1
|
Peinkofer KR, Williams ML, Mantel GC, Phelan BT, Young RM, Wasielewski MR. Polarity of Ordered Solvent Molecules in 9,9'-Bianthracene Single Crystals Selects between Singlet Fission or Symmetry-Breaking Charge Separation. J Am Chem Soc 2024; 146:34934-34942. [PMID: 39655818 DOI: 10.1021/jacs.4c14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Singlet exciton fission (SF) and symmetry-breaking charge separation (SB-CS) are both photophysical processes that can occur between two organic chromophores and are both of interest to improve solar energy conversion. Here, we tuned the photophysics of a 9,9'-bianthracene (BA) single crystal between SF and SB-CS using solvent intercalation to change the electric field within the crystal. Crystals of BA were grown in o-xylene, chlorobenzene, o-dichlorobenzene, and benzonitrile, as well as solvent-free from a melt. The crystals were studied by X-ray diffraction, steady-state optical spectroscopy, and transient absorption microscopy to elucidate the role of the intercalated solvent molecules. The crystals with no solvent in the structure undergo fast SF (<2 ps), while the crystals with intercalated moderately polar solvents o-xylene, chlorobenzene, and o-dichlorobenzene show evidence of charge-transfer-mediated SF. Finally, the crystals containing highly polar benzonitrile undergo SB-CS instead of SF. These results demonstrate that controlling solvation of BA in the crystal structure can tune its photophysics between SF and SB-CS.
Collapse
Affiliation(s)
- Kathryn R Peinkofer
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Georgia C Mantel
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
2
|
Kathir RK, Coto PB, Thoss M. Spin Mixing in Intramolecular Singlet Fission: A First-Principles-Based Quantum Dynamical Study. J Phys Chem Lett 2024; 15:11517-11524. [PMID: 39523802 DOI: 10.1021/acs.jpclett.4c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We investigate the dynamical interplay between the different triplet-pair spin states that are formed in the intramolecular singlet fission process in a series of pentacene-based dimers covalently bonded to a phenylene linker in ortho, meta, and para positions. Using first-principles calculations and a density matrix quantum dynamical approach we show that the spin dipole-dipole interaction leads to significant population of the quintet spin manifold in these regioisomers when the singlet, triplet and quintet triplet-pair states are quasidegenerate. Furthermore, we also show that the relative arrangement of the pentacene-like moieties has a profound impact on the dynamics of the spin-mixing process, affecting both the relative population of the different spin-states involved in the dynamics and the time scale of the process.
Collapse
Affiliation(s)
- R K Kathir
- Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Pedro B Coto
- Materials Physics Center (CFM), Spanish National Research Council (CSIC), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E20018 Donostia-San Sebastián, Spain
| | - Michael Thoss
- Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Diaz-Andres A, Tonnelé C, Casanova D. Electronic Couplings for Triplet-Triplet Annihilation Upconversion in Crystal Rubrene. J Chem Theory Comput 2024; 20:4288-4297. [PMID: 38743825 PMCID: PMC11137828 DOI: 10.1021/acs.jctc.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) is a process able to repackage two low-frequency photons into light of higher energy. This transformation is typically orchestrated by the electronic degrees of freedom within organic compounds possessing suitable singlet and triplet energies and electronic couplings. In this work, we propose a computational protocol for the assessment of electronic couplings crucial to TTA-UC in molecular materials and apply it to the study of crystal rubrene. Our methodology integrates sophisticated yet computationally affordable approaches to quantify couplings in singlet and triplet energy transfer, the binding of triplet pairs, and the fusion to the singlet exciton. Of particular significance is the role played by charge-transfer states along the b-axis of rubrene crystal, acting as both partial quenchers of singlet energy transfer and mediators of triplet fusion. Our calculations identify the π-stacking direction as holding notable triplet energy transfer couplings, consistent with the experimentally observed anisotropic exciton diffusion. Finally, we have characterized the impact of thermally induced structural distortions, revealing their key role in the viability of triplet fusion and singlet fission. We posit that our approaches are transferable to a broad spectrum of organic molecular materials, offering a feasible means to quantify electronic couplings.
