1
|
Komar D, Raspe K, Kazak L, Iwe N, Meiwes-Broer KH, Tiggesbäumker J. Transition from Surface to Volume Expansion in Argon Clusters Coulomb Explosion. PHYSICAL REVIEW LETTERS 2024; 133:073202. [PMID: 39213558 DOI: 10.1103/physrevlett.133.073202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The intensity-difference spectrum technique is applied to record charge-state resolved ion energy spectra from the Coulomb explosion of small Ar clusters under well-resolved laser intensity conditions. The far-reaching control of the experimental parameters permits us to identify a striking change in the expansion pattern of the nanoplasma beyond a given intensity. The simultaneous characterization of ion charge state and energy uncovers that a reduction of the laser intensity leads to a development of low energy cuts in the ion yields, not present at higher fluence. The complex interplay of outer ionization, recombination, ion screening, and the phenomenon of ionization saturation favors a surface-driven expansion at low plasma electron temperatures. With increasing laser intensity a transition into a volume-driven Coulomb explosion is observed.
Collapse
|
2
|
Ben Ltaief L, Sishodia K, Mandal S, De S, Krishnan SR, Medina C, Pal N, Richter R, Fennel T, Mudrich M. Efficient Indirect Interatomic Coulombic Decay Induced by Photoelectron Impact Excitation in Large Pure Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2023; 131:023001. [PMID: 37505945 DOI: 10.1103/physrevlett.131.023001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023]
Abstract
Ionization of matter by energetic radiation generally causes complex secondary reactions that are hard to decipher. Using large helium nanodroplets irradiated by extreme ultraviolet (XUV) photons, we show that the full chain of processes ensuing primary photoionization can be tracked in detail by means of high-resolution electron spectroscopy. We find that elastic and inelastic scattering of photoelectrons efficiently induces interatomic Coulombic decay (ICD) in the droplets. This type of indirect ICD even becomes the dominant process of electron emission in nearly the entire XUV range in large droplets with radius ≳40 nm. Indirect ICD processes induced by electron scattering likely play an important role in other condensed-phase systems exposed to ionizing radiation as well, including biological matter.
Collapse
Affiliation(s)
- L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - K Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Mandal
- Indian Institute of Science Education and Research, Pune 411008, India
| | - S De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - S R Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - C Medina
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - N Pal
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - T Fennel
- Institute for Physics, University of Rostock, 18051 Rostock, Germany
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Jahnke T, Hergenhahn U, Winter B, Dörner R, Frühling U, Demekhin PV, Gokhberg K, Cederbaum LS, Ehresmann A, Knie A, Dreuw A. Interatomic and Intermolecular Coulombic Decay. Chem Rev 2020; 120:11295-11369. [PMID: 33035051 PMCID: PMC7596762 DOI: 10.1021/acs.chemrev.0c00106] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.
Collapse
Affiliation(s)
- Till Jahnke
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Max
Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany
- Leibniz
Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Reinhard Dörner
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Ulrike Frühling
- Institut
für Experimentalphysik and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp V. Demekhin
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Kirill Gokhberg
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S. Cederbaum
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Arno Ehresmann
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - André Knie
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Kelbg M, Zabel M, Krebs B, Kazak L, Meiwes-Broer KH, Tiggesbäumker J. Temporal Development of a Laser-Induced Helium Nanoplasma Measured through Auger Emission and Above-Threshold Ionization. PHYSICAL REVIEW LETTERS 2020; 125:093202. [PMID: 32915628 DOI: 10.1103/physrevlett.125.093202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/14/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Femtosecond pump-probe electron and ion spectroscopy is applied to study the development of a helium nanoplasma up to the nanosecond timescale. Electrons, bound by the deep confining mean-field potential, are elevated toward the vacuum level in the nanoplasma expansion. Subsequent electron recombination gives rise to transitions between He^{+} states, resulting in autoionization. The time-resolved analysis of the energy transfer to quasifree electrons reveals a transient depletion of the Auger emission, which allows for a temporal gate to map the distribution of delocalized electrons in the developing mean field. Furthermore, we trace the recombination of delocalized electrons near the vacuum level into highly excited Rydberg states. Transient above-threshold ionization is introduced as a diagnostic tool to resolve the dynamics. Thus, the development of the electron distribution in the nanoplasma mean-field potential can be monitored via the features observed in the emission spectra.
