analysed, and the sequences revealed a high level of deletions and/or partial integrations, thus rendering the EGE transcriptionally inactive. The replication defective EGE in the macadamia genome indicates its inability to be the source of new viral infections and thus cause AVG or any other disease in macadamia. The EGE sequences were detected in two edible Macadamia species that constitute commercial cultivars and the wild germplasm of edible and inedible species of Macadamia. This strongly suggests that the integration preceded speciation of the genus Macadamia. A draft genome of a locus of EGE in Macadamia was developed. The findings of this study provide evidence to suggest the endogenization of the geminiviral sequences in the macadamia genome and the ancestral relationship of EGE with Macadamia in the Proteaceae family. Random mutations accumulating in the EGE inform that the sequence is evolving. Conclusions The EGE in Macadamia is inactive and thus not a direct cause of any diseases or syndromes including AVG in macadamia. The insertion of the EGE in the macadamia genome preceded speciation of the genus Macadamia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08174-0.
Collapse
Affiliation(s)
- Mohamed C M Zakeel
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, GPO Box 267, Brisbane, QLD, 4001, Australia.
| | - Andrew D W Geering
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - John E Thomas
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - Olufemi A Akinsanmi
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, GPO Box 267, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
34
|
Boutanaev AM, Nemchinov LG. Genome-wide identification of endogenous viral sequences in alfalfa (Medicago sativa L.). Virol J 2021; 18:185. [PMID: 34503524 PMCID: PMC8428138 DOI: 10.1186/s12985-021-01650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Endogenous viral elements (EVEs) have been for the most part described in animals and to a less extent in plants. The endogenization was proposed to contribute toward evolution of living organisms via horizontal gene transfer of novel genetic material and resultant genetic diversity. During the last two decades, several full-length and fragmented EVEs of pararetroviral and non-retroviral nature have been identified in different plant genomes, both monocots and eudicots. Prior to this work, no EVEs have been reported in alfalfa (Medicago sativa L.), the most cultivated forage legume in the world. In this study, taking advantage of the most recent developments in the field of alfalfa research, we have assessed alfalfa genome on the presence of viral-related sequences. Our analysis revealed segmented EVEs resembling two dsDNA reverse-transcribing virus species: Soybean chlorotic mottle virus (family Caulimoviridae, genus Soymovirus) and Figwort mosaic virus (family Caulimoviridae, genus Caulimovirus). The EVEs appear to be stable constituents of the host genome and in that capacity could potentially acquire functional roles in alfalfa’s development and response to environmental stresses.
Collapse
Affiliation(s)
- Alexander M Boutanaev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Lev G Nemchinov
- USDA/ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
35
|
Barreat JGN, Katzourakis A. Paleovirology of the DNA viruses of eukaryotes. Trends Microbiol 2021; 30:281-292. [PMID: 34483047 DOI: 10.1016/j.tim.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Paleovirology is the study of ancient viruses and how they have coevolved with their hosts. An increasingly detailed understanding of the diversity, origins, and evolution of the DNA viruses of eukaryotes has been obtained through the lens of paleovirology in recent years. Members of multiple viral families have been found integrated in the genomes of eukaryotes, providing a rich fossil record to study. These elements have extended our knowledge of exogenous viral diversity, host ranges, and the timing of viral evolution, and are revealing the existence of entire new families of eukaryotic integrating dsDNA viruses and transposons. Future work in paleovirology will continue to provide insights into antiviral immunity, viral diversity, and potential applications, and reveal other secrets of the viral world.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK.
| |
Collapse
|
36
|
Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1828. [PMID: 34579360 PMCID: PMC8467261 DOI: 10.3390/plants10091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy;
| | - Cristina Crosatti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Chiara Biselli
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
| |
Collapse
|
37
|
Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). ANNALS OF BOTANY 2021; 128:281-299. [PMID: 33729490 PMCID: PMC8389469 DOI: 10.1093/aob/mcab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, PR China
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Aubin E, El Baidouri M, Panaud O. Horizontal Gene Transfers in Plants. Life (Basel) 2021; 11:life11080857. [PMID: 34440601 PMCID: PMC8401529 DOI: 10.3390/life11080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.
