1
|
Liu Y, Lei J, San D, Yang Y, Paek C, Xia Z, Chen Y, Yin L. Structural Basis for Unusual TCR CDR3β Usage Against an Immunodominant HIV-1 Gag Protein Peptide Restricted to an HLA-B*81:01 Molecule. Front Immunol 2022; 13:822210. [PMID: 35173732 PMCID: PMC8841528 DOI: 10.3389/fimmu.2022.822210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
In HIV infection, some closely associated human leukocyte antigen (HLA) alleles are correlated with distinct clinical outcomes although presenting the same HIV epitopes. The mechanism that underpins this observation is still unknown, but may be due to the essential features of HLA alleles or T cell receptors (TCR). In this study, we investigate how T18A TCR, which is beneficial for a long-term control of HIV in clinic, recognizes immunodominant Gag epitope TL9 (TPQDLTML180-188) from HIV in the context of the antigen presenting molecule HLA-B*81:01. We found that T18A TCR exhibits differential recognition for TL9 restricted by HLA-B*81:01. Furthermore, via structural and biophysical approaches, we observed that TL9 complexes with HLA-B*81:01 undergoes no conformational change after TCR engagement. Remarkably, the CDR3β in T18A complexes does not contact with TL9 at all but with intensive contacts to HLA-B*81:01. The binding kinetic data of T18A TCR revealed that this TCR can recognize TL9 epitope and several mutant versions, which might explain the correlation of T18A TCR with better clinic outcomes despite the relative high mutation rate of HIV. Collectively, we provided a portrait of how CD8+ T cells engage in HIV-mediated T cell response.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan San
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixiong Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| |
Collapse
|
2
|
Starke CE, Vinton CL, Ladell K, McLaren JE, Ortiz AM, Mudd JC, Flynn JK, Lai SH, Wu F, Hirsch VM, Darko S, Douek DC, Price DA, Brenchley JM. SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues. J Clin Invest 2020; 130:789-798. [PMID: 31661461 DOI: 10.1172/jci129161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.
Collapse
Affiliation(s)
- Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Stephen H Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fan Wu
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
A single lentivector DNA based immunization contains a late heterologous SIVmac251 mucosal challenge infection. Vaccine 2020; 38:3729-3739. [PMID: 32278522 DOI: 10.1016/j.vaccine.2020.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
Variety of conventional vaccine strategies tested against HIV-1 have failed to induce protection against HIV acquisition or durable control of viremia. Therefore, innovative strategies that can induce long lasting protective immunity against HIV chronic infection are needed. Recently, we developed an integration-defective HIV lentiDNA vaccine that undergoes a single cycle of replication in target cells in which most viral antigens are produced. A single immunization with such lentiDNA induced long-lasting T-cell and modest antibody responses in cynomolgus macaques. Here eighteen months after this single immunization, all animals were subjected to repeated low dose intra-rectal challenges with a heterologous pathogenic SIVmac251 isolate. Although the viral set point in SIVmac-infected cynomolgus is commonly lower than that seen in Indian rhesus macaques, the vaccinated group of macaques displayed a two log reduction of peak of viremia followed by a progressive and sustained control of virus replication relative to control animals. This antiviral control correlated with antigen-specific CD4+ and CD8+ T cells with high capacity of recall responses comprising effector and central memory T cells but also memory T cell precursors. This is the first description of SIV control in NHP model infected at 18 months following a single immunization with a non-integrative single cycle lentiDNA HIV vaccine. While not delivering sterilizing immunity, our single immunization strategy with a single-cycle lentivector DNA vaccine appears to provide an interesting and safe vaccine platform that warrants further exploration.
Collapse
|
4
|
Argilaguet J, Pedragosa M, Esteve-Codina A, Riera G, Vidal E, Peligero-Cruz C, Casella V, Andreu D, Kaisho T, Bocharov G, Ludewig B, Heath S, Meyerhans A. Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Res 2019; 29:907-919. [PMID: 31138618 PMCID: PMC6581057 DOI: 10.1101/gr.241372.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/14/2019] [Indexed: 02/01/2023]
Abstract
The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus-immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here, we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. First, we found an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion, and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase.