Collapse
Affiliation(s)
- M Kelbg
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - M Zabel
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - B Krebs
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - L Kazak
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - K-H Meiwes-Broer
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany and Department "Life, Light, and Matter," Universität Rostock, 18059 Rostock, Germany
| | - J Tiggesbäumker
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany and Department "Life, Light, and Matter," Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
5
|
Wang Y, Lai X, Yu S, Sun R, Liu X, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X, Kitzler-Zeiler M. Laser-Induced Electron Transfer in the Dissociative Multiple Ionization of Argon Dimers. PHYSICAL REVIEW LETTERS 2020; 125:063202. [PMID: 32845670 DOI: 10.1103/physrevlett.125.063202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar^{+}+Ar^{2+} and Ar^{2+}+Ar^{2+} fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.
Collapse
Affiliation(s)
- YanLan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - XuanYang Lai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - ShaoGang Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - RenPing Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - XiaoJun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Sonia Erattupuzha
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Seyedreza Larimian
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Markus Koch
- Institute of Experimental Physics, Graz University of Technology, A-8010 Graz, Austria
| | - Václav Hanus
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Gerhard Paulus
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
6
|
Niozu A, Yokono N, Nishiyama T, Fukuzawa H, Sakurazawa T, Matsuda K, Takanashi T, You D, Li Y, Ono T, Gaumnitz T, Schöffler M, Grundmann S, Wada SI, Carpeggiani P, Xu WQ, Liu XJ, Owada S, Tono K, Togashi T, Yabashi M, Kryzhevoi NV, Gokhberg K, Kuleff AI, Cederbaum LS, Ueda K, Nagaya K. Electron spectroscopic study of nanoplasma formation triggered by intense soft x-ray pulses. J Chem Phys 2019; 151:184305. [PMID: 31731862 DOI: 10.1063/1.5115053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using electron spectroscopy, we investigated the nanoplasma formation process generated in xenon clusters by intense soft x-ray free electron laser (FEL) pulses. We found clear FEL intensity dependence of electron spectra. Multistep ionization and subsequent ionization frustration features are evident for the low FEL-intensity region, and the thermal electron emission emerges at the high FEL intensity. The present FEL intensity dependence of the electron spectra is well addressed by the frustration parameter introduced by Arbeiter and Fennel [New J. Phys. 13, 053022 (2011)].
Collapse
Affiliation(s)
- Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Naomichi Yokono
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yiwen Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Thomas Gaumnitz
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Shin-Ichi Wada
- Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Paolo Carpeggiani
- Technische Universität Wien, Institut für Photonik, Gußhausstraße 27-29, A-1040 Wien, Austria
| | - Wei Qing Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xiao Jing Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | | | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | | | | | - Nikolai V Kryzhevoi
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Kirill Gokhberg
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Kelbg M, Zabel M, Krebs B, Kazak L, Meiwes-Broer KH, Tiggesbäumker J. Auger emission from the Coulomb explosion of helium nanoplasmas. J Chem Phys 2019; 150:204302. [DOI: 10.1063/1.5089943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Kelbg
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - M. Zabel
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - B. Krebs
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - L. Kazak
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - K.-H. Meiwes-Broer
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, Universität Rostock, 18059 Rostock, Germany
| | - J. Tiggesbäumker
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
8
|
Kelbg M, Heidenreich A, Kazak L, Zabel M, Krebs B, Meiwes-Broer KH, Tiggesbäumker J. Comparison of Electron and Ion Emission from Xenon Cluster-Induced Ignition of Helium Nanodroplets. J Phys Chem A 2018; 122:8107-8113. [PMID: 30239204 DOI: 10.1021/acs.jpca.8b06673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The charging dynamics of helium droplets driven by embedded xenon cluster ignition in strong laser fields is studied by comparing the abundances of helium and highly charged Xe ions to the electron signal. Femtosecond pump-probe experiments show that near the optimal delay for highly charged xenon the electron yield increases, especially at low energies. The electron signature can be traced back to the ionization of the helium environment by Xe seed electrons. Accompanying molecular dynamics simulations suggest a two-step ionization scenario in the Xe-He core-shell system. In contrast to xenon, the experimental signal of the helium ions, as well as low-energy electron emission show a deviating delay dependence, indicating differences in the temporal and spacial development of the charge state distribution of Xe core and He surrounding. From the pump-probe dependence of the electron emission, effective temperatures can be extracted, indicating the nanoplasma decay.