Collapse
|
39
|
Hannat S, Pontarotti P, Colson P, Kuhn ML, Galiana E, La Scola B, Aherfi S, Panabières F. Diverse Trajectories Drive the Expression of a Giant Virus in the Oomycete Plant Pathogen Phytophthora parasitica. Front Microbiol 2021; 12:662762. [PMID: 34140938 PMCID: PMC8204020 DOI: 10.3389/fmicb.2021.662762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Giant viruses of amoebas, recently classified in the class Megaviricetes, are a group of viruses that can infect major eukaryotic lineages. We previously identified a set of giant virus sequences in the genome of Phytophthora parasitica, an oomycete and a devastating major plant pathogen. How viral insertions shape the structure and evolution of the invaded genomes is unclear, but it is known that the unprecedented functional potential of giant viruses is the result of an intense genetic interplay with their hosts. We previously identified a set of giant virus sequences in the genome of P. parasitica, an oomycete and a devastating major plant pathogen. Here, we show that viral pieces are found in a 550-kb locus and are organized in three main clusters. Viral sequences, namely RNA polymerases I and II and a major capsid protein, were identified, along with orphan sequences, as a hallmark of giant viruses insertions. Mining of public databases and phylogenetic reconstructions suggest an ancient association of oomycetes and giant viruses of amoeba, including faustoviruses, African swine fever virus (ASFV) and pandoraviruses, and that a single viral insertion occurred early in the evolutionary history of oomycetes prior to the Phytophthora–Pythium radiation, estimated at ∼80 million years ago. Functional annotation reveals that the viral insertions are located in a gene sparse region of the Phytophthora genome, characterized by a plethora of transposable elements (TEs), effectors and other genes potentially involved in virulence. Transcription of viral genes was investigated through analysis of RNA-Seq data and qPCR experiments. We show that most viral genes are not expressed, and that a variety of mechanisms, including deletions, TEs insertions and RNA interference may contribute to transcriptional repression. However, a gene coding a truncated copy of RNA polymerase II along a set of neighboring sequences have been shown to be expressed in a wide range of physiological conditions, including responses to stress. These results, which describe for the first time the endogenization of a giant virus in an oomycete, contribute to challenge our view of Phytophthora evolution.
Collapse
Affiliation(s)
- Sihem Hannat
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Pierre Pontarotti
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,CNRS SNC5039, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Marie-Line Kuhn
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | | |
Collapse
|
40
|
Marais A, Murolo S, Faure C, Brans Y, Larue C, Maclot F, Massart S, Chiumenti M, Minafra A, Romanazzi G, Lefebvre M, Barreneche T, Robin C, Petit RJ, Candresse T. Sixty Years from the First Disease Description, a Novel Badnavirus Associated with Chestnut Mosaic Disease. PHYTOPATHOLOGY 2021; 111:1051-1058. [PMID: 33084526 DOI: 10.1094/phyto-09-20-0420-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although chestnut mosaic disease (ChMD) was described several decades ago, its etiology is still not clear. Using classical approaches and high-throughput sequencing (HTS) techniques, we identified a novel Badnavirus that is a strong etiological candidate for ChMD. Two disease sources from Italy and France were submitted to HTS-based viral indexing. Total RNAs were extracted, ribodepleted, and sequenced on an Illumina NextSeq500 (2 × 150 nt or 2 × 75 nt). In each source, we identified a single contig of ≈7.2 kb that corresponds to a complete circular viral genome and shares homologies with various badnaviruses. The genomes of the two isolates have an average nucleotide identity of 90.5%, with a typical badnaviral genome organization comprising three open reading frames. Phylogenetic analyses and sequence comparisons showed that this virus is a novel species; we propose the name Chestnut mosaic virus (ChMV). Using a newly developed molecular detection test, we systematically detected the virus in symptomatic graft-inoculated indicator plants (chestnut and American oak) as well in chestnut trees presenting typical ChMD symptoms in the field (100 and 87% in France and Italy surveys, respectively). Datamining of publicly available chestnut sequence read archive transcriptomic data allowed the reconstruction of two additional complete ChMV genomes from two Castanea mollissima sources from the United States as well as ChMV detection in C. dentata from the United States. Preliminary epidemiological studies performed in France and central eastern Italy showed that ChMV has a high incidence in some commercial orchards and low within-orchard genetic diversity.