Collapse
Affiliation(s)
- Aitor Diaz-Andres
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
| | - Claire Tonnelé
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Euskadi, Spain
| | - David Casanova
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Euskadi, Spain
| |
Collapse
|
4
|
Kim J, Teo HT, Hong Y, Cha H, Kim W, Chi C, Kim D. Elucidating Singlet-Fission-Born Multiexciton Dynamics via Molecular Engineering: A Dilution Principle Extended to Quintet Triplet Pair. J Am Chem Soc 2024; 146:10833-10846. [PMID: 38578848 DOI: 10.1021/jacs.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Wu Y, Lu L, Yu B, Zhang S, Luo P, Chen M, He J, Li Y, Zhang C, Zhu J, Yao J, Fu H. Dynamic Evolving Exothermicity Steers Ultrafast Formation of a Correlated Triplet Pair State. J Phys Chem Lett 2023; 14:4233-4240. [PMID: 37126526 DOI: 10.1021/acs.jpclett.3c00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.
Collapse
Affiliation(s)
- Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Lina Lu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - San Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Pengdong Luo
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing 100871, People's Republic of China
| | - Jingping He
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Yongyao Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
6
|
Zhou J, Liu H, Liu S, Su P, Wang W, Li Z, Liu Z, Chen Y, Dong Y, Li X. Singlet Fission in Colloidal Nanoparticles of Amphipathic Diketopyrrolopyrrole Derivatives: Probing the Role of the Charge Transfer State. J Phys Chem B 2022; 126:6483-6492. [PMID: 35979942 DOI: 10.1021/acs.jpcb.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.
Collapse
Affiliation(s)
- Jun Zhou
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shanshan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Pengkun Su
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weijie Wang
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Yanli Chen
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yunqin Dong
- College of Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiyou Li
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
7
|
|
8
|
Jin P, Zhou Z, Wang H, Hao J, Chen R, Wang J, Zhang C. Spin-Enhanced Reverse Intersystem Crossing and Electroluminescence in Copper Acetate-Doped Thermally Activated Delayed Fluorescence Material. J Phys Chem Lett 2022; 13:2516-2522. [PMID: 35275641 DOI: 10.1021/acs.jpclett.2c00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials are attractive for next-generation organic light-emitting diodes (OLEDs) because of their utilization of nonradiative triplets via reverse intersystem crossing (RISC), which requires not only a small singlet-triplet energy splitting but also the conservation of spin angular momentum. Here we use copper acetate as a spin sensitizer to facilitate RISC and thus enhance electroluminescence in TADF-exciplex OLEDs. Copper acetate is involved in the radiative decay process due to its coordination interaction with exciplex molecules having intermolecular charge-transfer characteristics, which causes significant changes in the photoluminescence intensity and lifetime. Meanwhile, magneto-photoluminescence reveals that the addition of copper acetate promotes spin conversion in the RISC process. It allows the enhancement of the electroluminescence (∼80%) from spin-sensitized OLEDs, accompanied by the suppression of magneto-electroluminescence upon the doping of copper acetate. These results illustrate that using a spin sensitizer may overcome the limitation of harvesting nonradiative triplets in organic luminescent materials and devices.
Collapse
Affiliation(s)
- Pengfei Jin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyang Zhou
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjie Hao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingying Wang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
10
|
Bossanyi DG, Sasaki Y, Wang S, Chekulaev D, Kimizuka N, Yanai N, Clark J. Spin Statistics for Triplet-Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing. JACS AU 2021; 1:2188-2201. [PMID: 34977890 PMCID: PMC8715495 DOI: 10.1021/jacsau.1c00322] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has great potential to significantly improve the light harvesting capabilities of photovoltaic cells and is also sought after for biomedical applications. Many factors combine to influence the overall efficiency of TTA-UC, the most fundamental of which is the spin statistical factor, η, that gives the probability that a bright singlet state is formed from a pair of annihilating triplet states. The value of η is also critical in determining the contribution of TTA to the overall efficiency of organic light-emitting diodes. Using solid rubrene as a model system, we reiterate why experimentally measured magnetic field effects prove that annihilating triplets first form weakly exchange-coupled triplet-pair states. This is contrary to conventional discussions of TTA-UC that implicitly assume strong exchange coupling, and we show that it has profound implications for the spin statistical factor η. For example, variations in intermolecular orientation tune η from to through spin mixing of the triplet-pair wave functions. Because the fate of spin-1 triplet-pair states is particularly crucial in determining η, we investigate it in rubrene using pump-push-probe spectroscopy and find additional evidence for the recently reported high-level reverse intersystem crossing channel. We incorporate all of these factors into an updated model framework with which to understand the spin statistics of TTA-UC and use it to rationalize the differences in reported values of η among different common annihilator systems. We suggest that harnessing high-level reverse intersystem crossing channels in new annihilator molecules may be a highly promising strategy to exceed any spin statistical limit.