Collapse
Affiliation(s)
- Michael Kelbg
- Institute of Physics , University of Rostock , Rostock 18059 , Germany
| | - Andreas Heidenreich
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K. 1072, Donostia 20018 , Spain.,IKERBASQUE, Basque Foundation for Science , Bilbao 48013 , Spain
| | - Lev Kazak
- Institute of Physics , University of Rostock , Rostock 18059 , Germany
| | - Michael Zabel
- Institute of Physics , University of Rostock , Rostock 18059 , Germany
| | - Bennet Krebs
- Institute of Physics , University of Rostock , Rostock 18059 , Germany
| | - Karl-Heinz Meiwes-Broer
- Institute of Physics , University of Rostock , Rostock 18059 , Germany.,Department Life, Light and Matter , University of Rostock , Rostock 18059 , Germany
| | - Josef Tiggesbäumker
- Institute of Physics , University of Rostock , Rostock 18059 , Germany.,Department Life, Light and Matter , University of Rostock , Rostock 18059 , Germany
| |
Collapse
|
9
|
Schütte B, Peltz C, Austin DR, Strüber C, Ye P, Rouzée A, Vrakking MJJ, Golubev N, Kuleff AI, Fennel T, Marangos JP. Low-Energy Electron Emission in the Strong-Field Ionization of Rare Gas Clusters. PHYSICAL REVIEW LETTERS 2018; 121:063202. [PMID: 30141654 DOI: 10.1103/physrevlett.121.063202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Clusters and nanoparticles have been widely investigated to determine how plasmonic near fields influence the strong-field induced energetic electron emission from finite systems. We focus on the contrary, i.e., the slow electrons, and discuss a hitherto unidentified low-energy structure (LES) in the photoemission spectra of rare gas clusters in intense near-infrared laser pulses. For Ar and Kr clusters we find, besides field-driven fast electrons, a robust and nearly isotropic emission of electrons with <4 eV kinetic energies that dominates the total yield. Molecular dynamics simulations reveal a correlated few-body decay process involving quasifree electrons and multiply excited ions in the nonequilibrium nanoplasma that results in a dominant LES feature. Our results indicate that the LES emission occurs after significant nanoplasma expansion, and that it is a generic phenomenon in intense laser nanoparticle interactions, which is likely to influence the formation of highly charged ions.
Collapse
Affiliation(s)
- Bernd Schütte
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Christian Peltz
- Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23, 18059 Rostock, Germany
| | - Dane R Austin
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Christian Strüber
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Peng Ye
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Arnaud Rouzée
- Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | | | - Nikolay Golubev
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- ELI-ALPS, Budapesti út 5, H-6728 Szeged, Hungary
| | - Thomas Fennel
- Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23, 18059 Rostock, Germany
- Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - Jon P Marangos
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| |
Collapse
|
10
|
Kandemir A, Sahin H. Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum. Phys Chem Chem Phys 2018; 20:17380-17386. [PMID: 29905346 DOI: 10.1039/c8cp02802h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the recent successful synthesis of Janus type single layers of transition metal dichalcogenides, we investigate the stability, vibrational and electronic properties of the Janus single layer structure of WSSe and its bilayers by means of density functional theory. The structural and vibrational analysis show that the Janus single layer of WSSe forms a dynamically stable structure in the 2H phase. Owing to its non-centrosymmetric structure, the Janus WSSe single layer has two in-plane (E) and two out-of-plane (A) Raman active phonon modes. The eigen-frequencies of the prominent Raman active modes are calculated to be 277 (A) and 322 (E) cm-1. Similar to single layer WS2 and WSe2, Janus WSSe is a direct band gap semiconductor that has two electronically different faces. In addition, the possible bilayer stacking orders of the Janus WSSe single layers are investigated. It is found that there are 3 stacking types of bilayer Janus WSSe and each stacking type has distinctive Raman characteristics in its vibrational spectrum. Our results show that thanks to the vibrational characteristics, which stem from the distinctive interlayer interactions at different sides, the stability and stacking types of the bilayer of WSSe Janus structure can be monitored.