Collapse
Affiliation(s)
- Armelle Marais
- University of Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | - Sergio Murolo
- Department Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Chantal Faure
- University of Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | - Yoann Brans
- Laboratoire de Virologie et de Biologie Moléculaire, Centre Technique Interprofessionnel des Fruits et Légumes, Prigonrieux, France
| | - Clément Larue
- University of Bordeaux, INRAE, UMR Biogeco, Cestas, France
- INVENIO, Maison Jeannette, Douville, France
| | - François Maclot
- Plant Pathology Laboratory, TERRA-Gembloux Agro-BioTech, University of Liège, Belgium
| | - Sébastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-BioTech, University of Liège, Belgium
| | - Michela Chiumenti
- National Research Council of Italy Institute for Sustainable Plant Protection, Bari, Italy
| | - Angelantonio Minafra
- National Research Council of Italy Institute for Sustainable Plant Protection, Bari, Italy
| | - Gianfranco Romanazzi
- Department Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Marie Lefebvre
- University of Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | | | - Cécile Robin
- University of Bordeaux, INRAE, UMR Biogeco, Cestas, France
| | - Rémy J Petit
- University of Bordeaux, INRAE, UMR Biogeco, Cestas, France
| | | |
Collapse
|
41
|
Identification and distribution of novel badnaviral sequences integrated in the genome of cacao (Theobroma cacao). Sci Rep 2021; 11:8270. [PMID: 33859254 PMCID: PMC8050207 DOI: 10.1038/s41598-021-87690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Theobroma cacao is one of the most economically important tropical trees, being the source of chocolate. As part of an ongoing study to understand the diversity of the badnavirus complex, responsible for the cacao swollen shoot virus disease in West Africa, evidence was found recently of virus-like sequences in asymptomatic cacao plants. The present study exploited the wealth of genomic resources in this crop, and combined bioinformatic, molecular, and genetic approaches to report for the first time the presence of integrated badnaviral sequences in most of the cacao genetic groups. These sequences, which we propose to name eTcBV for endogenous T. cacao bacilliform virus, varied in type with each predominating in a specific genetic group. A diagnostic multiplex PCR method was developed to identify the homozygous or hemizygous condition of one specific insert, which was inherited as a single Mendelian trait. These data suggest that these integration events occurred before or during the species diversification in Central and South America, and prior to its cultivation in other regions. Such evidence of integrated sequences is relevant to the management of cacao quarantine facilities and may also aid novel methods to reduce the impact of such viruses in this crop.
Collapse
|
42
|
Kutnjak D, Tamisier L, Adams I, Boonham N, Candresse T, Chiumenti M, De Jonghe K, Kreuze JF, Lefebvre M, Silva G, Malapi-Wight M, Margaria P, Mavrič Pleško I, McGreig S, Miozzi L, Remenant B, Reynard JS, Rollin J, Rott M, Schumpp O, Massart S, Haegeman A. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms 2021; 9:841. [PMID: 33920047 PMCID: PMC8071028 DOI: 10.3390/microorganisms9040841] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.
Collapse
Affiliation(s)
- Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Lucie Tamisier
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Ian Adams
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, King’s Rd, Newcastle Upon Tyne NE1 7RU, UK;
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola, 122/D, 70126 Bari, Italy;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| | - Jan F. Kreuze
- International Potato Center (CIP), Avenida la Molina 1895, La Molina, Lima 15023, Peru;
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Martha Malapi-Wight
- Biotechnology Risk Analysis Programs, Biotechnology Regulatory Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Riverdale, MD 20737, USA;
| | - Paolo Margaria
- Leibniz Institute-DSMZ, Inhoffenstrasse 7b, 38124 Braunschweig, Germany;
| | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia;
| | - Sam McGreig
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - Benoit Remenant
- ANSES Plant Health Laboratory, 7 Rue Jean Dixméras, CEDEX 01, 49044 Angers, France;
| | | | - Johan Rollin
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
- DNAVision, 6041 Charleroi, Belgium
| | - Mike Rott
- Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada;
| | - Olivier Schumpp
- Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (J.-S.R.); (O.S.)