Collapse
Affiliation(s)
- Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Graciela Riera
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Cristina Peligero-Cruz
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.,Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Burkhard Ludewig
- Institute for Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Simon Heath
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08003, Spain
| |
Collapse
|
5
|
T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone. J Virol 2017; 91:JVI.02412-16. [PMID: 28077649 DOI: 10.1128/jvi.02412-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Collapse
|
6
|
HLA Class I and II alleles, heterozygosity and HLA-KIR interactions are associated with rates of genital HSV shedding and lesions. Genes Immun 2016; 17:412-418. [PMID: 27853144 PMCID: PMC5133162 DOI: 10.1038/gene.2016.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023]
Abstract
Variation at HLA and KIR loci is associated with the severity of viral infections. To assess associations of genital HSV-2 infection with human HLA and KIR genetic loci, we measured the frequencies of genital HSV DNA detection and of genital lesions in HSV-2 seropositive persons. We followed 267 HSV-2 seropositive persons who collected daily genital swabs and recorded lesions for ≥30 days. All persons were laboratory- documented as HIV-seronegative, and all were Caucasian by self-report. HSV detection rate and lesion frequency were compared by genotype using Poisson regression. Overall, HSV was detected on 19.1% of days and lesions on 11.6% of days. The presence of HLA-A*01 was directly associated with HSV detection frequency while the presence of HLA-C*12 was inversely associated with HSV detection frequency. The presence of HLA-A*01 was directly associated with lesion rate, while HLA-A*26, -C*01 and -DQB1*0106 were associated with decreased lesions. We observed an interaction between the absence of both 2DS4del and HLA-Bw4 and higher lesion rate. Heterozygosity of HLA was also associated with reduced lesion frequency. Immune control of genital HSV infection relies on multiple interacting immunogenetic elements, including epistatic interactions between HLA and KIR.
Collapse
|
7
|
Gavlovsky PJ, Tonnerre P, Gérard N, Nedellec S, Daman AW, McFarland BJ, Charreau B. Alternative Splice Transcripts for MHC Class I-like MICA Encode Novel NKG2D Ligands with Agonist or Antagonist Functions. THE JOURNAL OF IMMUNOLOGY 2016; 197:736-46. [PMID: 27342847 DOI: 10.4049/jimmunol.1501416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/28/2016] [Indexed: 11/19/2022]
Abstract
MHC class I chain-related proteins A and B (MICA and MICB) and UL16-binding proteins are ligands of the activating NKG2D receptor involved in cancer and immune surveillance of infection. Structurally, MICA/B proteins contain an α3 domain, whereas UL16-binding proteins do not. We identified novel alternative splice transcripts for MICA encoding five novel MICA isoforms: MICA-A, -B1, -B2, -C, and -D. Alternative splicing associates with MICA*015 and *017 and results from a point deletion (G) in the 5' splice donor site of MICA intron 4 leading to exon 3 and exon 4 skipping and/or deletions. These changes delete the α3 domain in all isoforms, and the α2 domain in the majority of isoforms (A, B1, C, and D). Endothelial and hematopoietic cells contained endogenous alternative splice transcripts and isoforms. MICA-B1, -B2, and -D bound NKG2D by surface plasmon resonance and were expressed at the cell surface. Functionally, MICA-B2 contains two extracellular domains (α1 and α2) and is a novel potent agonist ligand for NKG2D. We found that MICA-D is a new truncated form of MICA with weak affinity for NKG2D despite lacking α2 and α3 domains. MICA-D may functionally impair NKG2D activation by competing with full-length MICA or MICA-B2 for NKG2D engagement. Our study established NKG2D binding for recombinant MICA-B1 but found no function for this isoform. New truncated MICA isoforms exhibit a range of functions that may drive unexpected immune mechanisms and provide new tools for immunotherapy.