Collapse
Affiliation(s)
- David G. Bossanyi
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Yoichi Sasaki
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shuangqing Wang
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jenny Clark
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| |
Collapse
|
11
|
Xie X, Troisi A. Evaluating the Electronic Structure of Coexisting Excitonic and Multiexcitonic States in Periodic Systems: Significance for Singlet Fission. J Chem Theory Comput 2021; 18:394-405. [PMID: 34902251 DOI: 10.1021/acs.jctc.1c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Singlet fission (SF) in organic molecular solids is an example of a process that is challenging to describe with the most common electronic structure approaches. It involves optically bright singlet excited states delocalized over many molecules, which could be efficiently treated by density functional theory, and multiexcitonic localized states that have to be studied with wavefunction methods, usually with small clusters considering their expensive computational costs. In this work, we propose a methodology to combine multiconfigurational wavefunction calculations with reduced Hamiltonian to investigate the electronic structure of large clusters or fully periodic systems. The method is applied to the prototypical SF materials tetracene and pentacene. The results allow one to study how states of different natures (excitonic, charge-transfer, and multiexcitonic) coexist and are contaminated by their couplings in large or periodic systems. Novel insights are therefore possible. For example, because the excitonic bands are relatively broad with respect to the multiexcitonic states, there are limited regions of the crystal momentum space where the transition between the two is more likely.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
| |
Collapse
|
12
|
Wang Z, Liu H, Xie X, Zhang C, Wang R, Chen L, Xu Y, Ma H, Fang W, Yao Y, Sang H, Wang X, Li X, Xiao M. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem 2021; 13:559-567. [PMID: 33833447 DOI: 10.1038/s41557-021-00665-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Singlet fission (SF) can potentially boost the efficiency of solar energy conversion by converting a singlet exciton (S1) into two free triplets (T1 + T1) through an intermediate state of a correlated triplet pair (TT). Although efficient TT generation has been recently realized in many intramolecular SF materials, their potential applications have been hindered by the poor efficiency of TT dissociation. Here we demonstrate that this can be overcome by employing a spatially separated 1(T…T) state with weak intertriplet coupling in tetracene oligomers with three or more chromophores. By using transient magneto-optical spectroscopic methods, we show that free-triplet generation can be markedly enhanced through the SF pathway that involves the spatially separated 1(T…T) state rather than the pathway mediated by the spatially adjacent TT state, leading to a marked improvement in free-triplet generation with an efficiency increase from 21% for the dimer to 85% (124%) for the trimer (tetramer).
Collapse
Affiliation(s)
- Zhiwei Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Heyuan Liu
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Hai Sang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiyou Li
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,Department of Physics, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
13
|
Kundu A, Dasgupta J. Photogeneration of Long-Lived Triplet States through Singlet Fission in Lycopene H-Aggregates. J Phys Chem Lett 2021; 12:1468-1474. [PMID: 33528257 DOI: 10.1021/acs.jpclett.0c03301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular triplet excitons produced through singlet fission (SF) usually have shorter triplet lifetimes due to exciton-exciton recombination and relaxation pathways, thereby resulting in complex device architectures for SF-boosted solar cells. Using broadband transient absorption spectroscopy, we here show that the photoexcitation of nanostructured lycopene H-aggregates at room temperature produces free triplets with an unprecedented 35-fold enhancement in the lifetime compared to those localized on the monomer backbone. The observed rise of a spectrally blue-shifted correlated T-T pair state in ∼19 ps with distinct vibronic features provides the basis for SF-induced triplet generation.