| | - Sébastien Massart
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| |
Collapse
|
43
|
Bistolas K, Vega Thurber R. Viral discovery in the 'realm' of COVID-19. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:62-67. [PMID: 33258558 PMCID: PMC7753244 DOI: 10.1111/1758-2229.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Kalia Bistolas
- Department of MicrobiologyOregon State University, Nash HallCorvallisOR97331USA
| | | |
Collapse
|
44
|
Serfraz S, Sharma V, Maumus F, Aubriot X, Geering ADW, Teycheney PY. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant ( Solanum melongena). FRONTIERS IN PLANT SCIENCE 2021; 12:683681. [PMID: 34367211 PMCID: PMC8346255 DOI: 10.3389/fpls.2021.683681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/30/2021] [Indexed: 05/20/2023]
Abstract
Endogenous viral elements (EVEs) are widespread in plant genomes. They result from the random integration of viral sequences into host plant genomes by horizontal DNA transfer and have the potential to alter host gene expression. We performed a large-scale search for co-transcripts including caulimovirid and plant sequences in 1,678 plant and 230 algal species and characterized 50 co-transcripts in 45 distinct plant species belonging to lycophytes, ferns, gymnosperms and angiosperms. We found that insertion of badnavirus EVEs along with Ty-1 copia mobile elements occurred into a late blight resistance gene (R1) of brinjal eggplant (Solanum melongena) and wild relatives in genus Solanum and disrupted R1 orthologs. EVEs of two previously unreported badnaviruses were identified in the genome of S. melongena, whereas EVEs from an additional novel badnavirus were identified in the genome of S. aethiopicum, the cultivated scarlet eggplant. Insertion of these viruses in the ancestral lineages of the direct wild relatives of the eggplant would have occurred during the last 3 Myr, further supporting the distinctiveness of the group of the eggplant within the giant genus Solanum.
Collapse
Affiliation(s)
- Saad Serfraz
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Vikas Sharma
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Andrew D. W. Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- *Correspondence: Pierre-Yves Teycheney,
| |
Collapse
|
45
|
Schoelz JE, Adhab M. Caulimoviruses (Caulimoviridae). ENCYCLOPEDIA OF VIROLOGY 2021:313-321. [DOI: 10.1016/b978-0-12-809633-8.21300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
46
|
Richert-Pöggeler KR, Vijverberg K, Alisawi O, Chofong GN, Heslop-Harrison JS(P, Schwarzacher T. Participation of Multifunctional RNA in Replication, Recombination and Regulation of Endogenous Plant Pararetroviruses (EPRVs). FRONTIERS IN PLANT SCIENCE 2021; 12:689307. [PMID: 34234799 PMCID: PMC8256270 DOI: 10.3389/fpls.2021.689307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/11/2023]
Abstract
Pararetroviruses, taxon Caulimoviridae, are typical of retroelements with reverse transcriptase and share a common origin with retroviruses and LTR retrotransposons, presumably dating back 1.6 billion years and illustrating the transition from an RNA to a DNA world. After transcription of the viral genome in the host nucleus, viral DNA synthesis occurs in the cytoplasm on the generated terminally redundant RNA including inter- and intra-molecule recombination steps rather than relying on nuclear DNA replication. RNA recombination events between an ancestral genomic retroelement with exogenous RNA viruses were seminal in pararetrovirus evolution resulting in horizontal transmission and episomal replication. Instead of active integration, pararetroviruses use the host DNA repair machinery to prevail in genomes of angiosperms, gymnosperms and ferns. Pararetrovirus integration - leading to Endogenous ParaRetroViruses, EPRVs - by illegitimate recombination can happen if their sequences instead of homologous host genomic sequences on the sister chromatid (during mitosis) or homologous chromosome (during meiosis) are used as template. Multiple layers of RNA interference exist regulating episomal and chromosomal forms of the pararetrovirus. Pararetroviruses have evolved suppressors against this plant defense in the arms race during co-evolution which can result in deregulation of plant genes. Small RNAs serve as signaling molecules for Transcriptional and Post-Transcriptional Gene Silencing (TGS, PTGS) pathways. Different populations of small RNAs comprising 21-24 nt and 18-30 nt in length have been reported for Citrus, Fritillaria, Musa, Petunia, Solanum and Beta. Recombination and RNA interference are driving forces for evolution and regulation of EPRVs.