Collapse
Affiliation(s)
- A Kandemir
- Department of Materials Science and Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
| | | |
Collapse
|
11
|
Komar D, Kazak L, Almassarani M, Meiwes-Broer KH, Tiggesbäumker J. Highly Charged Rydberg Ions from the Coulomb Explosion of Clusters. PHYSICAL REVIEW LETTERS 2018; 120:133207. [PMID: 29694219 DOI: 10.1103/physrevlett.120.133207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 06/08/2023]
Abstract
Ion emission from a nanoplasma produced in the interaction of intense optical laser pulses with argon clusters is studied resolving simultaneously charge states and recoil energies. By applying appropriate static electric fields we observe that a significant fraction of the ions Ar^{q+} (q=1-7) has electrons with binding energies lower than 150 meV; i.e., n_{Ryd}≥15 levels are populated. Charge state changes observed on a μs time scale can be attributed to electron emission due to autoionizing Rydberg states, indicating that high-ℓ Rydberg levels are populated as well. The experiments support theoretical predictions that a significant fraction of delocalized electrons, which are bound with hundreds of eV to the nanoplasma after the laser exposure, fill up meV bound ion states in the adiabatic expansion. We expect the process to be relevant for the long-term evolution of expanding laser-induced dense plasmas in general.
Collapse
Affiliation(s)
- D Komar
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - L Kazak
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - M Almassarani
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - K-H Meiwes-Broer
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| | - J Tiggesbäumker
- Institut für Physik, Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
12
|
Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser. Sci Rep 2017; 7:40736. [PMID: 28098175 PMCID: PMC5241628 DOI: 10.1038/srep40736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.
Collapse
|
13
|
Schütte B, Ye P, Patchkovskii S, Austin DR, Brahms C, Strüber C, Witting T, Ivanov MY, Tisch JWG, Marangos JP. Strong-field ionization of clusters using two-cycle pulses at 1.8 μm. Sci Rep 2016; 6:39664. [PMID: 28009012 PMCID: PMC5180105 DOI: 10.1038/srep39664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 11/23/2022] Open
Abstract
The interaction of intense laser pulses with nanoscale particles leads to the production of high-energy electrons, ions, neutral atoms, neutrons and photons. Up to now, investigations have focused on near-infrared to X-ray laser pulses consisting of many optical cycles. Here we study strong-field ionization of rare-gas clusters (103 to 105 atoms) using two-cycle 1.8 μm laser pulses to access a new interaction regime in the limit where the electron dynamics are dominated by the laser field and the cluster atoms do not have time to move significantly. The emission of fast electrons with kinetic energies exceeding 3 keV is observed using laser pulses with a wavelength of 1.8 μm and an intensity of 1 × 1015 W/cm2, whereas only electrons below 500 eV are observed at 800 nm using a similar intensity and pulse duration. Fast electrons are preferentially emitted along the laser polarization direction, showing that they are driven out from the cluster by the laser field. In addition to direct electron emission, an electron rescattering plateau is observed. Scaling to even longer wavelengths is expected to result in a highly directional current of energetic electrons on a few-femtosecond timescale.
Collapse
Affiliation(s)
- Bernd Schütte
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peng Ye
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Dane R. Austin
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Christian Brahms
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Christian Strüber
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tobias Witting
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Misha Yu. Ivanov
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - John W. G. Tisch
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jon P. Marangos
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
14
|
Gharatape A, Milani M, Rasta SH, Pourhassan-Moghaddam M, Ahmadi-Kandjani S, Davaran S, Salehi R. A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan). RSC Adv 2016. [DOI: 10.1039/c6ra23213b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bactericidal effect of modified gold nanoparticles based on plasmonic photothermal therapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Morteza Milani
- Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Seyed Hossein Rasta
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB24 5DT
- UK
- Department of Medical Bioengineering
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | - Soodabeh Davaran
- Drug Applied Research Center and Department of Medicinal Chemistry
- Faculty of Pharmacy
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Roya Salehi
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| |
Collapse
|