Collapse
Affiliation(s)
- Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
14
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
15
|
Cruz CD, Chronister EL, Bardeen CJ. Using temperature dependent fluorescence to evaluate singlet fission pathways in tetracene single crystals. J Chem Phys 2020; 153:234504. [PMID: 33353314 DOI: 10.1063/5.0031458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The temperature-dependent fluorescence spectrum, decay rate, and spin quantum beats are examined in single tetracene crystals to gain insight into the mechanism of singlet fission. Over the temperature range of 250 K-500 K, the vibronic lineshape of the emission indicates that the singlet exciton becomes localized at 400 K. The fission process is insensitive to this localization and exhibits Arrhenius behavior with an activation energy of 550 ± 50 cm-1. The damping rate of the triplet pair spin quantum beats in the delayed fluorescence also exhibits an Arrhenius temperature dependence with an activation energy of 165 ± 70 cm-1. All the data for T > 250 K are consistent with direct production of a spatially separated 1(T⋯T) state via a thermally activated process, analogous to spontaneous parametric downconversion of photons. For temperatures in the range of 20 K-250 K, the singlet exciton continues to undergo a rapid decay on the order of 200 ps, leaving a red-shifted emission that decays on the order of 100 ns. At very long times (≈1 µs), a delayed fluorescence component corresponding to the original S1 state can still be resolved, unlike in polycrystalline films. A kinetic analysis shows that the redshifted emission seen at lower temperatures cannot be an intermediate in the triplet production. When considered in the context of other results, our data suggest that the production of triplets in tetracene for temperatures below 250 K is a complex process that is sensitive to the presence of structural defects.
Collapse
Affiliation(s)
- Chad D Cruz
- Department of Chemistry, University of California Riverside, Riverside, California 92521, USA
| | - Eric L Chronister
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Christopher J Bardeen
- Department of Chemistry, University of California Riverside, Riverside, California 92521, USA
| |
Collapse
|
16
|
The Effect of Magnetic Fields on Singlet Fission in Organic Semiconductors: its Understanding and Applications. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Papadopoulos I, Gao Y, Hetzer C, Tykwinski RR, Guldi DM. Singlet Fission in Enantiomerically Pure Pentacene Dimers. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Yueze Gao
- Department of Chemistry University of Alberta, Edmonton Alberta T6G 2G2 Canada
| | - Constantin Hetzer
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Rik R. Tykwinski
- Department of Chemistry University of Alberta, Edmonton Alberta T6G 2G2 Canada
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
18
|
Han J, Xie Q, Luo J, Deng GH, Qian Y, Sun D, Harutyunyan AR, Chen G, Rao Y. Anisotropic Geminate and Non-Geminate Recombination of Triplet Excitons in Singlet Fission of Single Crystalline Hexacene. J Phys Chem Lett 2020; 11:1261-1267. [PMID: 31971388 DOI: 10.1021/acs.jpclett.9b03800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Singlet fission is believed to improve the efficiency of solar energy conversion by breaking up the Shockley-Queisser thermodynamic limit. Understanding of triplet excitons generated by singlet fission is essential for solar energy exploitation. Here we employed transient absorption microscopy to examine dynamical behaviors of triplet excitons. We observed anisotropic recombination of triplet excitons in hexacene single crystals. The triplet exciton relaxations from singlet fission proceed in both geminate and non-geminate recombination. For the geminate recombination, the different rates were attributed to the significant difference in their related energy change based on the Redfield quantum dissipation theory. The process is mainly governed by the electron-phonon interaction in hexacene. On the other hand, the non-geminate recombination is of bimolecular origin through energy transfer. In the triplet-triplet bimolecular process, the rates along the two different optical axes in the a-b crystalline plane differ by a factor of 4. This anisotropy in the triplet-triplet recombination rates was attributed to the interference in the coupling probability of dipole-dipole interactions in the different geometric configurations of hexacene single crystals. Our experimental findings provide new insight into future design of singlet fission materials with desirable triplet exciton exploitations.