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- *Correspondence: Katja R. Richert-Pöggeler,
| | - Kitty Vijverberg
- Naturalis Biodiversity Center, Evolutionary Ecology Group, Leiden, Netherlands
- Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, Netherlands
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | - Gilbert N. Chofong
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
47
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
48
|
Teycheney PY, Geering ADW, Dasgupta I, Hull R, Kreuze JF, Lockhart B, Muller E, Olszewski N, Pappu H, Pooggin MM, Richert-Pöggeler KR, Schoelz JE, Seal S, Stavolone L, Umber M, Report Consortium ICTV. ICTV Virus Taxonomy Profile: Caulimoviridae. J Gen Virol 2020; 101:1025-1026. [PMID: 32940596 PMCID: PMC7660458 DOI: 10.1099/jgv.0.001497] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1-9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.
Collapse
Affiliation(s)
- Pierre-Yves Teycheney
- CIRAD, UMR AGAP, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Andrew D. W. Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia
| | - Idranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Roger Hull
- Child Okeford, Blandford Forum, Dorset, UK
| | - Jan F. Kreuze
- International Potato Center (CIP), Apartado 1558, Lima 12, Peru
| | - Ben Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emmanuelle Muller
- CIRAD, UMR BGPI, F-34398 Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Neil Olszewski
- Department of Plant Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | | | | | - James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Livia Stavolone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Marie Umber
- INRAE, UR ASTRO, F-97170, Petit-Bourg, Guadeloupe, France
| | - ICTV Report Consortium
- CIRAD, UMR AGAP, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
- Child Okeford, Blandford Forum, Dorset, UK
- International Potato Center (CIP), Apartado 1558, Lima 12, Peru
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
- CIRAD, UMR BGPI, F-34398 Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- Department of Plant Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
- INRA, UMR BGPI, F-34398 Montpellier, France
- Julius Kühn-Institut, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- INRAE, UR ASTRO, F-97170, Petit-Bourg, Guadeloupe, France
| |
Collapse
|
49
|
Sharma V, Lefeuvre P, Roumagnac P, Filloux D, Teycheney PY, Martin DP, Maumus F. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol 2020; 6:veaa071. [PMID: 33391820 PMCID: PMC7758297 DOI: 10.1093/ve/veaa071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The family Geminiviridae contains viruses with single-stranded DNA genomes that have been found infecting a wide variety of angiosperm species. The discovery within the last 25 years of endogenous geminivirus-like (EGV) elements within the nuclear genomes of several angiosperms has raised questions relating to the pervasiveness of EGVs and their impacts on host biology. Only a few EGVs have currently been characterized and it remains unclear whether any of these have influenced, or are currently influencing, the evolutionary fitness of their hosts. We therefore undertook a large-scale search for evidence of EGVs within 134 genome and 797 transcriptome sequences of green plant species. We detected homologues of geminivirus replication-associated protein (Rep) genes in forty-two angiosperm species, including two monocots, thirty-nine dicots, and one ANITA-grade basal angiosperm species (Amborella trichopoda). While EGVs were present in the members of many different plant orders, they were particularly common within the large and diverse order, Ericales, with the highest copy numbers of EGVs being found in two varieties of tea plant (Camellia sinensis). Phylogenetic and clustering analyses revealed multiple highly divergent previously unknown geminivirus Rep lineages, two of which occur in C.sinensis alone. We find that some of the Camellia EGVs are likely transcriptionally active, sometimes co-transcribed with the same host genes across several Camellia species. Overall, our analyses expand the known breadths of both geminivirus diversity and geminivirus host ranges, and strengthens support for the hypothesis that EGVs impact the biology of their hosts.
Collapse
Affiliation(s)
- Vikas Sharma
- URGI, INRAE, Université Paris-Saclay, Plant Breeding Division, 78026, Versailles, France.,Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, Department of Biological Systems, F-97410 St Pierre, La Réunion, France
| | - Philippe Roumagnac
- CIRAD, BGPI, Department of Biological Systems, 34398 Montpellier CEDEX 5, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Department of Biological Systems, 34398 Montpellier CEDEX 5, France
| | - Denis Filloux
- CIRAD, BGPI, Department of Biological Systems, 34398 Montpellier CEDEX 5, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Department of Biological Systems, 34398 Montpellier CEDEX 5, France
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP, Department of Biological Systems, F-97130, Capesterre Belle-Eau, Guadeloupe, France.,AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Department of Biological Systems, F-97130 Capesterre Belle-Eau, Guadeloupe, France
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of infectious Diseases and molecular Medicine, University of Cape Town, OBSERVATORY 7925 Cape Town, South Africa
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Plant Breeding Division, 78026, Versailles, France
| |
Collapse
|
50
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|