Collapse
Affiliation(s)
- Pierre-Jean Gavlovsky
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France
| | - Pierre Tonnerre
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France
| | - Nathalie Gérard
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France
| | - Steven Nedellec
- L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France; Plateforme MicroPICell Structure Fédérative de Recherche Santé-Institut de Recherche Thérapeutique, Nantes F44000, France; and
| | - Andrew W Daman
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 98119
| | - Benjamin J McFarland
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 98119
| | - Béatrice Charreau
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France;
| |
Collapse
|
8
|
Arrode-Brusés G, Moussa M, Baccard-Longere M, Villinger F, Chebloune Y. Long-term central and effector SHIV-specific memory T cell responses elicited after a single immunization with a novel lentivector DNA vaccine. PLoS One 2014; 9:e110883. [PMID: 25337803 PMCID: PMC4206452 DOI: 10.1371/journal.pone.0110883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022] Open
Abstract
Prevention of HIV acquisition and replication requires long lasting and effective immunity. Given the state of HIV vaccine development, innovative vectors and immunization strategies are urgently needed to generate safe and efficacious HIV vaccines. Here, we developed a novel lentivirus-based DNA vector that does not integrate in the host genome and undergoes a single-cycle of replication. Viral proteins are constitutively expressed under the control of Tat-independent LTR promoter from goat lentivirus. We immunized six macaques once only with CAL-SHIV-IN- DNA using combined intramuscular and intradermal injections plus electroporation. Antigen-specific T cell responses were monitored for 47 weeks post-immunization (PI). PBMCs were assessed directly ex vivo or after 6 and 12 days of in vitro culture using antigenic and/or homeostatic proliferation. IFN-γ ELISPOT was used to measure immediate cytokine secretion from antigen specific effector cells and from memory precursors with high proliferative capacity (PHPC). The memory phenotype and functions (proliferation, cytokine expression, lytic content) of specific T cells were tested using multiparametric FACS-based assays. All immunized macaques developed lasting peripheral CD8+ and CD4+ T cell responses mainly against Gag and Nef antigens. During the primary expansion phase, immediate effector cells as well as increasing numbers of proliferating cells with limited effector functions were detected which expressed markers of effector (EM) and central (CM) memory phenotypes. These responses contracted but then reemerged later in absence of antigen boost. Strong PHPC responses comprising vaccine-specific CM and EM T cells that readily expanded and acquired immediate effector functions were detected at 40/47 weeks PI. Altogether, our study demonstrated that a single immunization with a replication-limited DNA vaccine elicited persistent vaccine-specific CM and EM CD8+ and CD4+ T cells with immediate and readily inducible effector functions, in the absence of ongoing antigen expression.
Collapse
Affiliation(s)
| | - Maha Moussa
- INRA, ANRS, Université Joseph Fourier, PAVAL Lab./Nanobio 2, UJF Grenoble, Grenoble, France
| | - Monique Baccard-Longere
- Institut de Biologie et Pathologie, Centre Hospitalo-Universitaire de Grenoble, Grenoble, France
| | - François Villinger
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yahia Chebloune
- INRA, ANRS, Université Joseph Fourier, PAVAL Lab./Nanobio 2, UJF Grenoble, Grenoble, France
| |
Collapse
|
9
|
HLA-B27-mediated protection in HIV and hepatitis C virus infection and pathogenesis in spondyloarthritis: two sides of the same coin? Curr Opin Rheumatol 2014; 25:426-33. [PMID: 23656712 DOI: 10.1097/bor.0b013e328362018f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW HLA-B27 is associated with low viral load and long-term nonprogression in HIV infection as well as spontaneous clearance of hepatitis C virus (HCV) infection. This review summarizes mechanisms that have been suggested to be involved in this protective effect of HLA-B27, and highlights possible lessons for the role of HLA-B27 in spondyloarthritis. RECENT FINDINGS Recent studies linked protection by HLA-B27 in HIV and HCV infection to virological mechanisms such as a complicated pathways of viral escape from immunodominant HLA-B27-restricted virus-specific CD8+ T-cell epitopes. In addition, several immunological mechanisms have been proposed, including CD8+ T-cell polyfunctionality and functional avidity, thymic selection of CD8+ T-cell precursors, specific T-cell receptor repertoires and clonotypes, efficient antigen processing, and evasion from regulatory T-cell-mediated suppression. SUMMARY Multiple virological and immunological mechanisms have been suggested to contribute to HLA-B27-mediated protection in HIV and HCV infection. Some of these mechanisms may also be involved in HLA-B27-associated pathogenesis in spondyloarthritis.
Collapse
|
10
|
Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2013; 426:1178-97. [PMID: 24370931 DOI: 10.1016/j.jmb.2013.12.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Graduate Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|