Collapse
Affiliation(s)
- Jian Han
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Qing Xie
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Jun Luo
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Dezheng Sun
- Department of Physics , Columbia University , New York , New York 10027 , United States
| | - Avetik R Harutyunyan
- Honda Research Institute, USA, Inc. , San Jose , California 95134 , United States
| | - Gugang Chen
- Honda Research Institute, USA, Inc. , San Jose , California 95134 , United States
| | - Yi Rao
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
19
|
Shushin AI. Manifestation of specific features of T-exciton migration in magnetic field effects on TT-annihilation in molecular crystals: Analysis of low-field resonances. J Chem Phys 2019; 151:224503. [PMID: 31837682 DOI: 10.1063/1.5127666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The manifestation of specific features of T-exciton migration in the shape of low field resonances (LFRs) in the magnetic field effects on the TT-annihilation in molecular crystals is studied in detail. The LFRs are shown to be caused by avoided crossing of spin-levels of T-excitons in magnetic fields nearly parallel to the axis of the zero field splitting interaction tensor. Simple and accurate formulas for the shape of the LFR-line are derived within the hopping model of T-exciton migration. With these formulas, we demonstrate that the LFR-line shape is fairly sensitive to the anisotropy of T-exciton migration, in particular, in quasi-one-dimensional (quasi-1D) and quasi-two-dimensional (quasi-2D) limits of exciton migration. The analysis of the shape is shown to allow for obtaining the magnitude of the small rate of jumps out of 1D and 2D spaces of fast migration in the cases quasi-1D and quasi-2D migration, respectively. In addition, this analysis enables one to obtain the spin relaxation rate of T-excitons.
Collapse
Affiliation(s)
- A I Shushin
- Institute of Chemical Physics, Russian Academy of Sciences, GSP-1, Kosygin St. 4, Moscow 119991, Russian Federation and Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700, Moscow Region, Russian Federation
| |
Collapse
|
20
|
Wang Z, Zhang C, Wang R, Wang G, Wang X, Xiao M. Weakly coupled triplet pair states probed by quantum beating in delayed fluorescence in tetracene crystals. J Chem Phys 2019; 151:134309. [DOI: 10.1063/1.5110188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhiwei Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Guodong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
21
|
Abstract
Entanglement of states is one of the most surprising and counterintuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic semiconductor materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which consists of a pair of localized triplet excitons coupled into an overall spin-0, -1, or -2 configuration. The most widely analyzed of these is the spin-0 pair, denoted 1(TT), which was initially invoked in the 1960s to explain delayed fluorescence in acene films. It is considered an essential gateway state for triplet-triplet annihilation and the reverse process, singlet fission, enabling interconversion between one singlet and two triplet excitons without any change in overall spin. This state has returned to the forefront of organic materials research in recent years, thanks both to its central role in the resurgent field of singlet fission and to its implication in a host of exotic new photophysical behaviors. Here we review the properties of triplet-pair states, from first principles to recent experimental results.
Collapse
Affiliation(s)
- Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; ,
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; ,
| |
Collapse
|
22
|
Bayliss SL, Kraffert F, Wang R, Zhang C, Bittl R, Behrends J. Tuning Spin Dynamics in Crystalline Tetracene. J Phys Chem Lett 2019; 10:1908-1913. [PMID: 30939019 DOI: 10.1021/acs.jpclett.9b00356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tetracene is an archetypal material undergoing singlet fission-the generation of a pair of triplet excitons from one singlet exciton. Here, using time-resolved electron spin resonance, we show how the spin dynamics in tetracene crystals are influenced by temperature and morphology. Upon cooling from 300 to 200 K, we observe a switch between singlet fission and intersystem crossing generated triplets, manifesting as an inversion in transient spin polarization. We extract a spin dephasing time of approximately 40 ns for fission-generated triplets at room temperature, nearly 100 times shorter than the dephasing time that we measure for triplets localized on isolated tetracene molecules. These results highlight the importance of morphology and thermal activation in singlet fission systems.
Collapse
Affiliation(s)
- Sam L Bayliss
- Berlin Joint EPR Lab, Fachbereich Physik , Freie Universität Berlin , D-14195 Berlin , Germany
| | - Felix Kraffert
- Berlin Joint EPR Lab, Fachbereich Physik , Freie Universität Berlin , D-14195 Berlin , Germany
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics , Nanjing University , Nanjing 210093 , China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics , Nanjing University , Nanjing 210093 , China
- Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Robert Bittl
- Berlin Joint EPR Lab, Fachbereich Physik , Freie Universität Berlin , D-14195 Berlin , Germany
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik , Freie Universität Berlin , D-14195 Berlin , Germany
| |
Collapse
|
23
|
Abstract
This account aims at providing an understanding of singlet fission, i.e., the photophysical process of a singlet state ( S1) splitting into two triplet states (2 × T1) in molecular chromophores. Since its discovery 50 years ago, the field of singlet fission has enjoyed rapid expansion in the past 8 years. However, there have been lingering confusion and debates on the nature of the all-important triplet pair intermediate states and the definition of singlet fission rates. Here we clarify the confusion from both theoretical and experimental perspectives. We distinguish the triplet pair state that maintains electronic coherence between the two constituent triplets, 1(TT), from one which does not, 1(T···T). Only the rate of formation of 1(T···T) is defined as that of singlet fission. We present distinct experimental evidence for 1(TT), whose formation may occur via incoherent and/or vibronic coherent mechanisms. We discuss the challenges in treating singlet fission beyond the dimer approximation, in understanding the often neglected roles of delocalization on singlet fission rates, and in realizing the much lauded goal of increasing solar energy conversion efficiencies with singlet fission chromophores.
Collapse
Affiliation(s)
- Kiyoshi Miyata
- Department of Chemistry , Columbia University , New York , New York 10027 , United States.,Department of Chemistry , Kyushu University , Fukuoka 819-0395 , Japan
| | - Felisa S Conrad-Burton
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Florian L Geyer
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - X-Y Zhu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
24
|
Jang HJ, Bittle EG, Zhang Q, Biacchi AJ, Richter CA, Gundlach DJ. Electrical Detection of Singlet Fission in Single Crystal Tetracene Transistors. ACS NANO 2019; 13:616-623. [PMID: 30608649 PMCID: PMC6541755 DOI: 10.1021/acsnano.8b07625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the electrical detection of singlet fission in tetracene by using a field-effect transistor (FET). Singlet fission is a photoinduced spin-dependent process, yielding two triplet excitons from the absorption of a single photon. In this study, we engineered a more deterministic platform composed of an organic single crystal FET rather than amorphous or polycrystalline FETs to elucidate spin-dependent processes under magnetic fields. Despite the unipolar operation and relatively high mobility of single crystal tetracene FETs, we were able to manipulate spin dependent processes to detect magnetoconductance (MC) at room temperature by illuminating the FETs and tuning the bias voltage to adjust majority charge carrier density and trap occupancy. In considering the crystalline direction and magnetic field interactions in tetracene, we show the MC response observed in tetracene FETs to be the result of the singlet fission process.
Collapse
Affiliation(s)
- Hyuk-Jae Jang
- Theiss Research, La Jolla, CA 92037, USA
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Western Digital Corporation, 5601 Great Oaks Parkway, San Jose, CA 95119, USA
| | - Emily G. Bittle
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Qin Zhang
- Theiss Research, La Jolla, CA 92037, USA
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Adam J. Biacchi
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - David J. Gundlach
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
25
|
Kim H, Zimmerman PM. Coupled double triplet state in singlet fission. Phys Chem Chem Phys 2018; 20:30083-30094. [PMID: 30484452 DOI: 10.1039/c8cp06256k] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The highly unusual state, 1(TT), is a coupled, double triplet state that has recently garnered significant attention. This multiexcitonic state can be formed by a quantum transition from a single-photon bright state in a variety of organic semiconducting materials. 1(TT)'s transient nature and similarity to independent triplets, however, has led to significant difficulties in characterization and prediction of its properties. Recent progress describing 1(TT) from theory and experiment are breaking through these difficulties, and have greatly advanced our comprehension of this state. Starting from the early description of 1(TT) in polyenes, this perspective discusses formation mechanisms, spectroscopic signatures, and the scope of intertriplet interactions. When employing singlet fission to generate charge carriers in a solar cell, 1(TT) has a central role. Due to the variety of coupling strengths between triplet states in 1(TT) amongst different chromophores, two different strategies are discussed to enable efficient charge carrier extraction. Continued growth in our understanding of 1(TT) may lead to control over complex quantum states for intriguing applications beyond high-efficiency, organic solar cells.
Collapse
Affiliation(s)
- Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea.
| | | |
Collapse
|
26
|
Wan Y, Wiederrecht GP, Schaller RD, Johnson JC, Huang L. Transport of Spin-Entangled Triplet Excitons Generated by Singlet Fission. J Phys Chem Lett 2018; 9:6731-6738. [PMID: 30403874 DOI: 10.1021/acs.jpclett.8b02944] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Singlet fission provides a promising route for overcoming the Shockley-Queisser limit in solar cells using organic materials. Despite singlet fission dynamics having been extensively investigated, the transport of the various intermediates in relation to the singlet and triplet states is largely unknown. Here we employ temperature-dependent ultrafast transient absorption microscopy to image the transport of singlet fission intermediates in single crystals of tetracene. These measurements suggest a mobile singlet fission intermediate state at low temperatures, with a diffusion constant of 36 cm2s-1 at 5 K, approaching that for the free singlet excitons, which we attribute to the spin-entangled correlated triplet pair state 1[TT]. These results indicate that 1[TT] could transport with a similar mechanism as the bright singlet excitons, which has important implications in designing materials for singlet fission and spintronic applications.
Collapse
Affiliation(s)
- Yan Wan
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Justin C Johnson
- National Renewable Energy Laboratory , 15013 Denver West Pkwy , Golden , Colorado 80401 , United States
| | - Libai Huang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
27
|
Zhu T, Huang L. Exciton Transport in Singlet Fission Materials: A New Hare and Tortoise Story. J Phys Chem Lett 2018; 9:6502-6510. [PMID: 30358404 DOI: 10.1021/acs.jpclett.8b02181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Singlet fission is promising for redistributing the solar spectrum to overcome the Shockley-Queisser limit for single-junction solar cells using molecular materials. Despite recent experimental and theoretical advances in understanding the underlying mechanisms, how exciton transport is coupled to singlet fission dynamics is much less explored. In this Perspective, we examine exciton transport in singlet fission materials, highlighting the use of transient absorption microscopy (TAM) to track the population of different states in both spatial and temporal domains. In contrast to the conventional picture where singlet and triplet excitons migrate independently, TAM measurements of acene single crystals reveal cooperative transport between fast-moving singlet and slow-moving triplet excitons. Such cooperative transport is unique to singlet fission materials and allows hundreds of nanometers triplet migration on the nanosecond time scale, beneficial for solar cell applications. The transport of triplet pair intermediates and general criteria for achieving cooperative singlet-triplet transport are also discussed.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Libai Huang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
28
|
Sakai H, Inaya R, Tkachenko NV, Hasobe T. High‐Yield Generation of Triplet Excited States by an Efficient Sequential Photoinduced Process from Energy Transfer to Singlet Fission in Pentacene‐Modified CdSe/ZnS Quantum Dots. Chemistry 2018; 24:17062-17071. [DOI: 10.1002/chem.201803257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Ryutaro Inaya
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Nikolai V Tkachenko
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101, Tampere, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
29
|
Pensack RD, Tilley AJ, Grieco C, Purdum GE, Ostroumov EE, Granger DB, Oblinsky DG, Dean JC, Doucette GS, Asbury JB, Loo YL, Seferos DS, Anthony JE, Scholes GD. Striking the right balance of intermolecular coupling for high-efficiency singlet fission. Chem Sci 2018; 9:6240-6259. [PMID: 30090312 PMCID: PMC6062843 DOI: 10.1039/c8sc00293b] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 12/02/2022] Open
Abstract
Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet-triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields.
Collapse
Affiliation(s)
- Ryan D Pensack
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Andrew J Tilley
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Christopher Grieco
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA
| | - Geoffrey E Purdum
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
| | - Evgeny E Ostroumov
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Devin B Granger
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , USA .
| | - Daniel G Oblinsky
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Jacob C Dean
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Grayson S Doucette
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA
| | - John B Asbury
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
- Andlinger Center for Energy and the Environment , Princeton University , Princeton , New Jersey 08544 , USA
| | - Dwight S Seferos
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - John E Anthony
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , USA .
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| |
Collapse
|
30
|
Tempelaar R, Reichman DR. Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state. J Chem Phys 2018; 146:174703. [PMID: 28477613 DOI: 10.1063/1.4982362] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
Collapse
Affiliation(s)
- Roel Tempelaar
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
31
|
Folie BD, Haber JB, Refaely-Abramson S, Neaton JB, Ginsberg NS. Long-Lived Correlated Triplet Pairs in a π-Stacked Crystalline Pentacene Derivative. J Am Chem Soc 2018; 140:2326-2335. [DOI: 10.1021/jacs.7b12662] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Jeffrey B. Neaton
- Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States
| | - Naomi S. Ginsberg
- Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Sun KW, Yao Y. Beating maps of singlet fission: Simulation of coherent two-dimensional electronic spectroscopy by Davydov ansatz in organic molecules. J Chem Phys 2017; 147:224905. [DOI: 10.1063/1.5005564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ke-Wei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yao Yao
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
33
|
Lukman S, Richter JM, Yang L, Hu P, Wu J, Greenham NC, Musser AJ. Efficient Singlet Fission and Triplet-Pair Emission in a Family of Zethrene Diradicaloids. J Am Chem Soc 2017; 139:18376-18385. [DOI: 10.1021/jacs.7b10762] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steven Lukman
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionoplis Way, Singapore 138634, Singapore
| | - Johannes M. Richter
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Le Yang
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionoplis Way, Singapore 138634, Singapore
| | - Pan Hu
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionoplis Way, Singapore 138634, Singapore
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Neil C. Greenham
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Andrew J. Musser
- Department of Physics & Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
34
|
Yu J, Fu LM, Yu LJ, Shi Y, Wang P, Wang-Otomo ZY, Zhang JP. Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. J Am Chem Soc 2017; 139:15984-15993. [DOI: 10.1021/jacs.7b09809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Yu
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Min Fu
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Faculty
of Science, Ibaraki University, Mito 310-8512, Japan
- Department
of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Ying Shi
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Peng Wang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Jian-Ping Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
35
|
Yong CK, Musser AJ, Bayliss SL, Lukman S, Tamura H, Bubnova O, Hallani RK, Meneau A, Resel R, Maruyama M, Hotta S, Herz LM, Beljonne D, Anthony JE, Clark J, Sirringhaus H. The entangled triplet pair state in acene and heteroacene materials. Nat Commun 2017; 8:15953. [PMID: 28699637 PMCID: PMC5510179 DOI: 10.1038/ncomms15953] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022] Open
Abstract
Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg-Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.
Collapse
Affiliation(s)
- Chaw Keong Yong
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,Department of Physics, University of California, Berkeley, California 94720, USA
| | - Andrew J Musser
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,Department of Physics and Astronomy, The University of Sheffield, Hicks Buildling, Hounsfield Road, Sheffield S3 7RH, UK
| | - Sam L Bayliss
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Steven Lukman
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Hiroyuki Tamura
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Olga Bubnova
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Rawad K Hallani
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Aurélie Meneau
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Munetaka Maruyama
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shu Hotta
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Laura M Herz
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Jenny Clark
- Department of Physics and Astronomy, The University of Sheffield, Hicks Buildling, Hounsfield Road, Sheffield S3 7RH, UK
| | - Henning Sirringhaus
- Cavendish Laboratory, Optoelectronics Group, University of Cambridge, Madingley Road, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
36
|
Trinh MT, Pinkard A, Pun AB, Sanders SN, Kumarasamy E, Sfeir MY, Campos LM, Roy X, Zhu XY. Distinct properties of the triplet pair state from singlet fission. SCIENCE ADVANCES 2017; 3:e1700241. [PMID: 28740866 PMCID: PMC5510972 DOI: 10.1126/sciadv.1700241] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/25/2017] [Indexed: 05/12/2023]
Abstract
Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→Sn and S1→Sn' transitions; Sn and Sn' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.
Collapse
Affiliation(s)
- M. Tuan Trinh
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Andrew Pinkard
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Andrew B. Pun
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Samuel N. Sanders
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Matthew Y. Sfeir
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Luis M. Campos
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - X.-Y. Zhu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
37
|
Liu H, Wang R, Shen L, Xu Y, Xiao M, Zhang C, Li X. A Covalently Linked Tetracene Trimer: Synthesis and Singlet Exciton Fission Property. Org Lett 2017; 19:580-583. [DOI: 10.1021/acs.orglett.6b03739] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Heyuan Liu
- College
of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Rui Wang
- National
Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Li Shen
- College
of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yanqing Xu
- National
Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National
Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
- Synergetic
Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunfeng Zhang
- National
Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
- Synergetic
Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiyou Li
- College
of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
38
|
Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nat Chem 2016; 9:341-346. [DOI: 10.1038/nchem.2665] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
|
39
|
Leng X, Feng J, Chen T, Liu C, Ma Y. Optical properties of acene molecules and pentacene crystal from the many-body Green's function method. Phys Chem Chem Phys 2016; 18:30777-30784. [DOI: 10.1039/c6cp05902c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using many-body Green's function theory, we compare the excitation of several acene molecules at geometries optimized by different approaches.
Collapse
Affiliation(s)
- Xia Leng
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Jin Feng
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Tingwei Chen
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Chengbu Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|